
 

  
 

 

 

 

  

   MSc. Thesis 
 

 

A Qualitative Study of SDN Controllers 

 

  Dimitra Sakellaropoulou 
 

 

 

Supervisor: George Xylomenos 

 

Athens, September 2017 



 

  
 

Abstract 

 

Software Defined Networking (SDN) is a recent network architecture paradigm based 

on the separation between the data plane and the control plane, which handles network 

traffic by means of software. This thesis focuses on SDN ecosystem’s main component, 

the SDN controller.  

 

The growth of SDN in terms of functionalities and applications has led to the 

development of different controller solutions, with a wide variety of characteristics. The 

goal of this thesis is to provide a qualitative analysis of existing implementations in 

terms of features and capabilities. 

 

In the first chapter, the existing network architecture and its restrictions are briefly 

described. In the second chapter, an introduction to SDN concept is given. Specifically,  

the background, architecture, applications, use cases and challenges of SDN are 

presented. Then, the main area of interest, the SDN controller is analyzed. In the third 

chapter, its history, types, capabilities and main components are described. In chapter 

four, the most popular open-source controllers are analyzed and compared in terms of 

their architecture components and basic features. Finally, the controller’s efficiency and 

its main characteristics as well as relevant studies are presented. 

  



 

  
 

Περίληψη 

 
Η τεχνολογία SDN είναι ένα πρόσφατο παράδειγμα αρχιτεκτονικής δικτύου που βασίζεται στο 

διαχωρισμό μεταξύ του επιπέδου δεδομένων και του επιπέδου ελέγχου για τη διαχείριση του 

δικτύου κίνησης μέσω λογισμικού. Η συγκεκριμένη εργασία επικεντρώνεται στο βασικό 

στοιχείο του δικτύου SDN, τον ελεγκτή. 

 

Η ανάπτυξη του SDN όσον αφορά τις λειτουργικότητες και τις εφαρμογές οδήγησε στην 

ανάπτυξη διαφορετικών ελεγκτών οι οποίοι χαρακτηρίζονται από διαφορετικές αρχιτεκτονικές 

και ιδιότητες. Στόχος αυτής της εργασίας είναι η ποιοτική ανάλυση των υπαρχουσών 

υλοποιήσεων από πλευράς χαρακτηριστικών και δυνατοτήτων. 

 

Στο πρώτο κεφάλαιο περιγράφεται συνοπτικά η υπάρχουσα αρχιτεκτονική δικτύων και οι 

περιορισμοί της. Στο δεύτερο κεφάλαιο δίνεται μια εισαγωγή στην έννοια του SDN. Πιο 

συγκεκριμένα, περιγράφονται το υπόβαθρο, η αρχιτεκτονική, οι εφαρμογές, οι περιπτώσεις 

χρήσης και οι προκλήσεις στον συγκεκριμένο τομέα. Στη συνέχεια αναλύεται το κύριο θέμα 

της εργασίας, ο ελεγκτής SDN. Στο τρίτο κεφάλαιο περιγράφεται η ιστορία, οι τύποι, οι 

δυνατότητές του και τα κύρια συστατικά του. Στο τέταρτο κεφάλαιο, περιγράφονται οι πιο 

δημοφιλείς ελεγκτές ανοικτού κώδικα και συγκρίνονται με βάση την αρχιτεκτονική και τα 

χαρακτηριστικά τους. Τέλος, το επόμενο κεφάλαιο εστιάζει στην αποτελεσματικότητα του 

ελεγκτή και παρουσιάζει τα στοιχεία που την καθορίζουν καθώς και σχετικές μελέτες που 

έχουν γίνει τα τελευταία χρόνια. 
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1. Introduction 

 

The explosion of mobile devices and content, as well as virtualization and the 

emergence of cloud services have led network industry to reconsider traditional 

architectures. Data centers have changed significantly. In contrast to client-server 

applications, where most of the communication takes place between the client and the 

server, today's applications access different databases and servers, creating an east-west 

machine-to-machine traffic. Moreover, network traffic patterns are changing as users, 

access content from any type of device. Data centers have evolved in recent years, 

constantly attempting to meet increasingly higher and rapidly changing demands. Thus, 

data center infrastructure becomes more complex as additional traffic across wide area 

networks is added. Since more mobile devices such as smart devices, tablets, notebooks 

are used to access the network, it is required not just to serve traffic, but also to ensure 

quality at all aspects of communication (i.e. speed, security). Furthermore, the adoption 

of public and private cloud services, has also resulted in an unprecedented growth in 

these services. Finally, big data handling requires mass parallel processing on thousands 

of connected servers. The increase in the amount of data requires additional network 

capacity in data centers. Flexibility, high availability, scalability and security are key 

quality attributes that should be ensured in all these use cases. 

Based on the above, it can be concluded that current network requirements cannot 

be covered using traditional network architecture. The existing architecture is not 

designed to meet the requirements of users, companies and providers in terms of traffic, 

availability and scalability for many reasons. Network communication constitutes 

different sets of protocols, which are designed to connect the nodes over distances with 

different speed, topology, and service requirements. This results in one of the main 

constraints of today's networks. To add or remove a device, multiple switches, routers, 

firewalls, network authentication portals and other infrastructure needs to be set up. 

Moreover, Access Control Lists (ACLs), Virtual Local Area Networks (VLANs), 

Quality of Service (QoS), and other protocol-related parameters need to be updated. 

The same applies in case of any configuration change or update that needs to be applied 

directly to each device. In addition, network topology, switch manufacturer and 

software version must be considered.  
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For all the above reasons, existing networks are considered relatively static. On the 

other hand, server virtualization has significantly increased the number of nodes that 

require network connectivity. Applications are now distributed along virtual machines, 

which share traffic flows with others. In addition to that, many companies use a network 

that converges to IP for voice, data, and video traffic. While existing networks can 

provide differentiated levels of service quality for different applications, the 

provisioning of such resources is manual. The network is unable to dynamically adapt 

to changes in application traffic and user requirements. 

To overcome the existing architecture’s restrictions, the Software Defined 

Networking or Networks (SDN) concept was introduced. SDN aims at changing the 

way networks are designed and managed and over the past years it has gained 

significant traction in industry. This thesis elaborates on the SDN concept and 

specifically to the main build building block, SDN controllers. 
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2. Software Defined Networks 

 

This chapter is an overview of SDN. A brief description of the SDN concept and its 

history are provided. The transition from traditional architecture and SDN’s main 

building blocks are presented. Finally, most popular applications and use cases are 

described to point out SDN’s importance in accordance with today’s network 

architecture. Finally, since SDN is under continuous development and research, 

concepts that need to be further studied are listed. 

 

2.1 The SDN Concept 
 

One of the main features that SDN focuses on, is the separation of control and data 

plane. These are the basic components of any network architecture. Control plane refers 

to the logic of controlling and forwarding behavior. Its main functionalities include: 

tracking topology changes, installing forwarding rules, computing routes, service 

provisioning etc. Another basic component is the management plane which is 

sometimes considered as a subset of the control plane. In general, management 

plane refers to the functionalities responsible for configuring, monitoring, and 

providing management services to all layers of the network stack and other parts of the 

system. Data plane (also known as forwarding or user plane) on the other hand refers 

to the network part that forward user traffic. Forwarding is based on rules as set by the 

control plane. Other functionalities related to data plane are filtering, buffering, packet 

measurement etc. 

In the case of SDN, the control plane is centralized, controls a distributed data plane 

and can be implemented completely in software and installed on hardware. Therefore, 

a SDN may be characterized as a programmable network. The idea of programmable 

networks has been doing the rounds for many years. It refers to networks in which the 

behavior of network devices is handled by software. Decoupling the control plane from 

the data plane makes the control plane programmable, thereby enabling abstraction of 

the underlying network devices from the application and service layers, which in turn 

treats them as a virtual entity. Besides the network abstraction, the SDN architecture 

provides a set of Application Programing Interfaces (APIs) that simplify the 

implementation of common network services (for example, routing, multicast, security, 

https://en.wikipedia.org/wiki/Network_stack
http://searchnetworking.techtarget.com/definition/network
http://searchsoa.techtarget.com/definition/software
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access control, bandwidth management, traffic engineering, QoS, energy efficiency, 

and various forms of policy management).  

This separation provides a more flexible, programmable, vendor-agnostic, cost-

efficient and innovative network architecture [13]. SDN is one way to solve some 

problems of the Internet including security, managing complexity, multi-casting, load 

balancing, and energy efficiency. The separation of the forwarding hardware from the 

control logic allows easier deployment of new protocols and applications, 

straightforward network visualization and management, and consolidation of various 

middle boxes into software control [10]. Instead of enforcing policies and running 

protocols on different devices, the network is simplified and reduced to forwarding 

hardware devices and the network controllers.  

There are currently many organizations that are focusing part of their research on 

SDN standardization. For example, the Open Network Foundation (ONF) focuses on 

OpenFlow protocol standardization. The IETF’s Forwarding and Control Element 

Separation (ForCES) Working Group has been working on standardizing mechanisms, 

interfaces, and protocols aiming at the centralization of network control and abstraction 

of network infrastructure. Some of the Study Groups (SGs) of ITU’s 

Telecommunication Standardization Sector (ITU-T) are currently working in several 

areas related to SDN such cloud computing, mobile and next generation networks, 

protocols and test specifications. Finally, the Software- Defined Networking Research 

Group (SDNRG) at IRTF has also focused on SDN under various perspectives  

 

2.2 History 
 

The concept of SDN has been driven by the desire to provide user-controlled 

management of forwarding in network nodes. It is worth mentioning that the idea of 

programmable networks and the separation of control plane and data plane has been 

around for many years. In this section, an overview of earlier programmable networking 

efforts is provided.  

 

The Open Signaling (OPENSIG) 

This working group began in 1995 with a series of workshops dedicated to “making 

ATM, Internet and mobile networks more open, extensible, and programmable”. The 

main idea was that a separation between the communication hardware and control 
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software was necessary and would bring a lot of advantages. The core of its proposal 

was to provide access to the network hardware via open, programmable network 

interfaces. 

 

General Switch Management Protocol (GSMP) 

This Internet Engineering Task Force (IETF) working group was responsible for the 

specification of the GSMP protocol that describes how a switch should be controlled. 

GSMP allows a controller to establish and release connections across the switch, add 

and delete multicast connections, manage switch ports, request configuration 

information, request and delete reservation of switch resource and others [10]. The 

working group was officially concluded and its latest standards proposal, (GSMPv3), 

was published in June 2002. 

 

Active Networking 

A programmable network infrastructure for customized services was proposed by the 

Defense Advanced Research Projects Agency (DARPA) in the mid-90s. It focused on 

two main approaches: user-programmable switches and capsules. Capsules referred to 

program fragments that would be carried in user messages and could be interpreted and 

executed by routers. Despite considerable activity, Active Networking never gathered 

critical mass or widespread use and industry deployment, mainly due to practical 

security and performance concerns. 

 

Tempest  

Tempest was a framework for safe, programmable networks, introduced in 1998. The 

Tempest framework provides a programmable network environment by allowing the 

introduction and modification of network services at two levels. The Tempest 

framework also allows refinement of services at a finer level of granularity by means 

of the connection closure concept [64]. In this case, modification of services can be 

performed at an application-specific level. These attributes of the Tempest framework 

allowed service providers to effectively become network operators for some well-

defined partition of the physical network. This enabled them to take advantage of the 

knowledge they possess about how the network resources are to be used, by 

programming their own specially tailored control architecture.  
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Path Computation Element (PCE) 

The Path Computation Element Protocol (IETF standard) that was introduced in 2004 

is a control protocol that works in MPLS networks, and partially removes the 

responsibility from routers to define network paths. The PCE architecture, defined 

in RFC 4655 (2006), simplifies path computation by separating network topology 

determination from path creation.  

 

The 4D project 

Published in 2004, the 4D Project emphasized the separation among the routing 

decision logic protocols. The “decision” plane would have a global view of the network 

which would call upon the services of the “dissemination” and “discovery” planes, for 

controlling a “data” plane for forwarding traffic [10]. Discovery refers to information 

about what resources are available to network controller. Dissemination refers to how 

to detect network topology. Later works like NOX were inspired from these ideas, 

which proposed an operating system for networks in the context of an OpenFlow 

enabled network. The latest proposed standard was published in June, 2011 

 

Network Configuration Protocol (NetConf) 

In 2006, the IETF Network Configuration Working Group proposed NetConf as a 

management protocol for modifying the configuration of network devices. The protocol 

allowed network devices to expose an API through which extensible configuration data 

could be sent and retrieved. A network with NetConf should not be regarded as fully 

programmable, as any new functionality would have to be implemented at both the 

network device and the manager. The NetConf working group is currently active. 

