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Abstract 

 

The Information Centric Networking (ICN) architecture is a clean state Internet 

infrastructure which, unlike the current host-centric communication model, focuses on 

the content itself, solving multiple issues in security, mobility, and data volume. Object-

oriented Packet Caching (OPC) is a caching scheme that integrates object-oriented 

cache lookups with packet-oriented cache replacement. The OPC space allocation 

method in slow memory has some shortcomings which can be identified during the 

object eviction process. Moreover, one-access cache hits are not supported. Both issues 

are associated with the linked-list structure used in the slow memory, which must be 

traversed until the right chunk is found, creating this way an overhead. This thesis 

introduces a new slow memory organization for OPC which offers a faster eviction 

process with low overhead. The research process is described in detail, as several fields 

were studied and several alternatives were discarded before reaching the final solution.  
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1 Introduction 

 

Network traffic is increasing every year. Network infrastructure and organization is 

racing to keep up with the ever-growing traffic requirements, in order to maintain up-

to-expectations performance. Web caching, which takes place at in-network nodes, can 

contribute greatly to the reduction of load. It does not, however, eliminate all the 

problems, exhibiting significant scalability and flexibility issues. Information-Centric 

Networking (ICN) addresses most weaknesses and drawbacks that current cache 

schemes have, by using a content centric model instead of the current host-centric one. 

In ICN, information is fragmented into chunks that are assigned with unique names. 

Named chunks can be independently discovered, routed and forwarded. The 

information transportation shifts to receiver-driven operation and chunk requests and 

responses are introduced.  

Further performance improvement comes with Object-oriented Packet Caching (OPC), 

a scheme which incorporated the effectiveness of packet-level caching along with the 

resource-efficiency of object-oriented caching. It aims at the improvement of router 

cache hit rates, without requiring additional storage resources. Moreover, OPC 

eliminates issues raised with packet caches, such as looped replacement and large object 

poisoning. 

Issues still occur with OPC’s implementation, mainly with procedures which require 

that a router’s slow memory should be traversed. Object eviction and chunk retrieval 

procedures are rendered quite costly because they both involve several accesses to slow 

memory in order to be completed. 

With these two problems resolved, OPC’s capability as an object-oriented caching 

scheme can be maximized. This thesis proposes solutions to these exact problems. 
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2 Information Centric Networking (ICN) 

 

2.1 Introduction 
 

ICN a candidate for the future Internet architecture promising a new architectural 

framework. Since the Internet today is increasingly used for the transmission of the 

information rather than the communication between two points, ICN aims to meet 

present and future needs more effectively than today's Internet architecture. By naming 

the information on the Network Layer, ICN favors the development of caching on the 

network and multicasting mechanisms, thus facilitating the efficient and timely 

distribution of information to users. ICN can also address other constraints to which 

this online architecture is subject, such as mobility management, and security 

enforcement. There are four elements emphasized in this architecture: 

• Information Naming  

• Information Delivery 

• Mobility 

• Security 

Bellow each element is further analyzed:  

 

2.1.1 Information Naming 

 

The role of the Internet has shifted from academic to serving universal interests of any 

kind. As a result, it is essential to support the distribution of large-scale information and 

content. Receiving information is currently under the spotlight, whether it is content or 

data, without having to access a particular computer environment (host or server). 

However, the current Internet design was designed so that the user needs to define in 

every application not only the information he or she intends to receive, but also the 

specific server that holds that information. As a result, unless auxiliary features are 

used, Internet-level networking mechanisms are unable to locate and transport 

information from the optimal location in which it is hosted. The ICN approach 

essentially decouples the information from its sources, in the sense that location and 

identification are clearly split. The information is identified, addressed and assigned 

independently of the location it resides at (Arianfar S., 2010) (Mohamed Diallo, 2011). 
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In the ICN architecture, each fragment of information is named, instead of specifying a 

pair of hosts that is comprised of a source and a destination. This shift from host naming 

to information naming has the positive effect that information retrieval is guided by the 

recipient. Unlike the Internet today, in which senders have exclusive control over the 

data to be exchanged, with ICN data can only be obtained if explicitly requested by the 

recipient. In ICN, after sending a request, the network is responsible to determine the 

best source that can provide the requested information. Thus, the routing operation of 

information requests is summarized in finding the best (closest) source that holds this 

information, based on a name, independently of where that information is located. 

