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Abstract—In mobile crowdsensing (MCS), users are repeatedly
asked to make choices between a set of alternatives, i.e., whether
to contribute to a task or not and which task to contribute to.
The platform coordinating the MCS campaigns engineers these
choices by selecting the tasks to present to each user and offering
incentives to ensure user contributions and maximize the benefit
from them. In this paper, we revisit the well-investigated question
of how to optimize the contributions of crowds of mobile end
users to MCS tasks. However, we depart from the bulk of related
literature by explicitly accounting for the bounded rationality of
human decision making. Bounded rationality is a consequence
of cognitive and other kinds of constraints, (e.g., time pressure)
and has been studied extensively in behavioral science.

We model bounded rationality after two instances of lex-
icographic decision-making models that originate in the field
of cognitive psychology: Fast-and-Frugal-Trees (FFTs) and De-
terministic Elimination by Aspects (DEBA). With each MCS
task modeled as a vector of feature values, the decision pro-
cess under both models proceeds through sequentially parsing
lexicographically ordered features, resulting in choices that are
satisfying, but not necessarily optimal. We study, in particular,
scenarios where a single task or a pair of tasks are presented to
MCS users together with reward offers that adhere to per-task
budget constraints. We formulate the optimization problems that
emerge for the MCS campaign organizers as instances of the
Generalized Assignment Problem (GAP), an NP-hard problem
for which approximate algorithms are available. Our evaluation
suggests that our optimization approach exhibits significant gains
when compared to heuristic rules that do not account for the
lexicographic structure in human decision making.

Index Terms—Mobile crowdsensing; incentive allocation;
bounded rationality; task recommendation; decision trees; user
choice engineering.

I. INTRODUCTION

Mobile crowdsensing (MCS) has generated many expecta-
tions over the last decade that it will transform the way in-
formation is generated and shared among parties interested in
it [1]. Technically, it couples the enhanced sensing capabilities
of smart mobile devices with a variety of mobile and social
technologies, which have made the uploading, processing, and
sharing of data easier than ever before. As a result, MCS has
been applied in diverse application areas such as environmental
monitoring1, transportation2, and participatory governance3.

1NoiseTube, http://www.noisetube.net/index.html.
2Waze. Outsmarting Traffic Together, http://www.waze.com/.
3SeeClickFix, https://seeclickfix.com/pages/311-app.html.

The implementation of MCS campaigns is more often than
not coordinated by a mobile platform, end users typically
interacting with it through a mobile frontend (app). It is
a mission of this platform to identify those users who are
most suitable for the MCS tasks at hand. These tasks may
be diverse in scope such as e.g., submitting measurements
to create transportation or pollution maps, traveling across
the city to capture photos from points of interest, submitting
expert opinions, sharing data or advice for lifestyle and
healthcare improvement, delivering parcels, and so on. Users
carrying out a task bear some cost in terms of time, cognitive
resources, device battery, or physical distance that needs to
be covered to perform the task. Hence, they need to be
provided with incentives in order to get engaged in an MCS
campaign and make contributions that serve its objective(s).
Incentives are typically monetary or in-kind rewards and their
efficient allocation to potential contributors demands a good
understanding of their particular interests and preferences and
how they decide whether to contribute or not to tasks. Such
user profiling information can be collected in different ways:
implicitly, from historical data about past users’ interaction
with the MCS platform or their activity in other social media
sites [2]; or, explicitly, through customized questionnaires built
in the app.

User profiling comes hand-in-hand with a modeling hy-
pothesis about how users reach decisions, e.g., whether to
contribute or not to a given task, and how they make choices,
e.g., which task to contribute to out of a set of recommended
alternatives. In this respect, the de facto assumption in the
current MCS literature is that MCS users behave as fully
rational agents [3]. Namely, they exhaustively enumerate all
information available at hand to (strategically) optimize an
implicit utility function that quantifies the “net value” of their
contributions to different tasks.

Our point of departure in this work is that users are bounded
rational agents. This term was used by Herbert A. Simon
in [4] to denote that decision makers can rarely know and
evaluate all possible outcomes of their decisions with sufficient
precision due to constrained memory and processing capaci-
ties, and limited or imperfect information about the decision
environment. Since then, extensive experimental evidence has
been accumulated e.g., in [5] [6], suggesting that human



decisions seek to satisfice4 rather than optimize. In parallel,
modeling work in cognitive psychology, behavioral economics
and marketing science, has come up with modeling constructs
that aim to match this evidence [7] [8].

Our paper leverages this volume of work to mark a radical
departure from standard modeling practice in MCS literature.
To the best of our knowledge, it is the first attempt to import
knowledge and modeling tools from behavioral science to the
problem of task recommendation and incentive allocation in
MCS. In our modeling approach, presented in section II, there
is a finite feature space and MCS tasks are represented as
feature vectors in this space. User are heterogeneous with
respect to preferences and interests, hence they typically rank
these features differently in order of importance.