 

Forwarding and Control Element Separation (ForCES) 

This working group led a parallel approach to SDN. With ForCES, the internal network 

device architecture is redefined as the control element is separated from the forwarding 

element, but the combined entity is still represented as a single network element to the 

outside world [13]. The ForCES Network Element is separated into forwarding 

elements and control elements, whereas the ForCES protocol is used to communicate 

between the two. In contrast to the SDN architecture, this approach still presents the 

combined entity (forwarding and control elements) as a single network element to the 

outside world. ForCES concluded in 2015. 

http://searchsdn.techtarget.com/definition/Path-Computation-Element-PCE
http://tools.ietf.org/html/rfc4655
http://en.wikipedia.org/wiki/NETCONF
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Ethane 

Ethane is a security management architecture combining simple flow-based switches 

with a central controller managing admittance and routing of flows. Introduced in 2007, 

it most closely resembles the SDN architecture. In fact, Ethane laid the foundation stone 

for SDN [15]. It proposed a centralized controller to manage policy and security in a 

network. The controller element was to decide the policy for packet handling and an 

Ethane switch consisting of a flow table and a secure channel to the controller was to 

implement it.  

 

Open Networking Foundation (ONF) 

ONF is a user-driven organization dedicated to the promotion and adoption of SDN, 

and implementing SDN through open standards where such standards are necessary to 

move the networking industry forward. ONF is developing open standards such as the 

OpenFlow Standard and the OpenFlow Configuration and Management Protocol 

Standard. The OpenFlow Standard is the first vendor-neutral standard communications 

interface defined between the control and forwarding layers of an SDN architecture. 

ONF working groups are also collaborating with the world’s leading experts on SDN 

and OpenFlow regarding SDN concepts, frameworks, architecture, and standards.  

 

 

Figure 1: SDN Timeline 

 

2.3 Architecture 
 



A Qualitative Study of SDN Controllers 

12 
 

As already mentioned, the main aim of the SDN architecture is to achieve the 

separation of the control and data plane that leads to a more centralized network. 

Moreover, SDN supports open interfaces between the devices in the control plane and 

those in the data plane. Programmability by external applications is also supported. This 

section describes how the above are achieved through SDN’s basic architectural 

concepts. Firstly, the differences between the traditional and the SDN architecture are 

presented. Then, a description of the SDN architecture both in terms of network planes 

and building blocks is given. 

 

2.3.1 From traditional to SDN architecture 

 

In traditional networks, the control and data planes are combined. Each node is 

responsible for both functionalities. The control plane is responsible for node 

configuration and path programming. Once paths have been determined, they are 

pushed down to the data plane. Examples of existing network nodes that achieve this 

are Ethernet switches. An Ethernet switch operates at the data link layer of the Open 

Systems Interconnection (OSI) model and is built up from both planes. Ports used to 

serve inbound and outbound traffic represent the data plane. These are controlled and 

configured by the control logic, containing the forwarding logic for the switch. The 

important part of the control logic is the forwarding table, which contains a list of MAC 

addresses coupled to the corresponding port. Based on rules represented in this table, 

traffic is either forwarded to the proper port or flooded in case no match is found. A 

high-level list of switch functionalities includes: priority settings, MAC filtering, device 

monitor and link health check, VLAN settings etc. In most cases, switches and other 

network elements are combined to form a distributed network architecture, offering, in 

comparison to a centralized one, improved scalability and redundancy. In contrast, the 

control networks in decoupled architectures are closer to client-server networks. 

Forwarding devices have limited decision-making capabilities and implement decisions 

made by controllers. However, it should be noted that configuration changes and other 

updates are applicable only by directly updating each device. Inevitably, large-scale 

networks that require, for example, adaptation to traffic demands (through 

corresponding bandwidth allocation) need both time and resources to be updated. 

Furthermore, in the traditional architecture resources and policy controls are updated 

https://en.wikipedia.org/wiki/OSI_model
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each time the requirements of external applications are updated. There is, finally, no 

exposure of information to these applications regarding network state. 

On the other hand, SDN is a model based on the idea of moving from the traditional 

fully distributed model to a more centralized approach. This is achieved by separating 

the functionalities related to each plane to different elements. In SDN, switches are 

decoupled from the control plane and serve only the data plane while controllers are 

responsible for manipulating them. Control decisions in this case are made considering 

a global view of the network state. In SDN, the control plane acts as a single, logically 

centralized network operating system in terms of both scheduling and resolving 

resource conflicts, as well as abstracting away low-level device details, e.g., electrical 

vs. optical transmission. However, this does not imply that the controller is physically 

centralized. For performance, scalability, and reliability reasons, the logically 

centralized SDN Controller can be distributed, so that several physical controller 

instances cooperate to control the network and serve the applications. Since the 

controller is aware of the whole network topology, it can easily adapt to requirements 

regarding scalability and flexibility. For example, the problem of bandwidth allocation 

is solved by dynamically programming the controller through the exposed northbound 

API. This architecture gives applications more information about the state of the 

entire network from the controller, as opposed to traditional networks where the 

network is not application aware.  

The SDN architecture APIs are often referred to as the 

northbound and southbound interfaces. Many devices from the data layer can be 

connected to a single centralized control plane which enables the controller to have a 

network wide view of topology hence providing flexibility for traffic engineers to 

develop and deploy applications like routing and security. Control networks for SDNs 

may take any form, including a star (a single controller), a hierarchy or even a dynamic 

ring. 

https://www.sdxcentral.com/term/network/
https://www.sdxcentral.com/sdn/definitions/north-bound-interfaces-api/
https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/
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Figure 2: Traditional VS SDN architecture 

 

2.3.2 SDN planes 

 

The first fundamental characteristic of SDN is the separation of the forwarding and 

control planes. Most research around SDN lists and analyzes the major horizontal 

groupings (planes or layers) of the SDN architecture. Except for the definition of data 

and control plane, many references are found that define also application, operational 

and management planes. For the purposes of this thesis, the three main planes (data, 

control, application) are considered. A brief description is given below: 

 

 

Figure 3: SDN planes 
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Data Plane 

Data Plane (known also as Forwarding Plane or Data Path) is responsible for handling 

packets in the data path based on the instructions received from the control plane. 

Actions of the forwarding plane include: forwarding, dropping, replicating and 

changing packets. The forwarding plane is usually the termination point for control-

plane services and applications. For basic forwarding, the device determines the correct 

output port by performing a lookup in the address table. Special-case packets that 

require processing by the control or management planes are consumed and passed to 

the appropriate plane. Finally, a special case of forwarding pertains to multicast, where 

the incoming packet must be replicated before forwarding the various copies out 

different output ports [56]. In some cases, in the literature, the operational plane is 

mentioned as part of the data plane or as a separate plane. It is responsible for managing 

the operational state of the network device.  

 

Control Plane 

Control plane is responsible for making decisions on how packets should be forwarded 

by one or more network devices and pushing such decisions down to the network 

devices for execution. The control plane usually focuses mostly on the forwarding plane 

and on the operational plane of the device. The control plane may be interested in 

operational plane information. Management functionalities are also part of the control 

plane (in some cases, these constitute a separate plane). These refer to monitoring, 

configuring and maintaining network devices, e.g., making decisions regarding the state 

of a network device. The management plane may be used to configure the forwarding 

plane. For instance, the management plane may set up all or part of the forwarding rules 

at once, although such action would be expected to be taken sparingly [54]. 

 

Application Plane 

Application plane is the plane where applications and services that define network 

behavior reside. Applications that directly support the operation of the forwarding plane 

(such as routing processes within the control plane) are not considered part of the 

application plane.  
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2.3.3 Building Blocks 

 

The SDN switch, the SDN controller, southbound and northbound interfaces and 

SDN applications are the fundamental building blocks of the SDN architecture. The 

following paragraphs provide details for each of the above components. 

 

2.3.3.1 Switch 

 

 In general, a network device refers to an entity that receives packets on its ports and 

performs one or more network functions on them. Examples of functions are: forward 

a received packet, drop it, alter the packet header etc. A device consists of multiple 

resources such as ports, memory, and others. Resources are either simple or can be 

aggregated to form complex resources that can be viewed as a single resource to 

external network [54]. Examples of network devices include switches and routers. In 

general, network elements also include devices such as firewalls, load balancers, video 

transcoders and optical or microwave network elements [54]. Network devices can be 

implemented in hardware or software and can be either physical or virtual. In SDN, 

network devices are responsible for forwarding and data processing. Switches in an 

SDN are often represented as basic forwarding hardware accessible via an open 

interface, as the control logic and algorithms are offloaded to a controller [13]. Such 

forwarding devices are commonly referred to, in SDN terminology, as “switches”. The 

SDN data plane, as described above, constists of network elements, which expose their 

capabilities to the control plane via interfaces southbound from the controller. Many 

SDN switches behave much like a standard Ethernet switch and flood traffic out all 

ports for Ethernet frames destined to broadcast, multicast or unknown MAC addresses. 

Most SDN switches also flood normal ARP traffic like a typical hardware-based 

Ethernet switch. However, it is possible to put an SDN switch into an explicit 

forwarding mode, whereby only flows allowed or configured by the controller are 

allowed.  

 Taking these into consideration, it seems that custom-made SDN switches are not 

required to implement SDN. Nowadays, in SDN architectures different approaches 

regarding switches are used, depending on needs, vendor etc. For example, hardware 

switches that are specifically designed to deliver enhanced SDN performance may be 

used. In other cases, SDN switches that offer high performance network fabrics in 



A Qualitative Study of SDN Controllers 

17 
 

conjunction with SDN to speed data center operations are proposed. Finally, virtual 

switches are available and can be used for developing services over SDN or to test an 

application.  

 

2.3.3.2 Controller 

 

The SDN Controller is a logical entity that receives instructions or requirements 

from the SDN application layer and relays them to the networking components. The 

controller is also responsible for extracting information about the network from the 

hardware devices and communicating it back to the SDN applications. Using the 

southbound API, the controller can add, update, and delete flow entries, both reactively 

and proactively. The SDN controller represents the SDN control plane and has complete 

control of the data plane.  

The SDN architecture does not specify the internal design or implementation of an 

SDN controller. It could be a single monolithic process or a set of identical processes 

arranged to share load or protect one another from failures. It could also be a set of 

functional components in a collaborative arrangement. Controller components can be 

executed on computer platforms, including computing resources local to a physical 

network element. They may also execute on distributed resources such as virtual 

machines in data centers. It suffices to say that the SDN controller is understood to have 

global scope and that its components are understood to share with the controller their 

information and state. Multiple manager or controller components may have joint write 

access to network resources. In this case, they must either be configured to control 

disjoint sets of resources or actions, or to be synchronized with each other so that they 

never issue inconsistent or conflicting commands. More information regarding SDN 

controllers may be found in the following chapters, since their architecture, capabilities 

and existing implementations (both commercial and open-source) are the main areas of 

interest for this thesis. 

 

2.3.3.3 Southbound Interface 

 

Southbound APIs facilitate efficient control over the network and enable the SDN 

controller to dynamically make changes according to real-time demands and 

needs. OpenFlow, which was developed by the ONF, is the first and probably most 

https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/sdn/definitions/who-is-open-networking-foundation-onf/
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well-known southbound interface. It is an industry standard that defines the way the 

SDN controller should interact with the forwarding plane to adjust the network, so as 

to adapt to changing business requirements [52]. While OpenFlow is the most well-

known of the SDN protocols for southbound APIs, it is not the only one available or in 

development. NetConf uses the Extensible Markup Language (XML) to communicate 

with the switches and routers to install and make configuration changes. Lisp, also 

promoted by ONF, is available to support flow mapping.  

 

2.3.3.4 OpenFlow 

 

The OpenFlow protocol can be viewed as one possible implementation of controller-

switch (southbound) interactions, as it defines the communication between the 

switching hardware and a network controller. This provides an abstraction for business 

applications to use facility provided by the control layer without going into the details 

of their implementation [15]. It should be noted however, that although one of the basic 

ideas of SDN is to avoid vendor locking, dependence on one protocol (OpenFlow in 

this case) does not serve this purpose.  

The OpenFlow switch is the basic forwarding element, which is accessible via the 

OpenFlow protocol and interface. Although at first glance this setup would appear to 

simplify the switching hardware, flow-based SDN architectures such as OpenFlow may 

require additional forwarding table entries, buffer space, and statistical counters etc. 

[13]. OpenFlow switches may be either hybrid (OpenFlow enabled) or pure OpenFlow. 

An OpenFlow switch consists of a flow table, which performs packet lookup and 

forwarding. Each flow table in the switch holds a set of flow entries that consists of 

header fields or match fields and counters (used to collect statistics for a specific flow, 

such as number of received packets, number of bytes, and duration of the flow [13]). 

