Infrastructure and service provider games in crowdsourced networks

Merkouris Karaliopoulos and Iordanis Koutsopoulos **Department of Informatics** Athens University of Economics and Business 104 34 Athens, Greece email: {mkaralio, jordan@aueb.gr}

MOTIVATION - FRAMEWORK

Ambitious network connectivity agendas demand costly network infrastructure

- Broadband Europe 2020 and 2025 \rightarrow digging costs for installing fiber
- 5G mobile cellular networks \rightarrow ultra-dense radio access points, site leasing and maintenance + digging costs for fiber at the backhaul
- Connect another billion of users \rightarrow overall cheaper solutions but their sustainability is a challenge

Need to diffuse costs across as many stakeholders as possible (private sector, public agencies, users).

Different ways to share roles and costs in the telecommunication sector

THE CROWDSOURCED NETWORK INFRASTRUCTURE GAME

A. SP pricing game $G_M(c_0) = \langle \mathcal{M}, (p_i)_{i \in \mathcal{M}}, (u_i)_{i \in \mathcal{M}} \rangle$

Payoff functions: $u_i = (1 - h)N_i p_i - c_i i \epsilon \mathcal{M}$ (1) $\frac{\partial u_i}{\partial p_i} = 0, \ i \in \mathcal{M} \rightarrow p_i = f(c_0)$ (2) At equilibrium :

B. Optimization of CNIP initial investment

CNIP payoff: $u_0 = h \sum_{i=1}^M N_i p_i - \frac{c_0}{d}$, *d*: desired investment recuperation period Problem faced by CNIP

- From "All-in-a-box" vertical integration (f) to open business models with full functional separation (c)
 - Physical infrastructure provider (PIP) \neq Network provider (NP) \neq Service provider (SP)

Scenario in this work : Community Networks as PIP + NP with SPs using the shared infrastructure to provide services

 $u_0(c_0, \boldsymbol{p}(c_0))$ max c₀ $\operatorname{avg}(\boldsymbol{p}(\boldsymbol{c}_0)) \leq Q_0(\beta - (\beta - \alpha)Q_0)$ s.t. (1), (2) $c_0 \ge 0$, $p_i \ge 0$, $i \in \mathcal{M}$

NUMERICAL EVALUATION

A. Data-driven model parameterization

• Territorial characterization data

Scenario-Abbrv.	Buildings	km^2	Buildings/km ²
Pred. Urban - PU	43853	102	429
Intermediate - IM	6663	45	148
Pred. Rural close to a city - PRC	2052	34	60
Pred. Rural remote - PRR	4414	182	24

• Datasheets of networking devices

Name	Avg. Price	Beamwidth (H,V)	Transmission
	(EUR)	(degrees ⁰)	range (Km)
ISO90	200	90,30	1.34
ISO45	112	45,45	1.34
LB	73	20,10	3.79
NB	100	30,30	2.39
NS	134	60,20	1.69
NSL	49	50,40	1.20

- Connected coverage model [2]
- Online available tariff data from Spanish connectivity provider Xarxa Oberta)

B. Numerical results

Two SPs, one CNIP, several different areas and user population profiles (a, value distribution)

rate (in Gbps)

Initial coverage vs. cost, $g(c_0)$

Community Network Infrastructure Provider

- makes the initial investment in the CN setting up the first nodes and endowing the CN with initial coverage $Q_0 = g(c_0)$
- charges a commission *h* on the profits of SPs

M Service Providers (SP)

- fixed pricing : charge a monthly subscription fee for Internet access over the CN, p_i
- share the Internet transit cost in proportion to the traffic q_i their customers generate, $c_i = \frac{q_i}{\sum_{i=1}^M q_i} C(\sum_{j=1}^M q_j)$

f(a_u) 🛧 End users (in line with [1]) Portion of users who will be CN subscribers at time t+1 • join the CN at time t and contribute their own 1/(β-α) equipment to it if $a_{\mu}Q(t) - avg(p) \ge 0$ Steady-state CN coverage $Q_e = f(Q_0, \boldsymbol{p})$ P/Q(t) α Market share per SP_i : $N_i = \frac{NQ_e}{1 + \sum_{i \neq i} e^{w_i p_i - w_j p_j}}$, w_i reflecting how SP_i scores beyond fees

[1] M. H. Manshaei, J. Freudiger, M. Felegyhazi, P. Marbach, and J.-P. Hubaux. On Wireless Social Community Networks. In Proc. 27th IEEE INFOCOM, 2008

- Overall, win-win Nash equilibria appear to exist for all actors
- Higher demand from users does not translate to higher revenues for SPs
 - the marginal increase of equilibrium fees is balanced out by the increased Internet transit costs
 - Yet, the CNIP investment needs to rise to make up for users who do not join the CN with the increased fees
- The CNIP is more vulnerable to the type of the area. Sparsely populated areas (PRR) need a higher up-front investment to trigger a sustainable market

[2] K. Kar and S. Banerjee. 2003. Node Placement for Connected Coverage in Sensor Networks. In Proc. IEEE WiOpt'03. Sophia Antipolis, France.

(CRESCENDO project).