 

2.1.2 Information Delivery 

 

Focusing on content-centric applications, requires the Internet to efficiently distribute 

vast amounts of information, as well as to manage unpredictable traffic surges, 

commonly referred to as flash crowds. 

However, the Internet as it is today does not possess the mechanisms needed to handle 

the multitude of events and to effectively distribute the information. Under the current 

Internet architecture, the data to be transferred is treated as a series of bytes that have 

to be transferred from a source to a destination and therefore cannot realize any 

optimizations that would otherwise be possible (e.g., smart in-network caching, 

information replication at various points, information-aware traffic engineering). For 

the Internet to be able to fully utilize in-network storage capabilities, it must be 

expanded with mechanisms that can identify and retrieve the information from the 

optimal site where it resides (Group, 2010). The emergence of such techniques at the 

application level (e.g. Web caching) confirms that these concepts were an afterthought. 

These techniques have been implemented by Content Delivery Networks (CDNs) at the 

application level. However, the amount, location and destination of traffic cannot be 

predicted if flash crowds occur. 

Additionally, the investment on a CDN that includes and caters for all these possible 

cases is certainly not economically feasible, especially if we take into account the 

steady increase in user-generated information. For these reasons, it would be preferable 

to have a new Internet infrastructure that supports mechanisms within the network itself 

for efficient information retrieval. Thus, by presenting the ICN architecture, the 

network can now satisfy a request to receive information not only by locating the 



9 
 

original source but also by using in-network caches that keep copies of the requested 

information. This can be implemented without having to resort to additional costly 

solutions such as CDNs, because the network level in ICN works directly on named 

information.  

Data packets in the ICN architecture get their name depending on the information they 

hold. As a result, they can be stored in caches and retrieved very easily, unlike in the 

classic Internet structure that requires costly techniques such as Deep Packet Inspection 

(DPI) (Zhaoguang Wang, 2011), (Ashok Anand A. G., 2008), (Ashok Anand V. S., 

2009). In addition, by naming the information, ICN supports bundling requests for the 

same information, thus facilitating distribution to the relevant interested destinations 

via multicast forwarding. 

 

2.1.3 Mobility 

 

The existing Internet architecture, as was already mentioned, was designed for point-

to-point communication between two nodes, with the node ID (IP address) being the 

main element referring to Hosts, with an IP address that belongs to a network. Surveys 

conducted for marketing purposes1 indicate that by 2018 non-fixed nodes that have 

access to the Internet occupy fifty-eight (58) percent of web traffic while wire-traffic 

has a percentage of forty-two (42). 

Wireless and mobile devices, while they possess the ability to easily switch from one 

network to another by changing their IP addresses, are unable to achieve continued 

connectivity in motion, an issue that is now an increasingly important requirement for 

the future Internet. To address this problem various solutions such as Mobile IP have 

been proposed; they are considered to be temporary and ineffective due to issues such 

as triangular routing, valley routing, and exit policy violations. 

The mobility problem of the nodes is solved by the publish-subscribe (Patrick Th. 

Eugster, 2003) model of ICN, in which users interested in information are subscribed 

in the sense that they are interested in this information, while the users who offer the 

information publish it, advertising it on the network. The procedure of matching 

subscriptions to publications is implemented by a rendezvous function performed by 

brokers within the network that hold this responsibility. The effectiveness of this 

                                                           
1 Mobile Vs. Desktop Usage In 2019 (https://www.perficientdigital.com/insights/our-research/mobile-
vs-desktop-usage-study) 
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communication model stems from the fact that communication between publishers and 

subscribers is asynchronous. 

Publishers may issue information before receiving a subscriber request, and subscribers 

can start broadcasting requests immediately after the announcement that this 

information is available. Also, there is usually no reporting between publishers and 

subscribers, so publishers do not keep track of how many subscribers receive a post for 

a specific piece of information. 