Then, in section III, we model the bounded rationality aspect
after two instances of lexicographic decision-making models
that originate in the field of cognitive psychology: Fast-and-
Frugal-Trees (FFTs) and Deterministic Elimination by As-
pects (DEBA). Under both models, the task selection process
proceeds through sequentially parsing the lexicographically
ordered features. We consider, in particular, scenarios, where
the MCS platform provides users with a single task or a pair
of tasks and prompts their contributions offering rewards that
are subject to per-task budget constraints.

Our main contribution comes in section IV. Therein, we
address the respective joint task recommendation and incentive
reward allocation problem faced by an MCS platform that
aims to maximize the aggregate quality of user contributions
to MCS tasks. We formulate these optimization problems as
instances of the Generalized Assignment Problem (e.g., see
chapter 7 in [9]), an NP-hard problem for which approximate
algorithms are available.

Then, in section V, we compare the solutions that account
for the bounded rationality in the choices of users against four
heuristics that ignore it. Our results demonstrate significant
performance gains over a broad range of system settings and
user profile mixes. In section VI, we contrast our work against
the existing literature. We conclude the paper in section VII
highlighting directions for future work.

II. SYSTEM MODEL

Our model involves task-issuing entities which issue crowd-
sensing tasks, users who may choose to contribute to these
tasks, and a MCS platform with a mobile frontend (UI) that
facilitates the coordination of the two parties, the task issuers
and the potential task contributors.

Formally, let U be the set of potential data contributors,
with U = |U| denoting the set cardinality. This set consists of
mobile users with smart devices who have registered with the
platform and run the respective app on their devices. Let also
M be the set of all tasks that are managed by the platform and
Mu, u ∈ U be the set of crowdsensing tasks that are eligible
for allocation to user u. In general, this set of tasks varies

4Satisfice is a “portmanteau” word of satisfy and suffice and implies
searching through available alternatives until one is deemed acceptable.

with time, depending on the user’s location, and possibly
other contextual information collected by the app. Herein, we
assume that the task allocation process is carried out at distinct
epochs over a given snapshot of the system (advertised tasks,
user locations); hence, the set of tasksMu is considered fixed
for each user.

A. Tasks as feature vectors

Each task m ∈M may be represented as a vector of values
on a set of L features, fm = (f1m, . . . , f

L
m). These features

may be numerical or categorical and reflect different aspects
of the task such as the reward offered for contributing to
it that may be monetary or in-kind (e.g., a coupon); the
physical location, where the task needs to be carried out;
the average time or effort it takes to perform the task; the
battery/computational requirements posed by the task; and the
context, e.g., commercial or nonprofit, of the service that is
facilitated by the requested task contribution. For simplicity
of exposition, we assume in the sequel that user choices are
determined by L = 2 features, the task reward serving as
incentive for contributing to the task, and the task distance
representing the cost a user incurs when contributing to a task.

Typically, each task m comes up with some budget Bm.
This sets an upper bound on what the task-issuing entity is
willing to spend on rewarding task contributors.

B. User choices as a multi-attribute decision-making problem

The crowdsensing campaign designer interacts with users
through the mobile app and notifies them about specific tasks
as they move around. An example of such a task notification
could be: “Coffee place m, at distance dm from your current
location, offers a reward rm for taking a couple of nice photos
of it. Click on the offer to accept it, upload the photos, and
get your voucher.”

All users are not equally qualified for a task. We denote
with qum the quality of contribution a user u can make to
task m. Practically, this may relate to the interests and skills of
u. In the aforementioned example, an amateur or professional
photographer would take better photos than someone who does
not practice photography at all. It could also relate to the
equipment the user possesses, e.g., a smartphone with a higher
resolution camera.

Each task feature (interchangeably called cue hereafter)
ranks differently the tasks inMu for a given user u, depending
on her own preferences. The way individual users priori-
tize/weigh the different cues can be inferred from historical
data, that is, data about past choices they have made when
tasks were offered to them. Yet, these same data can be
combined with different modeling hypotheses about the way
users decide. The crucial modeling hypothesis in this work
is that users exhibit bounded rationality. In what follows,
we develop this hypothesis proposing a specific family of
heuristic decision-making models that capture the bounded

4Terms “feature”, “cue”, “aspect” are used interchangeably in different
knowledge areas such as data science, cognitive psychology and marketing.



rum ≥

yes no

contribute dum ≤

yes no

contribute do not contribute

u

r
ϑ

u

d
ϑ

rum ≥

yes no

dum ≤

yes no

contribute do not contribute 

u

r
ϑ

u

d
ϑ do not contribute

dum ≤

yes no

contribute rum ≥

yes no

contribute do not contribute

u

r
ϑ

u

d
ϑ dum≤

yes no

rum  ≥

yes no

contribute do not contribute

u

r
ϑ

u

d
ϑ

do not contribute

a. FFT1 (lenient pectinate, u ∈ Ur) b. FFT2 (strict pectinate, u ∈ Ur) c. FFT3 (lenient pectinate, u ∈ Ud) d. FFT4 (strict pectinate, u ∈ Ud)

Fig. 1. The four possible FFTs that emerge for different users, depending on whether they prioritize the reward (Ur) or the distance (Ud) cue in their choices.

rationality aspect, such as the Fast-and-Frugal Trees (FFTs)
and the Deterministic Elimination by Aspects (DEBA) model.