When a packet arrives at the switch the header fields are extracted and matched with 

the flow entries installed in the switch. If a match is found, the corresponding action in 

the relevant flow is performed. A default action for packets is executed in case of a 

table miss. 

https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Integration_Tests
https://www.sdxcentral.com/listings/open-networking-foundation/
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Figure 4: OpenFlow Switch Architecture 

 

A controller uses a secure channel to communicate with the switch. OpenFlow 

packets are sent over this channel. For security, OpenFlow 1.3.0 provides optional 

support for encrypted Transport Layer Security (TLS) communication and a certificate 

exchange between the switches and the controller. The types of message supported by 

OpenFlow are the following:  

 

Controller-to-switch 

Messages sent from the controller that, in some cases, require a response from the 

switch. This class of messages enables the controller to manage the logical state of the 

switch, including its configuration and details of flow and group table entries.  

 

Symmetric 

Messages from either the controller or the switch. They include “hello” messages that 

are typically sent back and forth between the controller and switch when the connection 

is first established [52]. The also include echo request and reply messages that can be 

used by either the switch or controller to measure the latency or bandwidth of a 

controller-switch connection or just verify that the device is operating.  

 

Asynchronous 

This class includes various asynchronous status messages that are sent to the controller. 

 

2.3.3.5 Northbound Interface 

 

Northbound communication refers to the communication between the business 

application layer and the control layer. It is considered the least researched and 

standardized area of SDN. A northbound API is used to implement and develop vendor 
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independent applications for network management and monitoring, load balancing etc. 

Another advantage of northbound APIs is that they are easy modifiable using high level 

languages like Python, Java, C++ etc. At present, no accepted standard protocol exists. 

Existing APIs have been implemented on ad-hoc basis for specific applications. 

External management systems or network services may wish to extract information 

about the underlying network or control an aspect of network behavior or policy. 

Additionally, controllers may find it necessary to communicate with each other for a 

variety of reasons. For example, an internal control application may need to reserve 

resources across multiple domains of control. 

The northbound interface is defined entirely in software, while controller-switch 

interactions must be enabled by the hardware implementation. While there are several 

controllers in existence, their application interfaces are still in the early stages and 

independent from each other and incompatible. Until a clear northbound interface 

standard emerges, SDN applications will continue to be developed in an ad-hoc fashion 

and the concept of flexible and portable network apps may have to wait for some time 

[10]. 

 

2.3.3.6 Network Applications 

 

Network applications are programs that communicate with the SDN 

controller via APIs. These applications can build an abstracted view of the network by 

collecting information from the controller for decision-making purposes. These 

applications could include networking management, analytics, or business applications. 

For example, an analytics application might be built to recognize network activity for 

security purposes. In an SDN-enabled network, service providers can create several 

applications, aiming at cutting costs, improving customer experience and others. It is 

expected that not all the SDN applications will be completely new. A lot of them 

replicate or improve applications that are currently running on routers and switches 

(control and data plane). For example, routing applications will enable routing decisions 

based on application level insights and characteristics. Furthermore, using SDN 

applications, content routing can be designed to perform service availability checks 

before provisioning flows to the network switches. It is concluded that although SDN 

is focused mostly on control and data plane, network applications are also responsible 

for bringing improvements to both operators and users.  
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2.4 SDN Applications 
 

SDN promises a lot of opportunities in several domains related to computer 

networking. The separation of control and data plane and other SDN principles set the 

baseline for using SDN in different cases and enjoy the several benefits it offers. In the 

following paragraphs scenarios where SDN solutions have been proposed or 

implemented are presented. 

 

Data Centers 

Data centers have evolved in recent years, constantly attempting to meet increasingly 

higher and rapidly changing demands. Traditional data centers employ routers to 

connect the core with the internet and switches to connect with servers and other 

switches. Careful traffic management and policy enforcement is critical when operating 

at such large scales, especially when any service disruption or additional delay may 

lead to massive productivity or profit loss [10]. Data center operators continuously 

migrate virtual machines per changing traffic patterns and demands. Today’s data 

centers have many design requirements, such as easy migration of virtual machines, 

efficient communication among servers and minimal configuration of switches and 

hosts [15]. Due to the challenges of engineering networks of this scale and complexity 

to dynamically adapt to application requirements, it is often the case that data centers 

are provisioned for peak demand. Thus, they run well below capacity most of the time 

but are ready to rapidly service higher workloads. For the above reasons, the SDN 

architecture is highly recommended. Moreover, according to Heller et al. [58] an 

increasingly important consideration is energy consumption, which has a non-trivial 

cost in large-scale data centers. Heller et al. indicates that much research has focused 

on improved servers and cooling through better hardware or software management, but 

the data center’s network infrastructure (which accounts for 10-20% of the total energy 

cost) still consumed 3 billion kWh in 2006. They proposed ElasticTree, a network-wide 

power manager that utilizes SDN to find the minimum-power network subset which 

satisfies current traffic conditions and turns off switches that are not needed. Thus, they 

show energy savings between 25-62% under varying traffic conditions 
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Backbone Networks 

An SDN architecture may be used in case of large-scale backbone networks to achieve 

programmability and high availability. The most characteristic example is that of 

Google (presented later in this chapter). In general, by following a centralized control 

approach, results bear fruits like better network utilization due to global view, planned 

deterministic resource allocation by reducing over provisioning and others [15]. 

Moreover, this approach also makes testing the network easier, since a centralized 

control can use real production network input to research new ideas and test new 

implementations.  

 

Internet Exchange Points (IXP)  

Today’s IXPs employ BGP as their inter-domain routing protocol which suffers a few 

limitations as it can route traffic only based on destination IP prefix. Deploying SDN at 

an IXP promises opportunities like freeing it from the constraints of internet protocols, 

advanced load balancing and others. 

 

Enterprise Networks 

Enterprises often run large networks, while also having strict security and performance 

requirements. Furthermore, different enterprise environments can have very different 

requirements, characteristics, and user populations. Adequate management is critically 

important in enterprise environments, and SDN can be used to programmatically 

enforce and adjust network policies as well as help monitor network activity and tune 

network performance. Additionally, SDN can be used to simplify the network by 

ridding it from middle-boxes and integrating their functionality within the network 

controller 

 

Wireless Access Networks 

Several efforts have focused on connectivity in the context of infrastructure-based 

wireless access networks, such as cellular and Wi-Fi. The vast majority of this end-

user demand for application services is originating on mobile devices connected to the 

network via Wi-Fi. As a result, it's important to consider the role SDN will play in 

wireless LANs today, and determine how this role will evolve over the next few years. 

For example, the OpenRoads project [59] envisions a world in which users could move 

across different wireless infrastructures, which may be managed by various providers. 

http://whatis.techtarget.com/definition/end-user
http://whatis.techtarget.com/definition/end-user
http://searchmobilecomputing.techtarget.com/definition/Wi-Fi
http://searchnetworking.techtarget.com/definition/local-area-network-LAN
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They proposed the deployment of an SDN based wireless architecture that is 

backwards-compatible, yet open and sharable between different service providers. This 

project provided inspiration for subsequent work that attempts to address specific 

requirements and challenges in deploying a software-defined cellular network.  

 

Optical Networks  

Handling data traffic as flows, allows software-defined networks, and OpenFlow 

networks to support and integrate multiple network technologies. Thus, it is possible to 

also provide technology-agnostic unified control for optical transport networks and fir 

facilitating interaction between both packet and circuit switched networks. According 

to the Optical Transport Working Group (OTWG) created in 2013 by the ONF, the 

benefits from applying SDN and the OpenFlow standard in particular to optical 

transport networks include: improving optical transport network control and 

management flexibility, enabling deployment of third-party management and control 

systems, and deploying new services by leveraging virtualization and SDN [15].  

 

Home and Small Business 

Several projects have examined how SDN could be used in smaller networks, such as 

those found in the home or small businesses. As these environments have become 

increasingly complex, the need for more careful network management and tighter 

security has correspondingly increased. Unfortunately, it is not practical to have a 

dedicated network administrator in every home and office. Feamster proposes that such 

networks should operate in a “plug in and forget” fashion, namely by outsourcing 

management to third-party experts, and that this could be accomplished successfully 

through the remote control of programmable switches and the application of distributed 

network monitoring and inference algorithms used to detect possible security problems 

[9].  

 

2.5 SDN and Network Functions Virtualization 
 

Network functions virtualization (NFV) is a network architecture concept that uses 

the technologies of IT virtualization to virtualize network node functions into building 

blocks that may connect to create communication services. For example, NFV may 

refer to moving services like load balancing and firewalling away from dedicated 

http://searchnetworking.techtarget.com/definition/load-balancing
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hardware into a virtualized environment. NFV solutions have mostly been deployed 

within data centers for cloud platforms, used in both enterprises and service providers. 

NFV and SDN are two closely related technologies that are in some cases 

complementary. Most of today’s NFV platforms contain SDN controllers. On the one 

hand, although NFV goals can be achieved using non-SDN mechanisms, if SDN 

principles are used, this can enhance performance, simplify compatibility with existing 

deployments, and facilitate operation and maintenance procedures. On the other hand, 

NFV can support SDN by providing the infrastructure upon which the SDN software 

can be run. Furthermore, NFV aligns closely with the SDN objectives to use commodity 

servers and switches. It is expected that these solutions may end up merging with 

orchestration systems such as cloud management platforms or network service 

orchestration platforms.  

Currently, many networking vendors are investing in both NFV and SDN 

technology. The drivers and benefits of both NFV and SDN technology are similar, 

which is not surprising since NFV often depends on the use of an SDN controller to 

achieve its results. This can simplify networking management, speed up the delivery of 

new services, and potentially reduce costs [5]. 

 

 

 

Figure 5: SDN and NFV 

 

2.6 SDN Use cases 
 

There are currently organizations that have partially or totally re-designed their 

network based on SDN principles. The most known and impressive is the Google 

backbone network described below. 
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Google B4 case 

An SDN implementation is used for Google’s data center interconnection across the 

planet [18]. These data centers are characterized by massive bandwidth requirements, 

elastic traffic demand and need of full control over the edge servers and network. These 

requirements have led to a globally deployed WAN (2011) using an SDN architecture 

to optimize utilization and balance capacity against application. Several publications 

describe not only the design and the implementation of the network but also the 

experience and the lessons learned. A summary is given below. 

Google has created two different WANs, one for user-facing peers and one to 

provide connectivity among data centers (B4). In terms of application the second 

includes user data copies to remote data centers for availability, remote storage, large-

scale data synchronization. These classes are ordered in increasing volume, decreasing 

latency sensitivity, and decreasing overall priority. For example, user-data represents 

the lowest volume on B4 [18] and is the most latency sensitive, so it is of the highest 

priority. Taking into consideration the above and the unique characteristics of Google 

networks a WAN network was designed and implemented using SDN principles. The 

design decision for B4 included: use of routers built from merchant switch silicon, 

100% link utilization, centralized traffic engineering and hardware and software 

separation. Regarding OpenFlow, it was chosen since it can leverage a variety of switch 

elements. B4 has been in deployment for six years offering several advantages but also 

raising issues regarding system performance, availability and scalability.  

 

 

Figure 6: Google SDN Network 
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2.7 Challenges 
 

Although the SDN concept is not new, only during the last decade has there been a 

systematic effort not only to standardize SDN but also to apply it to various network 

topologies. It is therefore expected that there are still areas that need to be further 

researched and challenges to be overcome. In terms of SDN characteristics, concerns 

have been expressed for network security, scalability and programmability. This mostly 

concerns controllers which are responsible for ensuring these characteristics. In terms 

of areas of research, except for efforts focused on enhancing the above, areas such as 

northbound interface, controller and switch design are also taken into consideration. 

Regarding the northbound interface, currently not many protocols have been defined 

for controller-service interactions. The goal seems to be to create a more standardized 

interface that will use a common protocol (as in the case of the southbound interface, 

through which applications can access the hardware and communicate with other 

applications. Existing literature (Procera [9], Pyretic [60]) refers to northbound 

interfaces and proposes the creation of a simple and reusable abstraction that will be 

used to program controllers. 

Furthermore, networking devices must go through a lot of improvement in terms of 

protocols, business models and applications. Future work will certainly focus on 

making it easier to compose different components for control and to facilitate easier 

debugging and testing of the applications.  

Security is a major challenge for SDN. There has been limited industry and research 

community discussion to date on the security issues associated with SDN. A greater 

focus on security is therefore required if SDN is going to be acceptable in broader 

deployment. The ONF has formed a corresponding group to highlight and study 

security related issues. The most significant are centralized control, which exposes a 

high-value asset to attackers, programmability, integration of legacy protocols, cross 

domain connection and others. In general vulnerabilities exist across the SDN platform. 

For example, at the controller-application level, questions have been raised around 

authentication and authorization mechanisms to enable multiple organizations to access 

network resources while providing the appropriate protection of these.  

Scalability is also another challenge for SDN. In contrast to today’s hierarchical 

networks that are very scalable, the concern with a single controller is whether it can 

scale to large autonomous systems and handle large volume of traffic. The issue can 
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loosely be split into controller scalability and network node scalability. As far as the 

controller is concerned, the following challenges are identified. The first is the latency 

introduced by exchanging network information between multiple nodes and a single 

controller. The second is how SDN controllers communicate with other controllers 

using the east and westbound APIs. The third challenge is the size and operation of the 

controller back-end database.  