Respectively, subscribers do hold any records on how many different publishers 

provide the information they requested (Patrick Th. Eugster, 2003). These properties 

are the key to solving the mobility problem of nodes, as mobile nodes can simply 

reissue subscriptions by sending messages of interest for the information they require 

after a handoff, and the network can redirect these subscriptions to internal caches 

instead of requesting it from the original publisher. 

 

2.1.4 Security 

 

The Internet was designed to operate in a completely reliable and utopian environment 

where concepts and actions such as user authentication and data, integrity and privacy 

were not considered as primary requirements. 

Additionally, the Internet was designed to forward any traffic coming into the network, 

which led to an imbalance of power between senders and recipients. These features 

allowed spammers, hackers, and generally malicious users to perform Denial of Service 

(DoS) attacks while covering their tracks effortlessly. To address such malicious 

attacks, mechanisms such as firewalls, spam filters, etc., as well as new security 

protocols (e.g., IPSec, DNSSec) have been developed to supplement some other pre-

existing ones. 

However, these mentioned solutions do not manage to penetrate deep into the grid, and 

malicious data manages to survive. The end-to-end Internet principle has prevented the 

deployment of security and reliability mechanisms deeper into the network where they 

would be more effective both in avoiding or compromising and eventually blocking 

malicious attacks. 

In the ICN architecture, there is no data flow, unless a user has explicitly requested to 

receive a specific piece of information. As a result, the amount of spam traffic is 
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significantly reduced. Additionally, in ICN architectures that certify the name of the 

information, malicious data filtering can be achieved even by in-network mechanisms. 

Finally, the distinction between users requesting information and those who are 

processing information, is in itself a novelty that can lead to more effective measures 

against denial of service (DoS) attacks. This can be implemented by adding an 

indirection point where separation between the two entities takes place. ICN can assess 

requests for specific pieces of information in that point before they reach their 

destination. This approach, known as indirection, in addition to defending against DoS 

attacks, can also provide user privacy, due to the fact that the publisher does not need 

to know about the identities of subscribers. 

 

2.2 ICN Foundations for Object-oriented Packet Caching 
 

In ICN bibliography the terms chunk and packet are interchangeable and refers to the 

Maximum Transmission Unit (MTU), which is the largest packet allowed. There are a 

few ICN implementations and in most of them the information travels within the 

network as a set of the above-mentioned data chunks, which carry a unique identifier. 

The identifier usually consists of the name of the content followed by the packet's rank 

number, and is placed in the header of the packet, thus relieving the network from the 

computational cost needed to identify identical packets. In ICN, should two packets or 

more have the same ID, then they statistically contain the same content. 

The ICN transport protocols are mainly receiver-driven (Giovanna Carofiglio, 2012), 

(Yannis Thomas C. T., 2014). A transmission is conducted via multiple independent 

chunk transmissions. Each transmission is triggered by a specific packet request and 

completed by the transmission of the corresponding data packet. 

This model lays the foundation for the exploitation and use of on-path caches, using 

cache buffers or buffer queues, which are placed on the ICN routers as temporary 

warehouses, thus enabling them to directly handle packet requests for the packets that 

have been stored. 

Research has examined the ubiquitous caching merits (Zhongxing Ming, 2012), 

(Sumanta Saha, 2013), (Ioannis Psaras, 2012), (Somaya Arianfar, 2010.) by trying to 

increase its performance by aggregating the capabilities of each cache on each on-path 

router. However, experience has shown that the distribution of content is not uniform. 

Thus, some authors argue that by caching on super-nodes located at the edge of the 
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network it is possible to achieve almost the same performance as caching on all nodes 

(Seyed Kaveh Fayazbakhsh, 2013) 

There are also arguments that establish the idea caching in a subset of nodes that meet 

certain central requirements, which determine how central the node is (Wei Koong 

Chai, 2013) 

There is a research that deals with the specifics of the ICN packet cache structure 

(Rossini G., 2014). It suggests a two-level cache model to improve response time. 

Specifically, it suggests that groups of chunks have to be presented from a slow memory 

(SRAM) to a fast (DRAM), so that a better response time on consecutive successive 

requests can be achieved. However, authors suggest this design is suitable only for edge 

routers, due to the storage requirements and the static content directory it requires. 