III. USERS AS BOUNDED RATIONAL AGENTS

A. Fast-and-frugal heuristics: background

Cognitive heuristics are descriptive, as opposed to nor-
mative, models of human decision-making. Namely, they
provide more direct implications for the cognitive processes
that guide a decision/choice, focusing more on how humans
do decide rather than how they should decide [4] [6]. An
important subclass of these heuristics are the lexicographic
heuristics [5]. Common to them is that the features describing
different alternatives are inspected in a user-specific order, and
one of the alternatives is chosen upon the first feature that
discriminates between task alternatives. Hence, the user does
not exhaustively process all information at hand (i.e., the full
feature set) to make a choice.

Three major stylized facts have emerged with respect to
the accuracy of lexicographic, and more generally cogni-
tive heuristics, in predicting human decisions [10]. First,
their accuracy is comparable to that of more complex and
computationally-demanding models such as regression, neural
networks, classification and regression trees (CARTs), or naive
Bayes. Second, these simple heuristics often perform better
in predicting out-of-sample human choices when compared
to matching past choices. Third, each model outperforms the
other under certain conditions, since each one is capable of ex-
ploiting different properties of the decision environment such
as the correlation between different features. The coupling
between the structure of choice rules and the context (choice
environment) allows the former to efficiently exploit the latter,
in what is called ecological rationality.

1) Fast-and-frugal trees: Fast-and-Frugal Trees (FFTs) are
one instance of cognitive lexicographic heuristics [11] [12].
They are deterministic binary decision trees. As with all
lexicographic heuristics, the cues of the alternatives are first
ordered. Then, at each level of the tree, one cue is inspected.
The context of the inspection depends on the type of the cue,
binary or continuous. For binary cues, “1” typically denotes
existence of a cue and “0” its absence. Continuous cues are
compared against satisfiability thresholds: a cue may favor a
decision alternative if it exceeds the threshold or if it does
not meet it, depending on whether a cue is positively (e.g.,
MCS task rewards) or negatively (e.g., MCS task distance)
correlated with an alternative (e.g., contribute to the task).
Both the order of the cues and the satisfiability thresholds

are learnt while training the model with a sample of past user
decisions (training sample). In [12], these thresholds are set to
the medians of the cue values in the training sample, whereas
in [13] they are computed with enumeration over the whole
range of cue values.

A key feature of FFTs is that at every level of the tree, at
least one of the inspection outcomes results in a decision, i.e.,
at least one of the child nodes is a leaf node. They are called
frugal because they end up processing limited information;
and they are fast, because this non-exhaustive information
processing accelerates the decision-making process.

FFTs were originally proposed for inference tasks. Thereby,
one alternative is the correct one according to an objective
criterion and the goal is to figure out which one is this by
inspecting different cues. A well known experiment in this
respect is the one concerning the size of German cities [7].
Users are presented with pairs of German cities and are asked
to infer which one is larger in terms of population given how
they score in a number of cues such as whether they host a
major exhibition or are home to a soccer team in the German
major soccer league.

In our paper, we use FFTs in a preferential choice context.
In such tasks, there is no objective “ground truth” as in
inferential tasks above. The ordering of cues and the respective
satisficing thresholds depend on the subjective preferences and
priorities of each user and are learnt out of separate training
processes.

2) Deterministic Elimination by Aspects (DEBA): The
DEBA heuristic in [19] also ranks cues in order of decreasing
importance (x1, x2, ...). When the cues are discrete, the
alternatives are readily codified as ordered sequences of ones
and zeros. DEBA then inspects the value of all alternatives on
x1 and eliminates all alternatives featuring a zero on it. The
process is repeated when parsing the second and the remaining
attributes until a single alternative remains. If more than one
alternatives are left after all cues are inspected, or if there is
a cue eliminating all remaining alternatives, a choice is made
randomly among the currently surviving ones.

DEBA can also work with alternatives featuring continuous
cues as long as these are digitized according to some rule
before being processed by the heuristic. The simplest and most
used such rule is called median split [5]. For each cue xi, the
rule computes the median medi of the cue values across all
alternatives. In alternatives, where the cue value exceeds medi,
the cue is codified as 1(0) for favorable(adverse) cues and vice
versa. Hence, the median value medi implicitly quantifies the



satisficing threshold for cue xi.
In the remainder of the section, we explain how these two

lexicographic heuristics (FFTs and DEBA) model the user
choices in app scenarios that recommend one task at a time
to MCS users (single-task offers) and others that present them
with pairs of task offers (paired task offers).

B. Single-task offers: user decisions as fast-and-frugal trees

Consider the scenario where a single task is recommended
to each user through the app and the user may accept the offer
or reject it. For the case of L = 2 cues, the decision of user u
to make or not a task contribution is determined by two user-
dependent acceptability thresholds θur and θud pertaining to the
task reward and physical distance, respectively. In particular,
the user decision process is modeled by one out of a set of
the four different FFTs shown in Fig. 1.