To sum up, SDN provides flexibility, centralized control, and open interfaces 

between nodes, thus enabling a more efficient network. However, to achieve this goal 

and turn to SDN instead of traditional architecture, a number of outstanding challenges 

must be resolved. 
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3. The SDN Controller 

 

  Controllers constitute the core of the SDN architecture. They are the central point of 

the network, responsible for enabling and orchestrating the communication between 

applications, which represent business logic and network devices (switches, routers 

etc.). This communication is feasible through northbound and southbound APIs that 

allow the simplification and automation of the above process. Ideally, controllers 

should contribute to the intelligence, flexibility, scalability and cost-effectiveness of the 

overall SDN infrastructure. Consequently, the controller’s strategic role has led to its 

continuous development both in the research and commercial fields. During the last 

years, progress has been made in many areas. Several controller models have been 

created by vendors aiming at improving existing network infrastructures of large 

companies. At the same time, open source solutions are also crucial part of the transition 

to more intelligent and automated networks. A lot of research has also focused on 

improving controller characteristics such as availability, scalability and others. Finally, 

the overall SDN architecture in terms of controller numbers and placement has also 

been analyzed.  

 This chapter is an overview of SDN controllers. A brief history is firstly provided. 

Then, their main capabilities, components and types are described. Finally, a summary 

of different controller architectures, as these have been described in the literature, is 

given. 

 

3.1 Brief History 
 

As expected, the controller timeline begins together with the introduction of SDN 

itself. The first SDN Controller was NOX (2009), which was initially developed 

by Nicira Neworks. At the same time the OpenFlow protocol’s first version was 

released. Therefore, the first controllers introduced were designed based on the 

OpenFlow protocol. Since NOX was an open source project, it was donated to the SDN 

community and soon became the basis for many other solutions. Multiple versions of 

NOX were then released, i.e. a faster version of NOX or POX (provides Python 

support). Today, NOX appears to be inactive, while POX is used only by the research 

community. The next step worth to be mentioned in the SDN controller timeline is the 

http://www.noxrepo.org/nox/about-nox/
https://www.sdxcentral.com/listings/nicira-acquired-by-vmware/
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development of the ONIX platform. ONIX was a distributed control platform for large-

scale production networks co-developed by Nicira, NTT and Google. It was also the 

base for VMware’s controller, which is nowadays one of the leading implementations 

in the market. In 2010, the Beacon [34] controller was introduced. It was an open-source 

solution, created by Stanford University. Beacon was a Java-based OpenFlow 

controller and became popular since it was easy to deploy and run. Beacon influenced 

the design choices of almost all the controllers that came after it. Beacon’s descendant 

was Floodlight, which was developed by Big Switch Networks. Floodlight fixed many 

of the issues associated with Beacon and became the most feature rich controller 

available. Through the respective OpenStack plug-in, Floodlight could be used to 

control large pools of compute, storage and networking resources. Most controllers 

nowadays provide OpenStack support. Other open source controllers include Trema, 

Ryu, FlowER, LOOM and OpenMUL. More details regarding the controllers 

mentioned above may be found in chapter 4 of this thesis. Many controllers have also 

been produced for commercial use. Vendors such as Cisco, HP, IBM, VMware 

and Juniper have jumped into the SDN Controller market with their own offerings. On 

April 8, 2013, the open-source foundation, OpenDaylight, which is part of the Linux 

Foundation, was announced. OpenDaylight is a Java-based controller, based on the 

Beacon design. It supports OpenFlow and other southbound APIs and includes critical 

features, such as high-availability and clustering. As a challenge to OpenDaylight 

Controllers, On.Lab created the Open Networking Operating System (ONOS) 

Controller. Companies supporting it include AT&T, Microsoft, HP, Ericsson, NTT, 

Ciena and Extreme Networks. 

 

3.2 Capabilities 
 

As already mentioned, SDN’s main aims are: network management, 

programmability, data and control plane separation. These are achieved by a centralized 

model that is driven by controller’s components and capabilities. The following 

paragraphs will describe in detail the capabilities of an SDN controller.  

As SDN evolved, the controller’s role and capabilities have been also developed 

regardless of whether the solutions were based on an open source or specific vendor 

platform. Basic characteristics have been enhanced, and new ones have been added to 

https://www.sdxcentral.com/listings/linux-foundation/
https://www.sdxcentral.com/listings/linux-foundation/
https://www.sdxcentral.com/listings/on-lab/
https://www.sdxcentral.com/articles/news/opendaylight-challenger-aims-att-microsoft-new-years/2013/12/
https://www.sdxcentral.com/articles/news/opendaylight-challenger-aims-att-microsoft-new-years/2013/12/
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offer to organizations more compact and effective solutions. Some of the capabilities 

of a SDN controller include: 

 

Efficiency 

Efficiency is a term used in the scope of this thesis to describe performance, scalability 

and security. It is desirable that a controller covers these three attributes in an optimal 

way. In the literature, performance and scalability are used to describe the response 

time and the number of flows that a controller can handle. This is an important 

characteristic independently of the use case. Security may refer to several 

functionalities that a controller should execute to be compliant with the continuously 

growing number of respective requirements. As the number of controller 

implementations and versions is growing, the need of comparative studies regarding 

controller efficiency has arisen. A representative number of researches along with their 

conclusions will be presented in chapter 5 of this thesis. 

 

Southbound Support 

Southbound support has already been defined as the way a controller manipulates 

network devices to achieve optimized traffic flow. As already mentioned, there are 

many southbound protocols that may be used, OpenFlow being the most popular. Some 

of the basic functionality that any OpenFlow controller should be able to support 

includes field matching, network discovery with Link Layer Discovery Protocol 

(LLDP) etc. In case of southbound support, implementers need to take into 

consideration not only protocol features but also possible extensions, newer versions 

and others. For example, in the case of OpenFlow, functionality such as IPv6 support 

is not part of OpenFlow v1.0 but is part of the OpenFlow v1.3 standard [4]. 

 

Northbound Support  

Northbound APIs are used to implement network abstraction and programmability and 

may be used by customer-facing orchestration systems and third-party applications. It 

is crucial to ensure that a controller is suitably deployed to orchestrate communications, 

both at Layer 2- 3 and Layer 4-7. For example, the controller should be able to support 

OpenStack orchestration systems. OpenStack refers to an open source software 

platform for cloud computing, mostly deployed as infrastructure-as-a-service (IaaS). 

Moreover, the controller should also support vendor-specific protocols. Typical SDN 

https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29
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applications include traditional network services such as firewalls and load balancers 

as well as orchestration systems such as OpenStack. These applications could also 

include traffic engineering or applications that gather data used to perform tasks such 

as managing the network. 

 

Programmability 

Programmability is one of the most valuable characteristics of SDN and specifically 

controllers. Traditionally, network configuration is achieved by applying respective 

rules on a device-by-device basis. Inevitably, this static approach is time consuming, 

error prone [4] and in some cases inconsistent. It might also lead to downgraded 

network performance. Programmatic interfaces are the key components of every 

controller. One of the most common examples of programmability is traffic redirection 

that may be requested for several purposes (i.e. traffic allocation in terms of time, place, 

security). As a first step, the northbound API makes the control information that has 

been centralized in the controller available to network applications. These are then 

capable of changing the network to perform tasks such as forwarding packets over the 

least expensive path or changing the QoS settings based on the available bandwidth or 

other factors. Another example of programmability in an SDN controller is the ability 

to apply filters to packets to determine whether to drop or pass them. These dynamic 

filters may be based on packet header matching and may be simple or more 

sophisticated, consisting of complex combinations of multiple packet headers. The 

filters should be able to be deployed dynamically and it is the role of the SDN controller 

to push the associated flow table entries down to the switches.  

 

Monitoring 

Network monitoring is another controller capability. Through protocols (i.e. 

OpenFlow) and relevant tools, the controller can identify problems in the network and 

facilitate troubleshooting process. Advantages of the controller include detailed flow 

monitoring (and not random sampling), monitoring of specific classes of traffic etc. The 

controller should support standard monitoring protocols and techniques, so the 

information can be integrated with other management and orchestration systems. It 

should, for example, be possible to monitor the health of the controller and the virtual 

networks that the controller supports using SNMP. 
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Network Virtualization 

Network Virtualization is the ability to create logical, virtual networks that are 

decoupled from the underlying hardware. Network virtualization refers to both OSI 

Layers 2-3 services (i.e. routing) and Layers 4-7 services such as load-balancing. 

Common examples of network virtualization that have been in production for decades 

are virtual LAN (VLAN) and Virtual Rooting and Forwarding (VRF). Due to rapid 

changes in terms of network volume, performance requirements and others, the above 

methods are considered limited both in scope and in value. SDN controllers facilitate 

the implementation of network virtualization in an end-to-end manner and thus enable 

organizations to dynamically create virtual networks and meet demanding 

requirements. 

 

Flexibility 

Flexibility is another requirement a controller needs to achieve. On the one hand, a 

variety of applications needs to be supported. On the other hand, controller applications 

should use a common framework and programming model to ensure that that the 

exposed APIs are consistent and easily consumed. This is important for several 

purposes such as troubleshooting, system integration and others. 

 

Topology 

SDN controllers should be also evaluated against their adaptability as far as network 

topology is concerned. Network topology is the arrangement of the elements (in our 

case controllers, switches etc.) of a computer network. In case of large networks, the 

options regarding the topology of extra controllers should be analyzed. Moreover, 

communication between controllers (east-west bound communication) is also part of 

the topology. Currently, there are some discussions in the industry around standardizing 

how controllers will talk to one another. A common technique uses BGP for exchanging 

information between controllers. Finally, issues regarding the level of centralization 

architecture are considered. Later in this chapter examples of topologies will be 

presented. 
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3.3 Components 
 

The SDN architecture (described in paragraph 2.3) does not specify the internal design 

or implementation of the controller. The controller may be a single software system or 

multiple systems arranged to execute functionalities such as load balancing, device 

management etc. Moreover, it may run on local resources or distributed resources such 

as on Virtual Machines (VMs) in data centers. In general, the controller is considered 

as a black-box and is defined by the services it provides. Figure 7 constitutes a 

simplified architecture framework of a SDN controller. Core functional modules and 

interfaces are depicted. According to [11] there are three well-defined layers in most of 

the existing controller platforms: application, orchestration and services, the core 

controller functions, and the elements for southbound communications. However, what 

should be noted is the fact that the boundaries of an SDN controller are not well defined. 

For example, some consider service management as an integral part of an SDN 

controller, while others consider it a separate function or an application that runs 

independently of the controller. The same is true for other functions too. An indicative 

description per layer/component is given in the following paragraphs. Depending on 

circumstances, additional functions may be required. 
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Figure 7: Controller’s Architecture Framework 

 

 

3.3.1 Southbound Layer 

 

In the SDN controller architecture, the southbound layer represents what has been 

mentioned so far as the southbound interface or API. It is the communication channel 

between controller and network devices that is realized through an API. In most cases, 

a TLS connection is established between the devices. TLS is used to ensure a secure 

and authenticated communication. The southbound layer consists of device drivers 

[11]. This allows the controller to use different APIs and multiple protocols to manage 

a range of physical and virtual devices. The choice of the southbound protocol depends 

on the use case. Except for the Openflow protocol that already been described, the 

following may be also supported. 

 

NetConf Protocol 

It defines a mechanism through which a network device can be managed and 

configured. It uses an RPC-based mechanism to facilitate communication between the 
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client and the server. The client can be a script or application, typically running as part 

of a network manager.  

 

Path Computation Element (PCE) Protocol 

 It is a full-scale provisioning protocol. It simplifies path computation by separating 

network topology determination from path creation. In case of other protocols, an SDN 

implementation may require replacement of existing network elements while in case of 

PCE protocol only upgrade of head-end routers is required. PCE is also capable of 

incorporating optical network parameters in path computation [11] and creating paths 

across routing domains. 

 

Multiprotocol Label Switching - Transport Profile (MPLS-TP) Protocol 

It is a version of the MPLS protocol that is used in packet switched data networks. It 

provides a reliable packet-based technology and its added features include maintenance 

functions, legacy data traffic management and others. 

 

Extensible Messaging and Presence Protocol (XMPP) 

It is a protocol based on XML. It enables the real-time exchange of structured data 

between two network entities. As in cases of other protocols, it is regarded as a mature 

protocol that allows interoperability with legacy networks and systems. 

 

Border Gateway Protocol (BGP) 

It is an existing core-Internet routing protocol that in the case of SDN it may be used 

for topology discovery.  