In-network routers SRAM and DRAM should be used for wire-speed operation. Most 

of the different approaches simply consider a Least Recently Used (LRU) replacement 

policy (Sumanta Saha, 2013), (Ioannis Psaras, 2012), (Seyed Kaveh Fayazbakhsh, 

2013), (Wei Koong Chai, 2013) or other innovative policies for the even distribution of 

cached content along the paths (Zhongxing Ming, 2012), (Somaya Arianfar, 2010.), 

(Mikhail Badov, 2014) without taking into account that router cache performance can 

be limited by the size of their fast memory. 

 

2.3 ICN issues that led to OPC development 

Object-oriented packet caching’s main design purpose was to address ICN’s design 

issues by focusing on aspects that can be improved. These issues are described below: 

 

2.3.1 Limited storage resources 

 

Typically, a cache policy design is implemented through a hash-table structure that 

spreads across the slow and fast system memory. The system's fast (but expensive) 

memory stores the hash-table and assigns a hash identifier to a pointer that shows the 

packet data in the slow (but inexpensive) system memory (Somaya Arianfar, 2010.), 

(Anirudh Badam, 2009). Most cache policy designs assume have 1500-byte chunks and 

LRU records of at least 32 bytes (Anirudh Badam, 2009). The ratio of fast and slow 

memory entries is one-to-one, leading to the requirement that the ratio between sizes of 

the fast and slow memory is about 1:46. The DRAM memory of a router many times 
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larger in size than an SRAM single-chip, resulting in the use of only a small percentage 

of the available storage space on the network to be indexed at the packet-level, as there 

is not enough SRAM for indexing packets. Possible solutions raise other issues such a 

caching granularity and inability to achieve wire-speed operation. 

 

Figure 1. SRAM – DRAM pairing: Each SRAM object points to a single chunk in DRAM. 

 

2.3.2 Looped replacement 

 

Unlike object-caches, packet-caches, depending on the replacement policy and the 

access pattern, may contain only one chunk of an object. In most applications, an 

object's packets are requested in ascending sequential order. In a cache with LRU 

replacement policy, this results in the first packets of the object being deleted from the 

cache before the last packets, since they are stored longer in memory. 

This effect is called looped replacement and can occur in any cache size if the LRU 

policy is used, since the object packets are sequentially requested and requests for the 

same object are not so frequent. 
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Figure 2. Looped Replacement: When the first chunk is evicted and then requested again a loop of evictions and 
insertions begins until the last chunk is retrieved. 

 

2.3.3 Large object poisoning 

 

Small in-network caches struggle with the management of large, but unpopular objects. 

Cache designs, either at the packet level or at the object level, using the LRU 

replacement policy, store all the chunks of each object regardless of how popular they 

are. This can significantly reduce cache performance, especially in cases where large 

files that occupy a significant amount of memory space are involved. This wastes 

significant cache resources, since some stored content is not actually useful. 

 

 

Figure 3 Large object poisoning: When object e is requested and cached, it evicts more popular chunks of other 
objects. 
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3 Object-oriented Packet Caching (OPC) 
 

3.1 OPC scheme characteristics 

 

OPC design focuses and effectively addresses the weaknesses of ICN packet caches. It 

combines the effectiveness of object-oriented caching searches with a packet-level 

replacement policy. Based on the observation that most applications request the packets 

of an object in ascending sequential order, the initial segment of an object is always 

stored, from its first chunk until its n-th, without any gaps. Therefore, any partially 

stored objects are always represented by their first n packets, thus avoiding looped 

replacement. The OPC lookup index contains the object’s name and a counter for each 

stored object. This counter indicates the number of chunks stored in the cache and it is 

called last chunk id, thus providing the identification for the cached object’s last packet. 

If a request for an object with a sequence number/rank less than or equal to the last 

chunk id is received, then the cache has this packet stored and can serve directly this 

request. Otherwise, when a request with a higher chunk rank than the last chunk id is 

received, then the cache forwards the request to the actual destination. This technique 

reduces indexing costs to one record for each (partially) stored file or, depending on the 

file size, close to that of an ordinary LRU packet cache 

 

3.2 OPC architecture and data structures 

 

An OPC node maintains three data structures: two for the insertion and chunk lookup 

processes, and one for the eviction process. 