The four trees differentiate regarding the order of cue
inspection and whether the exit upon a cue inspection is
triggered when an acceptability threshold is satisfied or not.
The two leftmost trees, FFT types 1 and 2, model users who
prioritize the task reward in their decisions. FFT1 models users
that decide to contribute to a task if its reward rum exceeds
the reward acceptability threshold, i.e., rum ≥ θur , while FFT2
models users who decide to contribute to the task if it satisfies
both the reward and distance acceptability thresholds i.e., if
rum ≥ θur and dum ≤ θud . On the other hand, the two rightmost
FFTs, FFT types 3 and 4, represent users who prioritize the
distance of offered tasks. In FFT3 it suffices that dum ≤ θud
in order for the user to contribute to the task, while in FFT4
both dum ≤ θud and rum ≥ θur need to hold. Note that FFT1
and FFT3 feature an exit at the first tree level in favor of
contributing to a task, when the respective thresholds, θur or
θud are satisfied.

All four FFTs are of the pectinate (or rake) type [12];
namely, one of the two alternatives is chosen under a strong
conjunction rule. FFT2 and FFT4 model users who decide to
contribute to a task only when both acceptability thresholds are
satisfied (strict pectinates). On the other hand, under FFT1 and
FFT3 the user decides not to contribute to a task only when
both thresholds are violated (lenient pectinates); equivalently,
the satisfaction of one of the two thresholds suffices for a
positive response to the task offer.

We denote by Ui, i = 1, 2, 3, 4 the subset of users modeled
by FFTi, and let Ur = U1∪U2 and Ud = U3∪U4. Thus, Ud,Ur
denote the subsets of users who place priority on the distance
and the reward feature respectively, and form a partition with
Ud ∩ Ur = ∅ and Ud ∪ Ur = U . These subsets and the user-
dependent thresholds are the outcome of the model training
process (e.g., [13]).

C. Paired task offers: user choices as DEBA processes

Now, assume that the mobile app offers two alternatives
(MCS tasks) m1, m2 to each user u, specified by the reward-
distance pairs (rum1 , dum1) and (rum2 , dum2). The user may
choose to contribute to one of the two tasks recommended by
the app or decline both offers.

TABLE I
CODING A TASK OFFER (rum, dum) TO USER u AS A DEBA ALTERNATIVE

(mu1,mu2) WITH ACCEPTABILITY THRESHOLDS θur , θud .

u ∈ Ur u ∈ Ud

mu1
1 if rum ≥ θur 1 if dum ≤ θud
0 if rum ≤ θur 0 if dum ≥ θud

mu2
1 if dum ≤ θud 1 if rum ≥ θur
0 if dum ≥ θud 0 if rum ≤ θur

TABLE II
VALUE RANGES OF THE REWARD AND DISTANCE CUES, FOR WHICH

DIFFERENT FFT MODELS ACCEPT OFFERS AND CONTRIBUTE TO TASKS.

rum ≥ θur rum < θur
dum < θud FFT1-FFT4 FFT1, FFT3

dum ≥ θud FFT1, FFT3 –

When users invoke the DEBA model in making choices,
they treat each alternative as a string m = (mu1mu2) of ones
and zeros according to Table I. It is also convenient to consider
the option of contributing to neither of the two tasks as a third
virtual task alternative, which is coded by m0,r = (01) for
users u ∈ Ur, prioritizing the task reward in their choices,
and by m0,d = (10) for users u ∈ Ud, first considering the
task physical distances. The model training process infers (i)
whether u ∈ Ur or u ∈ Ud; (ii) the threshold values, θur , θ

u
d .

IV. PROBLEM FORMULATION

As mentioned earlier, for illustrative purposes we consider
that individual task choices are described by two features: the
task distance, which has cost/effort dimensions for a user and
is tied to a given task; and, the task reward, which reflects the
user benefit out of a contribution and can be controlled by the
MCS platform.

The MCS campaign designer, then, aims at engineering
the MCS task offers that are made to users. This implies
choosing the tasks and the accompanying rewards offered
to each MCS user in ways that induce task contributions,
which are beneficial for the overall campaign objectives. For
instance, to users who prioritize based on exerted effort (e.g.,
distance), the app may choose to recommend tasks that lie
at short distance, offering small rewards. It could then direct
these savings on the task budget to expert users who prioritize
based on the offered task rewards. Thus, the budgets of the
various tasks could be managed efficiently to attract more
contributions by better qualified users. In what follows, we
describe how this objective can be formalized under single-
and paired-task offers. In both cases, we assume that the MCS
platform objective is to maximize the aggregate quality of
attracted task contributions in light of the per task budget
constraints posed by the task-issuing entities.