 

3.3.2 Abstraction Layer 

 

The abstraction layer is responsible for translating abstract models that are used by 

controlles functions such as Service Management and Resource Management to a 

device-specific data model [14]. The abstraction layer may be based on one or more 

models and is a uniform point of reference. It should be noted here that the term 

Abstraction Layer may refer to any layer used to differentiate two physical or logical 

entities in SDN architecture. The IRTF (RFC 7426 standard) introduced SDN 

http://searchtelecom.techtarget.com/tip/MPLS-and-MPLS-Transport-Profile-MPLS-TP-The-technology-differences
http://searchdomino.techtarget.com/definition/XMPP
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fundamental concepts in the form of “abstraction layers”. The first is that of the 

Network Services Abstraction Layer (NSAL) which refers to the layer between the 

higher-level applications and network services and the SDN Controllers. It also 

introduced other abstraction layers including the Control Abstraction Layer (CAL), the 

Management Abstraction Layer (MAL) and the Device and resource Abstraction Layer 

(DAL). Each of these layers or APIs provide the higher layers with a common way to 

communicate their requirements to the layer or layers below them. 

 

3.3.3 Network Services Layer 

 

The network services layer consists modules executing the main functionalities of a 

SDN controller. Some examples may be found below: 

 

Service Management Module 

The Service Management function is responsible for all aspects of service instantiation 

and management in the network [14]. Service management defines the characteristics 

of a service such as protocol, structure (i.e. point-to-point, point-to-multi-point, 

multipoint-to-multipoint etc.), end-points, other attributes (QoS, bandwidth, latency, 

prioritization, security, availability etc.). Services provided by the Service Management 

module are used through northbound interfaces by external applications. 

 

Topology Management Module 

The Topology Management function includes the maintenance of existing network 

topology. Every change in topology is identified by the topology management module. 

This is achieved through LLDP messages that are exchanged with network devices. For 

example, if the received LLDP message matches a known switch then a new link is 

established in the network.  

 

Statistics Module 

A controller provides several basic functions, such as statistics collection. These may 

be configured based on needs to include services, resources or both. This information 

may be also exposed to external applications. 
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Forwarding and Routing Management Module 

Forwarding and Routing Rules functionality is required to define the set of forwarding 

rules that should be communicated to network devices. Furthermore, the routes between 

the source and destination addresses need to be provided. This functionality requires 

input from other services such as Topology and Service Management. 

 

Device Management Module 

This module is responsible for managing the devices in the network. It is notified upon 

any update regarding the devices such as addition or deletion. It is also notified when 

the device IP addresses have been added, updated or removed. 

 

Resource Management Module 

This function enables northbound systems to create, modify or delete resources. It 

provides functionalities such as optimal path selection, tunnel load balancing, bulk 

optimization, and traffic re-route etc.  

 

Openflow Module 

An OpenFlow module exists in most controllers to provide functions related to 

Openflow such as messages, actions, table entry, flow rules matching and statistics. As 

already described, a controller may support other protocols to manage its switches and 

underlying networks as required by the application. 

 

3.3.4 Northbound Layer 

 

The interaction between the controller and the applications is realized through a 

communication interface. As already mentioned, there is currently no formal protocol 

used to manage this communication. Instead, software APIs enable the 

programmability of the controllers by exposing network services to the application 

layer.  

So far, different controller use cases have been described. Moreover, reference has 

been made to the variety of capabilities and features that the controllers offer. Currently, 

there are both commercial and open-source controllers in the market. The appropriate 

controller depends on various factors. As already described, there are nowadays several 

SDN applications and therefore several controllers that have been designed to serve 
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their needs. There are controllers designed for WAN deployments, enterprise campuses, 

data centers and others. It is not necessary that a controller could fit in all types of 

deployments. For example, controllers that are designed for WAN deployments might 

not work as well in the data center environment [12]. The number of deployments, areas 

and time these deployments have been running should be also taken into consideration. 

Except for type of deployment, business needs that need to be covered are also 

important. Specifically, a controller should be able to integrate through northbound API 

with applications that cover specific needs. Compatibility of a controller with the 

overall network architecture is also important. Initially, SDN applications of data 

centers required controllers being part of an integrated solution. In this case, controllers 

focused on the management of data center resources such as compute, storage, virtual 

machine images and network state. Then, needs focused on network abstraction and 

therefore new types of controllers, specialized in network management emerged. The 

driver for this second wave of controllers is the potential expansion of SDN applications 

out of the data center and into other areas of the network where the management of 

virtual resources like processing and storage does not have to be so tightly coupled in a 

solution. Integration in terms of applications and network devices is complicated. For 

example, depending on the use case the controller will integrate with northbound 

platforms responsible for cloud management or orchestration management (i.e. 

OpenStack, CloudStack). Controllers should also be capable of integrating with 

different types of switches (i.e. hybrid, SDN switches) and be compatible with various 

protocols. As controller deployment matures and new versions are released, stability of 

APIs will be also estimated. Comparisons of commercial and open source solutions 

have concluded that the latter might provide better transparency, but they do not always 

provide long-term stable APIs. To sum up, there are many attributes that should be 

taken into consideration to choose the appropriate controller, maturity, reliability and 

smoothness of integration being some of them. In the following paragraphs, types of 

controllers will be listed. Differentiation depends on various criteria. Fundamental 

categories (i.e. commercial and open-source) and more specific ones are described. 
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3.3.5 Commercial and Open Source 

The existence of both open-source and commercial solutions has been mentioned 

multiple times so far. This is because in the case of the SDN architecture, open source 

solutions are developing at a remarkable pace. Nowadays, open source software 

development has become the point of evolution since it allows the cooperation of people 

around the world aiming at solving problems and creating more sophisticated solutions. 

Universities have created several open source projects related to SDN and OpenFlow. 

Open source solutions are not restricted to the research area but have also expanded to 

the market. Many companies such as Adara, Bigswitch and NEC have released open 

source versions of their products. The open source versus proprietary dilemma makes 

sense in cases someone considers extending the controller or has proprietary 

modifications specific to his business. Open source solutions reduce the probability of 

vendor lock-in. This however will gradually disappear since there are many efforts on 

preventing lock-in and standardizing architecture components (i.e. southbound APIs). 

Eventually, the choice between commercial and open source controllers concerns their 

functionality and the way these may be used in an existing architecture. 

The following controller platform tables show some current controller 

implementations. Open source controllers have been divided into active and not active. 

Not active refers to controllers that are no longer maintained or updated. 

 

Open Source Controllers 2017 

Active Not Active 

Floodlight Beacon 

LOOM FlowER 

OpenCotail NOX 

OpenDaylight NodeFlow 

OpenMUL  

POX  

Ryu  

Trema  

ONOS  

Maestro  

Table 1: Open Source Controllers 
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Commercial Controllers 2017 

Cisco - ACI 

VMware - vCloud/vSphere 

Nokia - Nouage 

Avaya 

Huawei 

Big Switch Networks 

Juniper - Contrail 

Ericsson 

Brocade 

Table 2: Commercial Controllers 

 

According to [5], the most popular open source deployment today is OpenDayLight 

(ODL). This is a project from the Linux Foundation, which got its first release, named 

Hydrogen, in 2014. ODL has more than 100 deployments, including companies such 

as Orange, China Mobile, AT&T, T-Mobile, Telefonica and others. Contributing 

individuals recently exceeded 500. Another big movement in the controller market is 

the Open Networking Operating System (ONOS), which was open sourced in 

December 2014 and focused on serving the needs of service providers. It is not so 

widely adopted as ODL but has been gaining momentum in cases of WANs  

 



A Qualitative Study of SDN Controllers 

41 
 

 

Figure 8: Open Source Deployments 2016 [12] 

 

According to the SDX survey [12] shown in the figure above, ODL was chosen by 

61% of the respondents who have current open source deployments. ODL is also the 

technology cited by the most respondents when asked what open source solutions they 

would consider (65%). The next most cited technology was the OPNFV framework 

(ODL or ONOS) at 31%.  

 

3.3.6 Centralization mode 

 

Until this point, centralization has been identified as one of the main characteristics 

of SDN and controller in particular. However, in practice there are cases where the 

control plane may be distributed. In the case of centralized controller/s, one or more 

controllers manage all the network elements in the system, and retain a global view of 

the entire network [15]. Most SDN controllers today run in this way. It is a simpler 

solution that ensures that the controller has a global and consistent view of the topology. 

Integration with legacy systems is also easier in this case. However, there is a high 

dependency on cluster availability and all services are handled centrally. In case of 

distributed controller/s, a local controller runs on each compute node and manages the 

network elements directly. Latency and scalability are better in this case. On the other 
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hand, a global view of the network is not achieved and synchronization of the overall 

topology becomes complex as the amount of compute nodes increases. 

 

 

Figure 9: Centralized vs Distributed Architecture 

 

There are cases of controllers (i.e. Onix, HyperFlow) that have been designed to 

maintain a logically centralized but physically distributed control plane. In this way, 

look-up overhead is decreased by enabling communication with local controllers, while 

still allowing applications to be written with a simplified central view of the network 

[10]. Hybrid approaches, such as Kandoo (to be described later in this chapter) also 

exist. 

 

3.3.7 Reactive and Proactive policy 

 

A controller may be configured in either reactive or proactive mode. In the reactive 

approach, network elements must consult a controller each time a decision must be 

made. For example, in case of a new packet, the switch sends to the controller the first 

packet of a flow, and the controller is responsible to appropriately configure flow table 

to handle the rest of the flow. This causes a small performance delay. This delay, in 

most cases, is considered negligible. However, it may be a concern if the controller is 

geographically remote [10]. This approach however presents the most efficient use of 

existing flow table memory. In the proactive approach, the controller programs network 
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elements proactively based on the existing network view. This approach has zero 

additional flow setup time because the forwarding rule is already defined. However, 

network management in this case is more complex. An example of proactive control 

was the Distributed Flow Architecture for Networked Enterprises (DIFANE). DIFANE 

[51] was proposed by Princeton University and described an architecture where the 

controller partitions rules over a hierarchy of switches, such that the controller rarely 

needs to be consulted about new flows and traffic is kept within the data-plane. 

Experiments showed that DIFANE reduced first-packet delay from a 10ms average 

round-trip time (RTT) with a centralized NOX controller to a 0.4ms average RTT for 

new single-packet flows. These measurements however concern outdated 

implementations (the DIFANE paper was published in 2010). 

 

3.3.8 Supported Protocols  

 

As expected, another categorization of controllers refers to those supporting the 

OpenFlow protocol and those that do not. The first OpenFlow controller was NOX and 

since then most open source controllers support the protocol.  

A high-level description of its functionality is the following. An OpenFlow 

controller is responsible for performing actions related to both control and management 

plane. It centralizes network intelligence, while the network maintains a distributed 

forwarding plane through OpenFlow switches and routers. According to [24], the 

controller runs on a network-attached server and there are different control 

configurations depending on: location, flow routing and behavior. Location refers to 

centralized or distributed mode. In the first case, the OpenFlow controller manages all 

devices while in the second, each controller corresponds to a set of switches. There are 

also different types of flow routings. Every flow could be individually set up by the 

controller. In this case a flow table contains one entry per flow. Another strategy for 

routing could be the aggregated one, in which one flow entry covers large groups of 

flows. Finally, there could be wildcard flow entries. In this case the flow table contains 

one entry per category of flows. The most common OpenFlow controller operation 

mode is the reactive one. The controller listens to switches passively and configures 

routes on-demand. It receives messages from the switches and maintains a global MAC 

table. The controller can define the port that the flow must be forwarded to or take other 

actions, such as dropping the packet. When a switch receives a packet that does not 
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correspond to an entry in its flow table, it forwards the message to the controller, asking 

for the action to take for the unknown packet. Upon receiving the message, the 

controller looks for the destination location and sets the path by sending OpenFlow 

messages to affected switches. The controller must set the entire path by sending 

configuration messages to all switches from the source to the destination. In case of a 

time-out, the entry is excluded from the table. In the proactive mode, paths are set up 

in advance. More details regarding reactive and proactive modes may be found in the 

respective paragraphs. 

 

Figure 10: OpenFlow functionality 

 

Besides the use of OpenFlow, there are SDN controllers that leverage IP/MPLS 

network functionality to create MPLS VPNs. There are also NETCONF-based 

controllers and Radius/Diameter-based controllers such as PCRF and/or TDF, in mobile 

environments. The following table includes some of the most popular OpenFlow 

controllers. 

OpenFlow Controllers 

NOX 

POX 

Beacon 

Trema 

Floodlight 

Maestro 

Ryu 

OpenDaylight 

Table 3: OpenFlow Controllers 
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3.3.9 Special Purpose Controllers 

 

In addition to the variety of open source and commercial controllers that may differ 

depending on their configuration, the protocols they support and other attributes, special 

purpose controllers have also been implemented. Some examples found in the literature 

are Flowvisor, RouteFlow, Simple Network Access Control (SNAC), OpFlops, and 

Resonance. These serve specific tasks such as transparent proxy between switches and 

multiple controllers, virtualized IP routing over OpenFlow network switches. Some 

details may be found below: 

 

FlowVisor 

It is an experimental controller that enables network virtualization by dividing a 

physical network into multiple logical networks. It acts as a transparent proxy between 

OpenFlow switches and multiple OpenFlow controllers. FlowVisor ensures that each 

controller touches only the switches and resources assigned to it. 