The first two structures are called Layer 1 (L1) and Layer 2 (L2) indexes and organize 

the data at the object-level and the cache-level, respectively. In particular, the L1 index 

is stored in the fast memory (e.g., SRAM) and is implemented as a fixed-size hash table, 

with a single record for each cached object. Each entry in L1 assigns a content 

identification with a pair of values: the rank / order of the last chunk id of that object 

and a pointer pointing to the last chunk of the object stored in the L2 index (Ptrmem). 

The L2 index on the other hand is essentially an array in the slow memory (e.g. DRAM) 

which contains the cached chunks for each of the objects in sequential order.  



16 
 

 

Figure 4. Data structures used by OPC. source: Object-oriented Packet Caching for ICN. 

 

Chunks of the same object are not stored in contiguous memory space, as the total 

number of chunks per object is variable. They form instead a linked list, in which the 

last chunk of the object is the starting point. Therefore, each chunk slot in L2 consists 

of a data chunk and a pointer Ptrprev to the previous chunk of the same object. The 

combination of Ptrmem of L1 structure and Ptrprev of L2 forms a linked list per object, 

where the head of the list is the last chunk of the object. Moreover, one global pointer, 

Ptrfree points at a list of available chunks, which are also linked via their Ptrprev pointers. 

When a new data chunk is received, with the assistance of the L1 index it is verified 

whether the object for this chunk is stored in the cache and the incoming chunk is the 

next one in the sequence. If this happens to be true, it is stored in the L1 index and the 

last chunk id is increased by 1. If the object is not stored and the chunk is the first chunk 

of the object, then we store the chunk in the L2 index and create a new record in the L1 

index, with the last chunk id being equal to 1 and Ptrmem pointing to the chunk stored in 

L2. Otherwise, the chunk is ignored. 

The third data structure in the OPC is a double-linked list which is utilized for the 

classification of objects according to the replacement policy adopted. This list is also 

stored in the fast memory and indicates the least important (depending on the policy) 

object stored in the OPC cache. This object is to be removed when the cache is full and 

memory space needs to be released. In the OPC implementation, the replacement policy 

used is the LRU, and therefore the items are ranked by the double-linked list according 

to which one was used more recently, thus removing the objects that have not been used 

for the most time from the cache. However, the OPC design is not limited to a 

replacement policy, so stored content can be organized with either LRU, LFU or FIFO 
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structure. If an object is to be removed from the cache due to lack of space in the L1 

index, then both the L1 record and all the chunks that it points to in the L2 are retrieved. 

If removal is due to lack of space in the L2 index, only the last chunk of the selected 

record is retrieved and the L1 record is updated by decreasing the last chunk id by 1. 

 

3.2.1 Caching algorithm behavior 

 

To verify that OPC always keeps stored the initial chunks of a file, the following packet 

replacement algorithm was implemented: OPC inserts a chunk with rank / order i in the 

cache whether it is the first chunk of that object or there is already stored a chunk with 

rank i - 1. In the first case, when chunk i is the first chunk of the object, a new index 

record is created for the corresponding content. During the second case, that is, when 

the i-1 chunk has already been stored for an object, the last chunk id is updated. This 

feature guarantees that at any time the cache will always hold the first piece of each 

object, without any gaps. If there is no space in the slow memory to store a new chunk, 

then an object-level LRU list is used in the selection of an object in the cache and then 

the last chunk of the selected object is deleted, so that the cache again keeps stored the 

first chunks of an object without spaces in between. If there is no space in the fast 

memory for a new object, then the index record for this object in the queue / end of the 

LRU is deleted along with the corresponding chunks of the object in the slow memory. 

Specifically, the entry pointed at by Ptrfree is used, and Ptrfree is modified to point to the 

next free chunk. The new chunk is linked to the list of the appropriate object by 

modifying its Prevptr to the previous head of that object’s list and updating the Ptrmem 

of that object to point at the new chunk. 

 

3.2.2 OPC issues  

 

When an entire object is to be evicted, the whole list for this object must be traversed. 