A. Single-task offers

A key remark in this case is that the four different FFTs
in Fig. 1, which model how users decide, can be grouped
in two categories according to how users respond to a given



{reward, distance} task offer. As shown in Table II, users
modeled by the strict pectinates (either FFT2 or FFT4) will
accept an offer as long as both the reward and distance
threshold conditions are satisfied. The hint for the platform
provider is that those users will never accept offers for tasks at
distances greater than θud , whereas a reward marginally beyond
θur will suffice to ensure their contributions to tasks that lie
closer than θud . Hence, the set of eligible tasks for a user
u ∈ U2 ∪ U4 is:

Mu = {m : dum ≤ θud}, u ∈ U2 ∪ U4 . (1)

On the other hand, for users u ∈ U1 ∪ U3 modeled by the
lenient pectinates, all tasks may be of interest depending on
the reward that is offered for them. A reward at least as high
as θur will have to be offered to them for tasks further than θud ,
whereas a much smaller reward would suffice for tasks within
distance θud . Therefore,

Mu = {m : dum ≤ Dmax}, u ∈ U1 ∪ U3 . (2)

where, Dmax is an upper bound on how remote are the tasks
offered to users by the MCS platform.

Hence, the MCS platform provider can ensure a contribution
from user u to task m by targeting the offered task rewards
as follows:

rum ≥


θur , u ∈ U2 ∪ U4, dum ≤ θud
θur , u ∈ U1 ∪ U3, dum > θud

rmin, u ∈ U1 ∪ U3, dum ≤ θud

(3)

where rmin is a minimum constant reward a priori set by the
platform for all task contributions.

Then, the MCS campaign organizer seeks to identify which
task m to recommend to each user u, with reward rum that
ensure their positive responses and contributions, in line with
(3), and are subject to the budget constraints for each task. If
x = (xum : u ∈ U ,m ∈Mu) denotes such a task assignment,
with xum = 1 if user u is assigned task m, and 0 otherwise,
the optimization problem (P1) faced by the MCS platform can
be written as follows:

max
x

∑
u∈U

∑
m∈Mu

qumxum , (4)

s.t.
∑

u:m∈Mu

rumxum ≤ Bm ∀m ∈M (5)∑
m∈Mu

xum = 1 ∀u ∈ U (P1) (6)

xum ∈ {0, 1} u ∈ U ,m ∈Mu . (7)

In (5), reflecting the per task budget constraints, the rewards
{rum} are taken to be the minimum ones satisfying (3)5; it
is trivial to show that the MCS platform cannot increase the
objective function value (4) by offering rewards beyond the

5To be more precise, the reward should be θur + ε, ε → 0, but we work
with θur for the sake of simplicity.

minimum needed. Equation (6) codifies that exactly one MCS
task has to be recommended to each user.

The problem (P1) is an instance of the maximum Gener-
alized Assignment Problem (GAP) (see, for example, [9]).
Recommended tasks in (P1) correspond to bins in the generic
GAP typology, task budgets to bin capacities, user contribu-
tions to items, expected qualities of user contributions to item
profits, and rewards offered for task contributions to item sizes.
The GAP is an NP-hard problem. Approximate algorithms
have been proposed for it in [14], [15] and [16], where the
best known e

e−1 + ε-approximation is obtained by a Linear
Programming based algorithm.

B. Paired task offers

In this case, we consider apps that recommend pairs of
tasks to users, giving them a choice regarding the task they
will contribute to. Consider a user u at the time that the
app is about to issue task recommendations. Depending on
the task distance acceptability threshold θud and whether the
user prioritizes distance or reward in her choice, a subset of
all possible pairs of tasks in Pu = Mu × Mu constitute
meaningful offers on behalf of the app. For instance, it would
make no sense to issue a recommendation to u for tasks
(m1,m2) with dm1

, dm2
> θud if u ∈ Ud since, irrespective of

the chosen rewards, both tasks would be rejected by u.
On the other hand, given a meaningful pair of tasks p =

(m1,m2) ∈ Pu at physical distances (dm1
, dm2

) from user
u, the app can choose the rewards for the two tasks in many
different ways in order to direct u towards the one or the other
task. These options are summarized in Table III.

In practice, the rewards take discrete values so that their
combinations (columns 2 and 4 in Table III) that result in
a given task choice for each task pair form a finite set. Even
better, as shown in columns 4 and 7 of Table III, the minimum
reward that has to be given to a user to induce a contribution
to a task equals her reward acceptability threshold. Therefore,
for each pair of tasks (m1,m2) ∈ Pu, the original reward
range of the app can be narrowed down to a much smaller
subset of meaningful paired offers. For example, for the first
possible pair of tasks (dum1

≤ θud < dum2
, first row in Table

III), the app directs the user to task m1 by choosing reward
θur for m1 and one arbitrary but fixed reward for m2, whereas
it can direct her to task m2, as far as u ∈ Ur, by offering
reward θur for m2 and anything smaller for m1 (see Fig. 2).