 

RouteFlow 

It is an open source project to provide virtualized IP routing over hardware. It is 

composed of an OpenFlow Controller application, an independent server, and a virtual 

network environment that reproduces the connectivity of a physical infrastructure and 

runs IP routing engine. 

 

SNAC 

It is a Controller targeting production enterprise networks. It is based on NOX and uses 

a web-based policy manager. 

 

3.4 Controller Placement Problem 
 

So far, emphasis has been given to the detailed description of the controller as unit. 

However, in most cases SDN networks consist of several controllers that need to be 

appropriately placed to achieve an optimal and simple centralized network. At this 

point, issues such as scalability, reliability, performance and availability of the network 

http://whatis.techtarget.com/definition/controller
http://searchservervirtualization.techtarget.com/definition/network-virtualization
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arise. The overall architecture of controllers influences every aspect of a decoupled 

control plane, from load-balancing to fault tolerance and performance metrics. In some 

types of networks, availability, response and convergence time may be affected. What 

we should also take into consideration is the fact that requirements regarding the above 

factors (fault tolerance, delays etc.) vary depending on the type of network. For 

example, in a WAN network it is required to minimize propagation delays, while in a 

data center or in the enterprise, maximization of fault tolerance is required.  

 Research has focused on analyzing which is the optimal place and number of 

controllers given a specific type of network to achieve the desired level of performance 

and failures. In the literature, this is called the “Controller Placement Problem”. In [8], 

the propagation latency of an Internet2 production deployment and over 100 WAN 

topologies were studied. As expected, control placement depended on desired reaction 

bounds, metric choices and the network topology itself. To determine the tradeoffs 

between reliability and latency, it is suggested that the best controller placement is using 

one controller that yields the optimal reliability metric, while optimizing the average 

latency. On the other hand, optimizing reliability increases the average and worst-case 

latency.  

Since SDN is a logically centralized network, reliability of the control plane is of 

critical importance. Therefore, mechanisms to avoid a single point of failure should 

exist. According to [7], the most fundamental recovery mechanism is the ‘‘primary-

backup replication’’ approach. In this model, backup controllers assume network 

control in case the primary fail. There are, however several issues such as primary and 

backup controller coordination during fail over, that need to be further studied. High 

availability is also required in most types of networks. This can be achieved through 

improved southbound APIs and optimal controller placement. Findings until today 

indicate that allowing network elements to connect to multiple controllers maximizes 

availability. It has also been shown that the number of required controllers is more 

dependent on the topology than on network size. In some cases, it is proposed that SDN 

controllers delegate control functions, which are used to report state and attribute value 

changes, threshold crossing alerts, hardware failures etc. In that way, operational 

efficiency is increased.  

As far as performance is concerned, several approaches have also been proposed. 

For example, one approach was the IRIS IO engine [11], which adopts a multi-queue 

design that results in a higher flow set-up rate. Flexibility and modularity are proposed 
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to be handled through hierarchical models of controllers that may offer different 

abstractions and scopes thus increasing modularity. Finally, interoperability between 

controllers should be established. Initiatives regarding interoperability include portable 

programming languages such as Pyretic and development of east/westbound interfaces 

among controllers (i.e. SDNi, ForCES and others). 

Designs of different deployments for multiple controllers have been proposed. In 

[7], a classification is proposed: logically distributed controller deployments, physically 

distributed controller deployments, hierarchical controller deployments and hybrid 

controller deployments. Some examples may be found in the following paragraphs. 

 

 

Figure 11: Controller’s architectures 

 

HyperFlow 

Hyperflow is a logically distributed controller deployment. It is composed of OpenFlow 

switches and NOX controllers, each of which runs the HyperFlow controller 

application. HyperFlow localizes decision making to individual controllers for 

minimizing the control plane response time to data plane requests, and provides 

scalability while keeping the network control logically centralized. Through the 

synchronization schemes, all the controllers share the same network view and locally 

serve requests without actively contacting any remote node, thus minimizing the flow 

set-up times.  

 

DIFANE 

DIFANE has already been mentioned above since it is an example of a controller 

working in proactive mode. DIFANE is a distributed flow management architecture 

that consists of a controller that generates the rules, authority switches that are 

programmed by the controller and simple switches. Authority switches can be a subset 

of existing switches in the network, or dedicated switches. Upon receiving traffic that 

does not match the rules, the switch redirects the packet to the appropriate authority 
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switch. The authority switch handles the packet in the data plane and sends feedback to 

the switch to cache the relevant rules locally. In this way, all data plane functions 

required in DIFANE are based on specific rules. Simple switches cache rule so that 

most of the data traffic hits in this cache. Authority switches also store rules that are 

installed and updated by the controller. Finally, partition rules are installed by the 

controller in each switch.  

 

Onix 

Onix is a physically distributed controller deployment, which runs on a cluster of one 

or more physical servers. Onix is responsible for giving the control logic programmatic 

access to the network. Using the Onix API, which offers a view of the physical network, 

control applications can read and write state to any element in the network, hence 

keeping state consistent between the in-network elements and the control application 

that runs on multiple Onix servers. The copy of the network state tracked by Onix is 

stored in a data structure named the Network Information Base (NIB), which is a graph 

of all network entities within a network topology. 

 

Kandoo 

The hierarchical controller deployment of Kandoo consists of a two-level hierarchy for 

controllers: local controllers that execute local applications and a centralized root 

controller that runs non-local control applications (i.e., applications that require access 

to the network-wide state). Each switch is controlled by only one Kandoo controller, 

and each Kandoo controller can control multiple switches. If the root controller needs 

to install flow-entries on switches of a local controller, it delegates the requests to the 

respective local controller. 
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4. Open Source Controllers 

 

As already mentioned, there is a variety of controllers and platforms to consider 

when selecting an SDN strategy. The following chapter provides further details 

regarding popular SDN controllers. Due to limitation regarding available information 

for commercial controllers, only the profiles of open source frameworks and 

controllers, as these have been listed in paragraph 3.4.1 of this thesis, are presented. A 

summary table regarding some basic features of the controllers is also presented. What 

should be highlighted is that comparative analysis and selection of a controller is 

considered nowadays really challenging since it is a multi-faceted problem. The most 

suitable controller may be selected only if a specific set of requirements is taken into 

consideration.  

 

4.1 OpenDaylight  
 

“Communications providers and enterprises alike are eager to build or adapt their 

networks to be more flexible and responsive to their organizations’ and customers’ 

needs. At the same time, they are driving network automation to improve operational 

efficiency. OpenDaylight, the largest open source SDN controller, is helping lead this 

transition. ODL is a modular open platform for customizing and automating networks 

of any size and scale. The ODL project arose out of the SDN movement, with a clear 

focus on network programmability. It was designed from the outset as a foundation for 

commercial solutions that address a variety of use cases in existing network 

environments” [28]. This is the mission of the ODL project, which was introduced in 

early 2013. It was originally led by IBM and Cisco but then it was hosted under the 

Linux Foundation Project. Since then, ODL has received the industry’s wide support 

and resources and is nowadays the most popular open source framework in SDN 

industry.  

The ODL platform is designed to cover a lot of use cases such as [28] Network 

Resources Optimization (NRO), Automated Service Delivery, Cloud, NFV and others. 

Using ODL services such as dynamic network optimization, on-demand services (i.e. 

bandwidth, dynamic VPN services etc.), agile service delivery on cloud infrastructure 
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are provided. ODL may be also used to achieve centralized administration of the 

network. Until today, the ODL community has introduced several releases, aiming at 

enhancing the framework through additional features, existing component redesign etc. 

The first software code release for the ODL controller was Hydrogen. It constituted of 

three different editions based on user type: Base Edition, the Virtualization Edition, and 

the Service Provider Edition. The second code release was Helium. It included a new 

user interface, and a more simplified and customizable installation process, due to the 

use of the Apache Karaf. This code release also has deeper integration with OpenStack, 

including improvements in the Open vSwitch Database Integration project, as well as 

other features like Security Groups, Distributed Virtual Router, and Load Balancing. 

The most significant change in Helium refers to the service abstraction layer. Hydrogen 

used an API-driven service abstraction layer, which had limitations. Specifically, the 

controller needed to know about every type of device in the network and have an 

inventory of drivers to support them. Helium introduced a model-driven service 

abstraction layer, which means that the controller didn’t have to account for all the types 

of equipment installed in the network, allowing it to manage a wide range of hardware 

and southbound protocols.  

The ODL platform built on this advancement in its third release, Lithium, which was 

introduced in June of 2015. This release focused on broadening the programmability of 

the network, enabling organizations to create their own service architectures to deliver 

dynamic network service in a cloud environment and craft intent-based policies. The 

fourth release, Beryllium, was released in February of 2016. Significant improvements 

in performance, scalability and functionality were introduced. In the Boron release 

focus was given on two leading types of deployments, with enhancements to cloud and 

NFV support as well as large-scale network engineering. Boron also provided new tools 

and documentation to development, as well as greater integration with larger industry 

frameworks from (Open Platform for NFV) OPNFV and OpenStack to CORD and 

Atrium Enterprise. Carbon is the sixth release of ODL. With the Carbon release, the 

ODL community emphasized on enhancements to support Internet of Things (IoT), 

metropolitan Ethernet and cable operator needs, integrated NFV management [28]. 

The ODL architecture is based on micro-services that are used to control 

applications, protocols and plugins, as well as to provide connections between external 

consumers and providers. To do so, it employs a model driven approach based on a 

YANG data model to describe the network, the functions to be performed on it and the 

http://www.opendaylight.org/hydrogen
http://www.opendaylight.org/software
http://karaf.apache.org/
https://www.sdxcentral.com/cloud/open-source/definitions/what-is-openstack-quantum-neutron/
https://www.sdxcentral.com/cloud/open-source/definitions/what-is-open-vswitch/
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resulting state or status achieved. YANG is a data modeling language that was initially 

designed by the IETF NETCONF Data Modeling Language Working Group. [36] It 

can be used to model both configuration data as well as state data of network elements. 

Furthermore, YANG can be used to define the format of event notifications emitted by 

network elements and it allows data modelers to define the signature of remote 

procedure calls that can be invoked on network elements [36]. The language, being 

protocol independent, can then be converted into any encoding format that the network 

configuration protocol supports. In case of ODL, the YANG data model is used to 

facilitate the creation and combination of micro-services to solve more complex 

problems. The XML nature of YANG data model presents an opportunity for self-

describing data, which controller components and applications using the controller’s 

northbound APIs can consume in a raw format, along with the data schema [52]. 

Utilizing a schema language simplifies development of controller components and 

applications.  

In ODL, through Model Driven Service Abstraction Layer (MD-SAL), any 

application or function can be bundled into a service that is then then loaded into the 

controller [28]. Services can be configured and bound together in any number of ways 

to match network needs. This model of service abstraction presents an opportunity to 

combine both northbound and southbound APIs and the data structures used in various 

services and components of an SDN controller. These modules are linked dynamically 

into the MS-SAL. MS-SAL figures out how to fulfill the requested service irrespective 

of the underlying protocol used between the controller and the network devices. This 

provides protection to the applications as the OpenFlow and other protocols evolve over 

time. It provides basic services like Device Discovery which are used by modules like 

Topology Manager to build the topology and device capabilities. Based on the service 

request the SAL maps to the appropriate plugin and thus uses the most appropriate 

southbound protocol to interact with a given network device.  

On the northbound side, the interaction between the controller and the applications 

is done via Web Services for the request-response type of interaction. The controller 

exposes open Northbound APIs which are used by applications. Open Service Gateway 

Initiative (OSGi) framework and REST API are supported. The OSGi framework is a 

Java framework for developing and deploying modular software programs and 

libraries. It is used for applications that will run in the same address space as the 

controller while the REST API is used for the rest. 
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OpenFlow enabled switches connect to two or more instances of the controller 

through TCP. The platform follows a controller model that enables the use of 

OpenFlow, as well as alternative southbound protocols. ODL includes support for the 

broadest set of protocols in any SDN platform. For example, the platform supports 

OpenFlow and OpenFlow extensions such as Table Type Patterns (TTP), as well as 

traditional protocols including NETCONF, BGP/PCEP and CAPWAP. Additionally, 

ODL interfaces with OpenStack and Open vSwitch through the OVSDB Integration 

Project.  

 

 

Figure 12: OpenDaylight (Boron version) Architecture diagram [28] 

 

4.2 ONOS 
 

ONOS’ mission is to “produce the Open Source Network Operating 

System that will enable service providers to build real 

Software Defined Networks” [60]. Its first release, Avocet, was open-sourced in 

December 2014. Ten releases have followed until today. Blackbird (February 2015), 

focused on performance and scalability optimizations. Hummingbird (September 2016) 

delivered important enhancements in areas of core control functions and automation 

and configuration of legacy networks. In its latest release, Kingfisher (June 2017), 

ONOS was enhanced among others in terms of Northbound and Southbound layer and 
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YANG data model tools. The ONOS ecosystem comprises the Open 

Networking Lab (On. Lab), organizations who are funding and contributing to the ONOS 

initiative including service providers, leading vendors and other community members. 