The Ptrfree pointer is made to point at the head of the evicted object’s list and then we 

traverse the list following its Ptrprev pointers until its last pointer is reached and modified 

to point at the previous head of the free list. Essentially, we place the evicted object’s 

chunks at the head of the free list. Each hop requires a slow memory access for that 

node which we assume requires 55ns, while SRAM access is assumed to require 0,45ns. 
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Figure 5. (a) 'a' object's chunks before eviction (b) freed chunks after eviction 

 

The main overhead of the OPC resides in the fact that One-access cache hits are not 

supported. When a cached chunk needs to be retrieved, OPC must follow the object’s 

linked list from the last stored chunk, until the right chunk is found. 

 

Figure 6. L1 pointer to object's last inserted chunk in DRAM. 
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4 Research Process 

 

Data organization, storage and retrieval were the subject of this thesis in an abstract, 

simplified definition. In this context, the following data-related fields where researched 

in order to obtain a complete view of this technological and scientific field. 

 

4.1 Filesystems 
 

Filesystems was the first field that was researched as it contains the basic principles of 

how data is stored and retrieved in a storage medium. Advanced space management 

techniques utilized in filesystems could provide an efficient solution to OPC issues. 

Moreover, there is a multitude of filesystems for networks of servers. This fact along 

with the web’s architecture sets the basis for forming a solution that includes more than 

one node on the network. Among the systems that were researched were all extended 

file systems (EXT), New Technology File system (NTFS), File Allocation Table (FAT) 

and Google file system (GFS).  

Additionally, other less known file systems, which were extensively analyzed in 

scientific papers were included in the study. Ramcloud, a log-structured filesystem for 

DRAM-based storage and NOVA (Jian Xu, 2016), again a log-structured file system 

for hybrid volatile and non-volatile memory systems. These two filesystems stood out 

because they had both DRAM type random access memories as the main component 

that stored its structures. Borrowing from their eviction and space saving techniques, 

the first solution was formed. 

NOVA has a dynamic memory structure formed from several 2MB block arrays. 

Pointers were set to indicate the first and the last part of an object, with the last being 

the newest. Each part of the object pointed to the next part of the same object. By 

adopting this structure, the original OPC linked list structure would be kept and the 

extra pointer would return the first position of the object for a faster eviction process. 

The SRAM memory though would change structure, as it would store pointers for the 

static block array plus the pointers for the beginning and the last part of each object in 

memory. The eviction method included the vacation of a whole block by moving the 

parts of the block that would be kept, together with other parts of the same object, thus 

eventually forming blocks that consist only from parts of the same object, giving the 
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opportunity to retrieve the entire object, speeding up the hit process. Eventually, this 

approach was dismissed as it would be costly in memory resources for SRAM and 

overhead was caused from moving whole blocks of data chunks in slow memory. The 

fact that the eviction process would occur whenever the node memory was at least at 

90% capacity was also a risk for the system bandwidth to run out. 

Ramcloud with a two-level cleaning policy in conjunction with the eviction process 

described above would be a solution. Apart from the regular eviction processes which 

would be adapted to a router’s node specifications, another process called “compaction” 

would take place when a certain threshold of memory utilization was reached (Stephen 

M. Rumble, 2014). That process would initiate a compaction for the block arrays which 

are partially empty, moving and pairing their data so that the memory free some 

resources. 

This solution was also abandoned as it shifted the overhead from the memory to the 

node’s CPU. The computational capacity of each node’s resources would be drained 

from the constant checks that the router should perform to verify if the threshold it 

reached. 

 

4.2 Non-volatile and volatile storage organization. 
 

A focus on the non-volatile (NV) and volatile (V) storage organization was the next 

step for the research. Techniques for efficiently managing NVMs and hybrid systems 

which utilized a combination of disk and RAM to create persistent memory structures. 

Anything that could be used efficiently for OPC improvement with a similar structure 

and alterations that eliminate the current structure’s benefits would be avoided. Nothing 

with potential impact for our research could be retrieved from this field. 