Hence, for any user u and pair of tasks p = (m1,m2)
in Pu, i.e., for given dum1

and dum2
, and through properly

choosing the offered rewards, the platform can induce one out
of a larger set t(p) of possible contributions. Each possible
contribution comes at the cost (reward) and with the benefit
(contribution quality) shown in columns 4 or 7 of Table III
for the MCS campaign. This way, the union of possible task
pairs in Pu yields an inflated set of tuples Tu. Each tuple t
uniquely determines the pair of tasks recommended to user u,
the offered rewards for each task, and, most importantly, the
induced task choice of the user, m(t). This in turn, determines
the quality qum(t) of the contribution and the payment rum(t)



TABLE III
POSSIBLE TASK REWARD OFFERS AND RESULTING CHOICES OF USER u WITH ACCEPTABILITY THRESHOLDS (θur , θ

u
d ) FOR ALL POSSIBLE PAIRS OF TASKS

(m1,m2) ∈ Pu . THE CHOICES ACCOUNT FOR THE USER OPTION NOT TO CONTRIBUTE TO ANY TASK, i.e., VIRTUAL TASKS m0,r AND m0,d AS DEFINED
IN III-C. COLUMNS 4 AND 7 LIST THE MINIMUM PAYMENTS THAT ENSURE THE TASK CHOICES IN COLUMNS 3 AND 6, RESPECTIVELY.

Paired task cases u ∈ Ur u ∈ Ud
reward ranges choice (contrib. quality, min cost) reward ranges choice (contrib. quality, min cost)

dum1 ≤ θud < dum2

rum1 ≥ θur , any rum2 m1 (qum1 , θ
u
r ) rum1 ≥ θur , any rum2 m1 (qum1 , θ

u
r )

rum2 ≥ θur ≥ rum1 m2 (qum2 , θ
u
r )

dum2 ≤ θud < dum1

rum2 ≥ θur , any rm1 m2 (qum2 , θ
u
r ) rum2 ≥ θur , any rum1 m2 (qum2 , θ

u
r )

rum1 ≥ θur ≥ rum1 m1 (qum1 , θ
u
r )

dum1 , dum2 ≤ θud
rum1 ≥ θur > rum2 m1 (qum1 , θ

u
r ) rum1 ≥ θur > rum2 m1 (qum1 , θ

u
r )

rum2 ≥ θur > rum1 m2 (qum2 , θ
u
r ) rum2 ≥ θur > rum1 m2 (qum2 , θ

u
r )

dum1 , dum2 > θud
rum1 ≥ θur > rum2 m1 (qum1 , θ

u
r ) - - -

rum2 ≥ θur > rum1 m2 (qum2 , θ
u
r )

u1

u2

u3
m1

m2
m3

m4
m5

u1

u2

u3

Tu1

Tu2

Tu3

m1

m2

m3

m4

m5

Fixed range Dmax, within which task are eligible for offer
to users

Task distance acceptability threshold ranges for u1, u2, u3

Fig. 2. Paired task offers, toy example with |U|=3, |M|=5. Users are assumed
to belong to class Ud and we show the tuple sets Tu for each of them together
with the resulting contribution quality and cost, in line with Table III. User 2
may end up contributing to task m2 when getting paired offers for (m2,m3)
or (m2,m4); user 5 may only end up contributing to task m5 or not at all;
and m4 can no way receive a contribution since it lies beyond the distance
acceptability threshold of all three users.

to be made to user for this contribution. The app will need to
choose one of these tuples to offer to each user, respecting the
budget constraints of each task, and aiming at maximizing the
aggregate quality of user contributions to tasks.

Formally, if xut = 1, t ∈ Tu, when a particular tuple is
offered to user u, and xut = 0, otherwise, the optimization
problem faced by the app is

max
x

∑
u∈U

∑
t∈Tu

qum(t)xut (8)

s.t.
∑
u∈U

∑
t∈Tu:m(t)=m

rum(t)xut ≤ Bm ∀m ∈M (9)

∑
t∈Tu

xut = 1 ∀u ∈ U (P2) (10)

xut ∈ {0, 1}, u ∈ U , t ∈ Tu (11)

The problem (P2) resembles the problem (P1) that emerged
in the case of single-task offers. We could again view tasks as
bins of capacity equal to the task budget. The difference is that

the items are now the tuples that can be generated out of the
set Pu for each user u and there is the additional constraint
that only one of these tuples can be offered for each user.
Namely, when compared to the original maximum Generalized
Assignment Problem (GAP), the items are grouped in classes
(one per user) and only one of those can be assigned to a
bin. This problem is also NP-hard since it generalizes the
maximum Generalized Assignment Problem [14].

V. EVALUATION - NUMERICAL RESULTS

In this section, we evaluate the achievable performance gain
when the incentive allocation process explicitly accounts for
the lexicographic decision-making strategies of end users.

A. Methodology
We simulate instances of the joint task recommendation and

reward offer problem for the case of single-task offers. Each
problem instance specifies the number of MCS tasks, M , and
their spatial distribution across a rectangular area of RxR m2;
the number of involved users, U , and their positions within the
same area; and the decision-making profiles of the users, i.e.,
the type of FFT driving the responses of each one to task and
reward offers and the relevant thresholds, θur and θud . The task
and user locations, as well as the decision-making profiles of
users (FFT type, threshold values) are randomly chosen, in
line with different statistical distributions.