ONOS has been designed aiming to fulfill the following goals: Code modularity, 

separation of concern, configurability, and protocol agnosticism [60]. Specifically, 

design principles define that it should be possible to introduce new functionalities as 

self-contained units. To achieve this, clear boundaries between subsystems should exist. 

Moreover, configurability is achieved by allowing loading of several features, on 

startup or runtime. Finally, it is expected that platform is not bound to specific protocols 

but should easily allow the introduction of modules that will allow communication 

based on different network protocols. More details are given in the following 

paragraphs. 

The ONOS kernel and core services, are written in Java as bundles that are loaded 

into the Karaf OSGi container. Since ONOS runs in the JVM, it can run on several OS 

platforms. The ONOS platform is designed to support various application categories 

such as control, configuration and management applications. ONOS is architected with 

tiers of functionality. It is comprised of a set of sub-projects, each with their own source 

tree that can be built independently. Each subsystem implements a service and executed 

in application, core and southbound protocol layers. Its primary subsystems are: Device 

Subsystem (manages the inventory of infrastructure devices), Link Subsystem 

(manages the inventory of infrastructure links), Host Subsystem (manages the inventory 

of end-station hosts and their locations on the network), Topology Subsystem (manages 

snapshots of network graph views), Path Service (finds paths between infrastructure 

devices or between end-station hosts using the most recent topology graph snapshot, 

Flow Rule Subsystem (manages inventory of the match/action flow rules installed on 

infrastructure devices and provides flow metrics, and Packet Subsystem (allows 

applications to listen for data packets received from network devices and to emit data 

packets out onto the network via one or more network devices) [60]. 
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Figure 13: ONOS Subsystems [60] 

 

Figure 13 represents the structure and inter-connection of subsystems. The ONOS 

core layer exposes the two interfaces, admin service and service, which are used by 

applications to invoke the different service components in the core. Each application 

registers to a core service, which in turn provides the application with a unique 

application identifier. This identifier is used by ONOS to keep track of tasks and 

objectives, such as intents and flow rules, associated with an application. In a similar 

way, the protocol-aware providers are responsible for interacting with the network 

environment using various control and configuration protocols. Providers also collect 

data from other subsystems to convert them into service-specific data. A provider is 

associated with a provider identifier. As in the case of the application identifier at the 

northbound interface, ONOS also uses this id, which is assigned to every provider in 

the southbound interface. The provider identifier serves the purpose of unique 

identification and proper mapping with the devices. Finally, from the subsystem 

perspective, multiple providers may be associated with a single subsystem. A device 

subsystem supports multiple providers. An example of a subsystem is the Intent 

Framework. It is a subsystem within the ONOS core. Intent allows applications to 

specify their network control preferences in form of policy rather than mechanism [60]. 

Intent is a model object that describes an application's request to the ONOS core to alter 

the network's behavior. These are described in terms of network resource, constraints, 

criteria and instructions. The framework mainly includes intent compilers that translate 

intents into installable intents that are more specific to the network environment, and 
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coordinators that determine how the network must be programmed, including the order 

of the installation at a device level. The framework includes translation and 

compilation, support for managing changes in network conditions and optimization 

across intents and other functionalities.  

In ONOS, distributed-architecture support is also a key design principle. It can be 

deployed as a collection of controller-servers that coordinate with each other to achieve 

resiliency, fault-tolerance, and better load management. As in the case of traditional 

distributed architectures, there are various problems that need to be confronted to 

achieve the above. One of them is cluster coordination, which in the case of ONOS is 

achieved by including a distribution mechanism in the different subsystems which 

generate events. To ensure availability, ONOS uses methods such as vector clocks, 

distributed queuing and queue-sharing groups. Vector clocks is an algorithm for 

generating a partial ordering of events in a distributed system and detecting causality 

violations [60]. To ensure consistency between events, link and host managements use 

optimistic replication technique and an anti-entropy mechanism, which is based on 

gossip-protocol and periodic probing of nodes. This mechanism is also used to confront 

cases of failure (i.e. node unavailability). Moreover, ONOS provides the network graph, 

and the view of the entire network, as the northbound abstraction. This global network 

information is presented as logically centralized, even though it is physically distributed 

across multiple servers. The global network view is built out of the network topology 

and state discovered by each ONOS instance, such as switch, port, link and host 

information.  

 ONOS targets support of multiple protocols (Openflow, NetConf, etc.), at the 

southbound interface to communicate with diverse devices, and expose APIs at the 

northbound interface to accommodate the needs of service provider use cases and 

application developers. If ONOS needs to support a new protocol, it should be possible 

to build a new network-facing module against the southbound API as a plugin that may 

be loaded into the system. ONOS, like other controllers (i.e. ODL), uses the concept of 

providers, which hide protocol complexity from other components of the controller 

platform. These providers offer all the necessary information of network elements to 

the core layer. 

 

http://en.wikipedia.org/wiki/Vector_clock
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Figure 14: ONOS Architecture Diagram 

 

4.3 Floodlight  
 

Floodlight is a Java multi-threaded OpenFlow controller, initially based on the 

Beacon implementation. Its last version was released on March 2016. It is intended to 

be a platform for a wide variety of network applications. It is Apache licensed and is 

one of the significant contributions from Big Switch Networks to the open source 

community. Floodlight’s architecture is based on the Big Network Controller (BNC), 

the company’s commercial offering. It has been designed as a highly concurrent system, 

to achieve the throughput required by enterprise class networks and data centers. The 

controller consists of an autonomous collection of modules that perform Floodlight’s 

main functions as an OpenFlow controller, as well as applications that are deployed on 

top of REST applications or run with the controller.  

The Floodlight core architecture is modular, with components including topology 

management, device management, path computation, infrastructure for web access, 

counter store and a generalized storage abstraction for state storage. These components 

are treated as loadable services with interfaces that export state. Floodlight has been 

redesigned without the OSGi framework. The controller itself presents a set of 

extensible REST APIs as well as an event notification system. The API allows 

applications to get and set this state of the controller, as well as to subscribe to events 

emitted from the controller using Java. Applications using Floodlight as an underlying 

layer are deployed as independent Java units and use the REST API. Also, applications 

http://www.bigswitch.com/
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can be deployed and configured at the level of the Floodlight controller. This approach 

has significant benefits in terms of application execution speeds, as well as offering 

more bandwidth communication with Floodlight, since the application-controller 

pairing is more immediate with the Java API. 

The Floodlight OpenFlow controller can interoperate with any element agent that 

supports OpenFlow, but Big Switch also provides an open source agent that has been 

incorporated into commercial products. In addition, Big Switch has provided Loxi, an 

open source OpenFlow library generator, with multi-language support to address the 

problems of multi-version support in OpenFlow.  

Floodlight can be run as a network plugin for OpenStack using Neutron. The 

Neutron plugin exposes a Networking-as-a-Service (NaaS) model via a REST API that 

is implemented by Floodlight. Once a Floodlight controller is integrated into 

OpenStack, network engineers can dynamically provision network resources alongside 

other virtual and physical computer resources. This improves overall flexibility and 

performance. 

 

 

Figure 15: Floodlight Architecture diagram [37] 
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4.4 Trema 
 

Trema is a programming framework for developing OpenFlow controllers that was 

originally developed and supported by NEC with subsequent open source contributions 

under a GPLv2 scheme (GNU General Public License), which is the most commonly 

used open source license. With Trema, the term framework is used to highlight the fact 

that the user has the freedom to configure and build an OpenFlow controller. The 

framework, designed to provide extensibility, includes all the necessary libraries and 

functionalities that are necessary to interact with OpenFlow. Unlike the more 

conventional OpenFlow-centric controllers that preceded it, the Trema model provides 

basic infrastructure services as part of its core modules that support the development of 

user modules. Trema is more a software platform for OpenFlow research than a 

production controller. Trema modules may be created either in C or Ruby. It provides 

a network emulator and libraries that can create simple OpenFlow based networks on a 

system. These features are an efficient way to provide development and testing 

environments for networks. According to [66], the appeal of Trema is that it is an all-

in-one, simple, modular, rapid prototype and development environment that yields 

results with a smaller codebase. 

The main API that the Trema core modules provide to an application is a simple, 

non-abstracted OpenFlow driver. Trema now supports OpenFlow version 1.3.X via a 

repository called TremaEdge. The base controller design is event-driven and is often 

compared to the explicit handler dispatch paradigm of other open source products. In 

addition, the core modules provide a message bus that allows the application modules 

to communicate with each other and core modules. Other core modules include timer 

and logging libraries, a packet parser library, and hash-table and linked-list structure 

libraries. 

The Trema core does not provide any state management or database storage 

structure. These are contained in the Trema applications and could be the default of 

memory-only storage using the data structure libraries. The infrastructure provides a 

command-line interface (CLI) and configuration file system for configuring and 

controlling applications, managing messaging and filters, and configuring virtual 

networks. Network Domain Specific Language, a Trema specific language, is used for 

this purpose. There is also an OpenStack Quantum plug-in available for the sliceable 

switch abstraction. 
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The libraries in Trema can be categorized under multiple headings as listed below: 

protocol (i.e. OpenFlow), interfaces (i.e. OpenFlow application, switch, management), 

commonly used data structures (i.e. Linked list, doubly-linked list, hash table, timers), 

utilities (i.e. log, stats, wrapper), network protocols (i.e. CP, IP, UDP, ether and etherIP, 

ICMP and IGMP).  

 

 

Figure 16: Trema Architecture diagram [37] 

 

4.5 Ryu 
 

Ryu is a component-based, open source (supported by NTT - Nippon Telegraph and 

Telephone Corporation Labs) framework implemented entirely in Python. It integrates 

with OpenStack and supports OpenFlow. It provides a logically centralized controller 

and a well-defined API that make it easy for operators to create new network 

management and control applications. The Ryu messaging service does support 

components developed in other languages. As in case of Trema, Ryu is more suitable 

for data centers, cloud infrastructures, and carrier grade networks.  

Components include event management, messaging, in-memory state management, 

application management, infrastructure services and a series of reusable libraries [66]. 

Ryu applications are single-threaded entities, which implement various functionalities. 

Ryu applications send asynchronous events to each other. Each application has a 

receive queue for events to preserve the order of events. In addition, each application 

includes a thread for processing events from the queue. The thread’s main loop pops 

out events from the receive queue and calls the appropriate event handler. Hence, the 
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event handler is called within the context of the event-processing thread, which works 

in a blocking fashion. 

At the API layer, Ryu has an Openstack Quantum plug-in that supports both Generic 

Routing Encapsulation (GRE) based overlay and VLAN configurations. GRE is 

a tunneling protocol developed by Cisco Systems that can encapsulate a wide variety 

of network layer protocols inside virtual point-to-point links over an Internet 

Protocol network. OpenStack Neutron is a cloud networking controller and a 

networking-as-a-service project within the OpenStack cloud computing initiative. 

Neutron includes a set of application program interfaces (APIs), plug-ins and 

authentication/authorization control software that enable interoperability and 

orchestration of network devices and technologies within infrastructure-as-a-service 

(IaaS) environments. 

Ryu has an impressive collection of libraries, ranging from support for multiple 

southbound protocols to various network packet processing operations. With respect to 

southbound protocols, Ryu supports OF-Config, Open vSwitch Database Management 

Protocol (OVSDB), NetConf, SFlow (Netflow and Sflow) and other third-party 

protocols. Netflow is supported by Cisco and others and is specific to IP. The third-

party libraries include Open vSwitch Python binding, the Oslo configuration library and 

a Python library for the NetConf client. The Ryu packet library helps you to parse and 

build various protocol packets, such as VLAN, MPLS, GRE, etc.  

Ryu supports the OpenFlow protocol up to the latest version. It includes an 

OpenFlow protocol encoder and decoder library. Just like any SDN controller, Ryu can 

also create and send an OpenFlow message, listen to asynchronous events such as “flow 

removed”, and parse and handle incoming packets.  

 

https://en.wikipedia.org/wiki/Tunneling_protocol
https://en.wikipedia.org/wiki/Cisco_Systems
https://en.wikipedia.org/wiki/Encapsulation_(networking)
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Point-to-point_(telecommunications)
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
http://whatis.techtarget.com/definition/OpenStack
http://searchexchange.techtarget.com/definition/application-program-interface
http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
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Figure 17: Ryu Architecture diagram [63] 

 

4.6 Maestro 
 

Maestro is an OpenFlow controller introduced in 2010 as an operating system for 

orchestrating network control applications [62]. It is developed in Java, which makes it 

highly portable to various operating systems and architectures. Maestro provides 

interfaces for implementing modular network control applications to access and modify 

the state of the network, and coordinate their interactions. Maestro is licensed under the 

GNU Lesser General Public License version 2.1. According to [62] Maestro, was 

designed as a simple single-threaded programming model for application programmers 

of the system. However, it enables and manages parallelism as a service to application 

programmers [56].  