 

4.3 Data replacement Algorithms. 
 

“Data replacement algorithms” as a term refers to memory allocators, whether they 

focus in data eviction or in data insertion. Performance was a major factor in this 

research area as it was directly linked with the thesis’ purpose. Any survey, case study 

or research that fit the criteria could contribute to further the research. Yet, most of the 

papers referred to memory allocators to be used in file systems and the majority of them 
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was less complex than the ones used the filesystems which were previously researched, 

thus not contributing drastically to the study.  

 

4.4 Cache replacement policies. 
 

Cache algorithms, also called cache replacement algorithms or cache replacement 

policies were researched in order to optimize the data eviction scheme. Currently, OPC 

uses an LRU scheme to determine which object will be partly or entirely evicted. As 

stated in the paper, a FIFO algorithm would have interchangeable results in the decision 

process. However, other cache replacement algorithms were researched in order to 

ascertain that other algorithms could be considered as a more efficient solution. Multi 

queue (MQ), Adaptive replacement Cache (ARC) and Clock with adaptive replacement 

(CAR ) and a variation called “Compact CAR” (Atsushi Ookaa, 2016) were examined 

but eventually the idea of their use was dropped because these algorithms did not 

provide substantial improvement for the two problems this research wanted to solve. 

 

4.5 Buffer Algorithms 
 

Circular buffer was mainly taken into account to as its concept was the inspiration to 

produce the final solution for data structure in slow memory (Cooke, 2014). Bucket was 

also considered to be used in the first NOVA & Ramcloud aborted solution (Fisk, 

2005). 
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5 Thesis proposal 

 

In my implementation of OPC, each chunk slot in L2 has an extra chunk pointer Ptrnext 

to the next object chunk, apart from the Ptrprev, thus forming a doubly linked list for the 

chunks of each object. Each chunk points to its next and previous chunk, apart from the 

first chunk of each object where Ptrprev points to the chunk itself. Moreover, the last 

stored chunk of each object has the Ptrnext pointing to the first chunk of the same object, 

thus forming a semi-circular structure. The Ptrprev for the first chunk points at itself for 

reasons described in “chunk storage process” section below.  Ptrfree is also modified to 

consist of two pointers, PTRfirst and PTRlast, pointing at the first and last chunk in the 

free list, respectively. An example of the L2 structure is shown in the following figure. 

 

 

Figure 7. Proposed implementation of OPC L2 structure. 

 

5.1 Improving cache eviction 

 

The first problem that has arisen with OPC is that during the process of eviction of an 

object in its entirety, the entire linked list residing in DRAM needs to be traversed, 

rendering this procedure costly. Each hop to retrieve the previous chunk of the object 

costs a DRAM access, eventually adding up for n DRAM accesses for each currently 

stored chunk, where n is the total number of stored chunks.  
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Figure 8. Modified object eviction in L2. (a) Ptrfree before the eviction of object a and its chunks in L2. (b) 
The Ptrlast of Ptrfree is made to point at the last chunk of a (chunk ‘a/4’) and the Ptrnext of chunk ‘a/4’ is 
copied to the Ptrnext of the last free chunk, making it point at the first chunk of the object that is being 
evicted. (c) The Ptrnext of the last chunk is updated to null. 

To solve this problem, we exploit the semi-circular structure of the per-object lists, to 

add the entire cached object to the free list without traversing any lists. Specifically, as 

shown in the figure above, the Ptrlast pointer of the free list is made to point at the last 

chunk of the evicted object, but then, instead of traversing the object to find its first 

chunk, we use the Ptrnext pointer of the last chunk to directly find the first chunk, and 

modify the pointer at the end of the free list to point at that chunk. Finally, we set the 

Ptrnext pointer of the last chunk to null, to show that this is the end of the free list.  
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In this implementation, the Ptrfree array is traversed using Ptrnext. and its inventory is 

emptied in FIFO fashion. This whole procedure reduces the cost from 1 SRAM + 

n*DRAM to 1 SRAM + 1 DRAM (we only read and modify the pointers at the last 

chunk in L2), while the number of the stored chunks does not affect the procedure. 