For each problem instance, we solve the optimization prob-
lem (P1) with the approximation algorithm in [15] to compute
the aggregate expected quality of contributions. The approxi-
mately optimal solution (GAP) is compared to four alternative
heuristics that determine the recommended tasks and offered
rewards without accounting for the lexicographic structure in
the user decision making. Hence, recommendations may be
issued to user u for the task m that lies closest to her so that

xum = 1, m = arg min
l∈Mu

dul, u ∈ U , (12)

or for the one she is most skilled for, i.e.,

xum = 1, m = arg max
l∈Mu

qul, u ∈ U . (13)

On the other hand, the task budget may be split either
equally among users that get recommendations for it, that is

rum =
Bm

K
, K = |{u : xum = 1}| (14)
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(a) R = 500, M = 25, θud ∼ unif (100, 250) (b) R = 750, M = 20, θud ∼ unif (100, 350)

Fig. 3. Approximately optimal task recommendations and reward offers vs. alternative heuristic rules: θur ∼ unif(0.5, 1.5).

TABLE IV
HEURISTIC RULES FOR RECOMMENDING TASKS AND OFFERING REWARDS

TO MCS USERS.

Recommended task Closest User is most skilled forBudget split
Equally CLOSE-EQ SKILL-EQ
In proportion to user skills CLOSE-PROP SKILL-PROP

or in proportion to the quality of the contribution they can
make to it (skill),

rum =
qum∑

v:xvm=1
qvm

Bm (15)

The combinations of the two task recommendation rules
(12)-(13) with the reward offer rules (14)-(15) result in
four heuristics for the joint task recommendation and reward
offer problem, which are hereafter abbreviated as CLOSE-
EQ, CLOSE-PROP, SKILL-EQ, and SKILL-PROP and are
summarized in Table IV. We also introduce the abbreviations
CLOSE-* and SKILL-* as pointers to the first two and last
two heuristics, respectively. The task recommendations and
reward offers determined by each of those four heuristics are
then processed by the decision trees profiling each user to
determine whether the user will accept the offer and contribute
to the task or not.

B. Numerical results

1) General performance trends: Figure 3 plots the number
of accepted offers and the resulting cumulative quality of
user contributions to MCS tasks as the density of users per
MCS task grows up to more than 20 (U/M > 20). In these
experiments, the users are equally split between the four FFT
types in Fig. 1. Four remarks are worth making in Fig. 3.

First, GAP significantly outperforms the four heuristics. It
manages the budget allocated to each task more efficiently
since it has the flexibility to recommend any task to a user
and adapt the offered reward to her specific decision-making
process (see Eq. (3)). On the contrary, the heuristics issue fixed
and suboptimal task recommendations to each user since they
are not aware of their satisfying thresholds. The performance
gap grows as the user density increases up to a point that the
available budget does not suffice to reward candidate users and
GAP cannot ensure acceptance of all task offers.

Secondly, focusing on the four heuristics, the task rec-
ommendation rule weighs more than the reward allocation
rule. The latter has practically no impact when users get
recommendations for tasks they are most skilled for. All
users who share the task budget in this case feature high
values of qum so that sharing the budget in proportion to
these values (SKILL-PROP) is almost identical to sharing it
equally among users (SKILL-EQ). On the other hand, the two
CLOSE-* heuristics attract more contributors, especially at
low user densities, but do not capitalize this feature in terms of
quality of contributions. Targeting the reward offers to more
skilled users in SKILL-* more than compensates for the fewer
attracted user contributions.

Thirdly, this last trend generalizes to the comparison of
the two task recommendation rules. The attracted quality of
contributions is higher under the SKILL-* heuristics, even if
they end up attracting considerably fewer contributors than
the CLOSE-* heuristics. Finally, the users who decline offers
under the heuristic rules or under GAP at high user density,
are almost exclusively those who decide according to the strict
pectinate models (ref. Fig. 1); for those users both thresholds,
θud and θur , need to be satisfied. This is also the reason why the
CLOSE-EQ and CLOSE-PROP heuristics manage to involve
more contributors. By recommending the tasks that lie closest
to the user, they (almost always) satisfy directly the first
threshold and only fail to get contributions from users who
cannot get a satisfying reward (rum < θur ). We look more
closely how the mix of strict vs. lenient pectinates affects
performance in the following paragraph.

2) Impact of decision-making model mix: Users who decide
in line with a strict pectinate FFT (cases b. and d. in Fig. 1)
are more demanding in that they decline an offer if either
cue fails to satisfy the respective threshold. As a result, the
platform has less flexibility in handling them.

Fig. 4 suggests that the performance of all algorithms is
hurt as the portion of these users increases. The performance
deterioration is most dramatic for the two SKILL-* heuristics
at both low and high user density. The two distance-oriented
heuristics are more robust to the variation of the user mix but
perform worse than all the alternatives already in the absence
of strict pectinate users.

The impact on GAP has different qualitative features at low
and high user density. For U = 200 users, GAP can still
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Fig. 4. Strict vs. lenient pectinates: R = 500, M = 25, θur ∼ unif(0.5, 1.5),
θud ∼ unif(100, 500).

tailor its task recommendations and reward offers so that all
of them get accepted. Yet, it compromises with respect to
the quality of attracted contributions. As the number of strict
pectinate users increases, the users are increasingly making
contributions to tasks they are less skilled for. For U = 500
users, GAP also loses its capacity to ensure task contributors.
The quality of attracted contributions drops more dramatically,
but it still remains better than its alternatives.