Single chunk eviction procedure is also altered with the new L2 structure. In this 

situation, an overhead has been created because: when we remove the last chunk, so as 

to avoid the problems that OPC solves (looped replacement), we update the Ptrnext of 

the last chunk to null and then we use Ptrprev to update the Ptrnext of the previous chunk 

to point at the first chunk of the object, in order to keep the circular structure. This 

procedure raises the access cost of a single chunk eviction from 1 SRAM + 1 DRAM 

to 1 SRAM + 2 DRAM, since we need to access two chunks in L2. 

 

Figure 9. Single chunk eviction 

 

5.2 Reducing cache hit overhead 

 

The second problem that needs to be addressed is that One-access cache hits are not 

supported, since an object’s linked-list must be followed until the right chunk is found, 

creating an overhead. This problem is partly solved by improving the way the linked 

list is traversed, exploiting the fact that the object lists are now bi-directional. When the 

Interest packet is received and it is confirmed that the requested object’s chunk is indeed 

cached, an additional check is performed to assess whether the requested chunk’s rank 

is less than half than the last_chunk’s id rank; that is, we check whether the requested 

chunk is in the first or the second half of the linked list. If the requested chunk is in the 

first part, we start from the first chunk and the list is traversed using the Ptrnext pointers. 

Otherwise, the linked list is traversed just like in the previous implementation using 

Ptrprev and starting from the last chunk. Essentially, we cut the size of the list to be 
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traversed in half. If the “last_chunk_id/2” value is less or equal than the chunk_id 

requested, then the cost of the accesses will be 1 SRAM + m * DRAM where m <= n/2 

(by using Ptrprev ). If the last_chunk_id/2” value is greater than the chunk_id requested, 

this means that a low rank chunk need to be fetched, so Ptrnext will be used to traverse 

the list. In this case, the cost is 1SRAM + y * DRAM time where y < n/2. The last chunk 

will be accessed in both scenarios, thus creating a negligible overhead of one additional 

access in the second scenario. 

 

5.3 Updated chunk storage process  

 

When the first chunk is placed in the memory, both Ptrprev and Ptrnext point at itself. The 

second chunk will have its Ptrprev point at the previous chunk and update its Ptrnext to 

point to the previous chunk’s Ptrnext which in this case is the first chunk. Then the 

previous chunk will be accessed and its Ptrnext will be updated to point to the newly 

placed chunk. The same process is repeated during the insertion of the third and each 

other chunk. In this manner, the pointer to the first chunk will be always stored in the 

Ptrnext of the last chunk, ensuring that the structure remains semi-circular. This 

procedure also creates an overhead compared to its predecessor raising the access cost 

from 1 SRAM + 1DRAM to 1 SRAM + 2 DRAM. 

 

5.4 Gains and Costs Overview 

 

To recapitulate the improvements of OPC with the changes proposed in this thesis, 

without disregarding the overhead created in a few circumstances, they are listed below: 

• Single chunk insertions and evictions used to cost 1SRAM + 1DRAM accesses, 

while in our implementation the cost has been slightly raised to 1SRAM + 

2DRAM accesses. 

• Whole object evictions used to cost 1SRAM + n*DRAM accesses, where n is 

the number of stored object chunks. In our implementation this cost is reduced 

to 1SRAM + 2DRAM accesses. 

• Packet access used to cost 1SRAM + m*DRAM accesses where m is the number 

of hops followed in the linked list from the last stored chunk to the requested 

one. Although the cost formula remains the same, the number of hops needed 
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to traverse the requested chunk is decreased up to half of the value of the 

previous m. In our implementation m take values [1, m/2] as less hops are 

needed to traverse the semi-circular list if the chunk requested has a low rank. 
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6 Conclusions and future work 

In conclusion, the two main drawbacks of OPC scheme have been addressed, with a 

solution that creates a small overhead for the slow memory capacity (one extra pointer 

per chunk). Moreover, the object eviction process has been greatly improved access-

wise, while the chunk retrieval process was made more efficient in a sense that it 

requires half of the previously needed performance. 

The experimental evaluation of the algorithm presented in this thesis can implemented 

with a network simulator as future work. In addition, the OPC scheme has further room 

for improvement to minimize the number of accesses in the slow memory as much as 

possible.  
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