3) Impact of reward threshold: Higher spread of the reward
threshold values θur implies more users with higher reward
demands in order to contribute to a task. Figure 5 plots
the aggregate quality of user contributions against increasing
values of rmax, the maximum value of θur over all users, under
different user densities. The users, as with Fig. 3 are equally
split between the different FFT types in Fig. 1.

GAP confirms the performance advantage evidenced in the
earlier experiments, experiencing a performance drop with
higher values of rmax only when U = 500. The quality of
contributions is higher under SKILL-* than with CLOSE-*,
but the gap closes at higher rmax and user density values.
After some “critical” rmax value, which moves leftwards on x-
axis as U increases, the better quality of attracted contributions
under SKILL-* cannot compensate for their shrinking number
and the two heuristics fall behind the CLOSE-* heuristics.

VI. RELATED WORK

There exists a large body of research work on incentives for
mobile crowdsensing. Part of this work explicitly considers the
quality of user contributions, for example [17] [18] [19]. In
[17], a market framework is considered that involves data con-
tributors, service consumers, and a service provider. A novel
metric is introduced to measure the quality and timeliness of
contributed data and to determine the compensation of con-
tributors and service consumption rate of service consumers.

In [18], a payment scheme is devised that pays participants in
accordance with their effective contribution. The anticipated
quality of contributed information by each user is estimated
based on the mutual information principle and the overall
quality of gathered data through an expectation maximization
algorithm. In [19], the aggregate quality of all tasks minus the
set of costs that users undergo, is maximized through a truthful
incentive mechanism based on reverse combinatorial auctions.
Potential data contributors place bids on subsets of tasks they
may contribute data to. The mechanism takes into account the
envisioned qualities and outputs the selected winners and their
compensations for executing the declared subsets of tasks. In
[20], the optimal auction framework is used to design a data
market that takes into account the strategic behavior of data
contributors, who may misreport the cost of data contributions.
An incentive-compatible mechanism determines participation
levels and payments to users with the aim to minimize data
acquisition cost and ensure a certain quality of aggregate
information. In [21] the objective is to select a subset of data
contributors for maximizing the total utility minus the sum of
payments. The submodularity of the objective is exploited to
devise a truthful greedy algorithm and show its effectiveness.

Fewer studies have devoted effort to learning user pref-
erences and infer decision-making processes, either through
online questionnaires [22] or combining real data from social
networks [23]. These studies come up with probabilistic mod-
els for the dependence of users’ contributions on the incentives
offered to them and manage the MCS task budgets so that the
total expected quality of user contributions is maximized.

Nevertheless, in all these works, users are approached as
fully rational agents that seek to maximize a given (closed-
form) utility function; none of them accounts for the well re-
ported bounded rationality of human choices [3]. In this work,
we tried to address this gap through interpreting modeling
constructs from the field of cognitive psychology within the
optimization framework of MCS campaigns.

VII. CONCLUSIONS AND DISCUSSION

Concepts from behavioral science remain, to the best of our
understanding, largely unexploited by the wireless networking
community. In this work, we have made a first attempt to
accommodate the extensive experimental evidence on the
bounded rationality of human-decision making in the problem
of MCS task recommendation and incentive allocation. We
have drawn on two models for the user decision-making
process from the field of cognitive psychology (fast-and-frugal
trees and DEBA) and have shown how rewards can be tuned to
optimize the aggregate quality of contributions to MCS tasks.

Note that we have assumed the relevance of FFTs and
DEBA in the MCS setting, rather than testing it; this would
demand statistically large datasets from real MCS applications,
which are missing in literature. On the other hand, an attrac-
tive feature of cognitive heuristics as a whole, is that they
constitute descriptive decision-making models. Namely, they
capture salient cognitive processes (parsing of alternatives,
elimination, satisficing) underlying human decisions/choices
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Fig. 5. Sensitivity of aggregate quality of task contributions to the user reward threshold: R=500, M=25, θur ∼ unif(0.5, rmax), θud ∼ unif(100, 250).

that persist across very different choice settings. The decision
environment of the MCS user will likely be characterized by:
a) limited attention and interference due to competition from
other simultaneous tasks (multi-tasking and high cognitive
load); b) limited time to evaluate the proposed tasks and arrive
at a decision (time-pressure). Cognitive load and time pressure
are both well known to favor the use of heuristics, such as the
ones we have employed here, over more complex normative
models of human decision-making [5] [24].

On a more general note, our work appears to have impli-
cations for a broader set of application areas beyond mobile
crowdsensing, in which end-users make choices through the
mediation of mobile platforms. For example, in smart-energy
apps, energy-saving recommendations and consumption plans
are issued to the user through the app with the goal to
optimize energy savings. In mobile advertising, ads or offers
are projected to users, and the aim is to optimize revenue
through user response to ads. In all cases, the goal is to best
engineer the alternatives offered to users, possibly by exploit-
ing recommender systems’ practices, and tailor incentives to
user preferences so as to nudge them towards desirable choices
for the user experience and the platform welfare.
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