Maestro provides a view abstraction for grouping related network state into a subset, 

and for accessing the state in that subset. Each view is a Java class that can be 

dynamically created in Maestro. A view can contain any data structure to represent a 

particular subset of network state. For example, a view may be a hash table structure 

that holds all pair shortest path routing information for the network. The view is the 

minimal granularity at which Maestro synchronizes the concurrent execution of control 

components. Views are highly related to events in Maestro. An event is the basic data 

unit to exchange information between the underlying network and the control 
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components. Events can be generated from the switches in the underlying network. 

Events can also be generated by the control components, to affect the behavior of 

certain switches in the network. Each network control component is represented as one 

application in Maestro, which is a Java class that contains the code for the control 

function. All applications must extend the base abstract class application, and interact 

with Maestro via a simple and straightforward API. 

Maestro was initially designed to meet OpenFlow requirements. Therefore, it offers 

similar functionalities as other OpenFlow controllers. In Maestro’s case, low level 

components that remain fixed for a specific version of OpenFlow handle the details of 

reading and writing to socket buffers, and translating OpenFlow messages into and from 

high level data structures. 

Maestro is a controller, which uses task batching so that worker threads pull a batch 

of tasks, so as to process multiple flow-requests in a single execution. The output 

batching technique is used to send packets out in which packets belonging to the same 

destination are grouped together and sent using a single socket system call [39]. Maestro 

handles most of the tedious and complicated job of managing work load distribution 

and worker threads scheduling.  

 

 

Figure 18: Maestro Architecture diagram [62] 

 

4.7 Beacon 
 

Beacon is an OpenFlow controller developed in Java and released in 2010. It has 

been used in several research projects, networking classes, and trial deployments [13]. 

It is a multi-threaded controller and considered more suitable for enterprise class 

networks and data centers. It runs on many platforms, such as Linux servers and 

Android phones. Beacon is licensed under a combination of the GPL v2 license and the 
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Stanford University FOSS License Exception v1.0. Today, Beacon is considered 

inactive. 

Beacon’s basic architectural component is the bundle. Bundles are jar files that may 

contain metadata, java classes, resources and others. Bundles share their resources, 

consume other packages, extend other bundles and run code. This architectural 

approach, makes Beacon a modular and configurable implementation since code 

bundles and are independent and can be installed at startup or at runtime. Beacon is 

provided with all the basic code bundles, such as OpenFlow OpenFlowJ (OF 1.0 

Protocol) for the OpenFlow protocol, bundles for packet encoding and decoding 

(Ethernet, ARP, IPv4, LLDP, TCP, UDP), bundles for basic switch operations (Core, 

Learning Switch, Hub, 28 Device Manager) as well as topology and Layer 2 Shortest 

Path Routing clusters. 

To maximize code re-use and facilitate development, Beacon leverages multiple 

libraries. The most significant library is Spring. Two main components of Spring are 

used in Beacon: the Inversion of Control (IoC) container, and the Web framework. 

Beacon uses Spring’s IoC framework for wiring within and between applications. 

Spring’s Web framework is used to map Web and REST requests to simple method 

calls, and to perform auto conversion of request and response data types to and from 

Java objects. IoC frameworks allow developers to list in an XML file or as Java 

annotations, which objects to create, how they are wired together, and then provide 

methods to retrieve the resulting objects [34]. As mentioned above Beacon, includes 

also the OpenFlowJ library for working with OpenFlow messages.  

Beacon’s API is designed to be simple and to impose no restrictions as far as 

available Java constructs, such as threads, timers, sockets, etc. are concerned. The API 

for interacting with OpenFlow switches is event based.  

Beacon supports both event-based and threaded operation. It uses a static approach 

in which a fixed number of switches are assigned to a worker thread. Worker threads 

use static packet batching to serve the requests from the connected switches [39]. Once 

the packets are processed and ready to be sent, Beacon in its default mode uses write 

coalescing and allows only one write per I/O select loop to reduce the overhead of 

socket system calls for each individual OpenFlow message. Alternatively, an 

immediate mode can be enabled in which the controller attempts a socket write for 

every outgoing OpenFlow message waiting to be written to the switch to reduce per-
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packet latency. Static partitioning and input batching improve its throughput in the 

default mode. 

 

4.8 NOX 
 

As already mentioned in paragraph 3.1, NOX was the first SDN controller. It was 

initially developed by Nicira Networks and was the first to support OpenFlow protocol. 

It was given to the research community in 2009 and has been the basis for many 

research projects on SDN. It was subsequently extended and supported via On.Lab 

activity at Stanford University with major contribution from the University of 

California, Berkeley. Some popular NOX applications are SANE (an approach to 

represent the network as a file system) and Ethane. Today NOX is considered inactive. 

Different versions of NOX have been introduced during these years. These are new 

NOX, NOX-MT and POX. New NOX only supports C++. It has fewer network 

applications compared to NOX, but is much faster and has a much cleaner codebase. 

NOX-MT, introduced in [2] is a slightly modified version of the NOX controller that 

uses optimization techniques to introduce multi-threaded processing and to improve the 

rate and response time of NOX. These optimization techniques include I/O batching to 

minimize the overhead of I/O and others. POX is the newer, Python-based version of 

NOX. The idea behind its development was to return NOX to its C++ roots and develop 

a separate Python-based platform. It also has a Python OpenFlow interface, reusable 

sample components for path selection, topology discovery, and others. The primary 

target of POX is research. Since many of the research projects are short-lived by nature, 

the focus of the developers of POX is on good interfaces rather than maintaining a stable 

API [11]. Generally, the NOX controller provides a full OpenFlow API using C ++ and 

Python languages, uses asynchronous inputs / outputs (I/O) and is geared to operating 

on Linux systems, Ubuntu and Debian. 

NOX is used both as a stand-alone controller and as a component-based framework 

for developing SDN applications. It is built on an event-based programming model and 

adopts a simple model of programming interfaces that revolves around three pillars: 

events, namespace, and network view. Events may be generated either directly by 

OpenFlow messages or by NOX applications a result of processing low-level events or 

other application-generated events [63]. As far as namespaces and the network view are 
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concerned, NOX consists of number of basic applications that construct the network 

view and maintain a high-level namespace that can be used by other applications. These 

applications are responsible for functionalities such as user and host authentication. The 

inclusion of high-level names and their bindings in the network view allows any 

application to convert a high-level name into low-level addresses, allowing applications 

to be written in a topology independent manner. To perform such conversions, high-

level declarations can be “compiled” against the network view to produce low-level 

lookup functions that are enforced per-packet [63]. This architecture allows the writing 

of applications for NOX regardless of the topology and form of the underlying network. 

Due to the fact that the network database must be consistent and available in all the 

processes of the controller, records and write-offs from it bring some cost to the 

controller's speed and performance. Thus, applications in NOX need to register in the 

network database only when a change in the network is detected and not for every 

received package from the application. In the case of NOX, as well as computer 

systems, a malicious application, in terms of access to the database, can lead to a serious 

downgrade of the overall performance of the network.  

Large-scale networks have a very variable character and are not static, unlike home 

networks. Flows may be recorded and deleted by the switches, users may enter or leave 

the network, the various links may fail or be reconnected, and devices may be added or 

removed from the network. An event represents a low-level or high-level event in the 

network. Typically, the event only provides the information. Information process is 

deferred to handlers. Many events roughly correlate to something which happens on the 

network that may be of interest to a NOX component. These components, typically, 

consist of a set of event handlers. NOX events can be broadly classified as core events 

and application events (do not apply for all NOX versions). Core events map directly 

to OpenFlow messages received by controlled switches. In addition to core events, 

components themselves may define and throw higher level events (application events), 

which may be handled by any other events. Though NOX does not contain any such 

application events, considering it has a minimal set of applications, NOX classic has 

various events such as host event and flow in event by authenticator application 

and link event by the discovery application. 

NOX mainly provides support modules specific to OpenFlow. The NOX core 

provides helper methods and APIs for interacting with OpenFlow switches, including 

a connection handler and an event engine. Additional components are available, 
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including host tracking, routing, topology (LLDP), and a Python interface implemented 

as a wrapper for the component API. Programmatic interfaces also exist for control over 

the network and high level services.  

 

 

Figure 19: NOX Architecture Diagram 

 

4.9 Summary 
 

As a last step, a summary table presenting the basic features of the above described 

open source controllers is provided. The chosen criteria concern southbound and 

northbound communication, OpenFlow and OpenStack support, programming 

language and others.  

 

• As can be observed, most controllers have a Web based GUI. 

• Most controllers are centralized and support multi-threading. 

• Most of the controllers under consideration are implemented in Java, due to the 

fact that it may be used across all platforms and architectures and that it supports 

memory management. 

• As expected, no specific protocol is supported as far as Northbound interface is 

concerned. Only the most recent implementation support REST API. ODL 

presents multiple interfaces, such as, the Yang interface and supports Group 

Based Policies that can be accessed by a REST API. On the other hand, ONOS 

presents an Intent Framework with Graphical User Interface (GUI) and a REST 

API, among others.  
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• All controllers support OpenFlow. However, it should be noted that especially 

not active controllers (i.e. NOX) support only specific versions of OpenFlow. 

• As far as other southbound protocols are concerned, ODL is the controller which 

is compatible with the widest variety of protocols. 

 

 

Table 4: Open Source Controllers Summary Table 
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5. Controller Efficiency 

 

As concluded from the preceding analysis, there are currently several controllers 

created by different vendors, universities and research groups that aim at fulfilling 

SDN’s advantages such as reduced complexity, high performance, security and others. 

In some cases, controllers are under continuous development that result in different 

controller versions. Due to the above and the importance of the controller within the 

SDN architecture, the need to assess and benchmark controllers against different 

efficiency indicators has arisen. Controller efficiency is a term used to refer to the 

different parameters such as performance, scalability, reliability and security that 

characterize a controller. Almost all existing studies focus on one or more of these 

parameters. For example, in different studies performance is defined by various metrics, 

latency, throughput, etc. Similarly, there are various metrics used in existing works 

defining scalability and security. Comparison is performed by using several methods 

and tools such as controller benchmarking, which is a commonly used procedure for 

the performance analysis of SDN controllers. 

The current chapter elaborates on the main attributes of controller efficiency: 

performance, scalability and security. Their basic principles are presented along with 

respective research efforts.  

 

5.1 Performance 
 

Performance is the most commonly tested attribute of an SDN controller. It is related 

to flow establishment (or set up) time. This is the process of determining the action a 

switch should perform for a specific flow of packets. The above process might be a 

bottleneck if we take into consideration that controllers need to handle many flows 

initiated from many network elements. Therefore, the number of flow setups per second 

an SDN controller can support is important. The most common performance metrics 

for an SDN controller in the literature are throughput and latency. Throughput is the 

number of transactions per second that an application can handle. There are different 

forms of measuring this parameter such as bits per second or packets per second. 

Latency is the time required for a packet to arrive at its destination through the network. 

Latency may be measured either using the time needed for a packet to reach its 
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destination or the time round-trip time. The latter is the most commonly used. The goal 

is to obtain maximum throughput and minimum latency. 

In case of SDN and particularly controllers, the above metrics are influenced by 

many factors. For example, the number of controllers used to handle an amount of 

traffic, the processing power of the switches that are attached to the controller, the I/O 

performance of the controller affect performance. Another important factor is the 

controller’s operating mode, which can be set at proactive or reactive. In the first case 

flow tables are prepopulated. Therefore, there is no setup delay and no limit on the 

number of flows per second that the controller can support. In the case of the reactive 

mode, this processes flows that do not match to a specific flow table entry. In this case 

delays are expected.  

Understanding the performance of the SDN controller is a requirement for its 

implementation in production networks. As already mentioned, many existing studies 

focus on the characteristics of controller performance. In most cases simulation and 

experimentation are used as performance evaluation techniques. There are also studies  

that have used analytical modeling to conclude whether one or more controllers are 

enough to ensure high performance.  

Currently, controller vendors implement several techniques to handle performance 

issues since there is a need for the controller to be able to support different loads in 

different environments. However, performance should not be achieved at the expense 

of other capabilities, such as security or modularity.  

 

5.1.1 Benchmarking 

 

As already mentioned, benchmarking is a commonly used procedure for the 

performance analysis of SDN controllers. In general, benchmarking is defined as the 

act of running a computer program or other operations, in order to assess the 

performance of an object. It is used in both hardware and software. In the context of 

SDN controllers, benchmarking has been used from researchers to evaluate controller’s 

performance.  

The most popular OpenFlow controller benchmark is Cbench that was introduced 

by R. Sherwood et al [56]. It is a program for testing OpenFlow controllers by 

generating events for new flows. In more detail, Cbench emulates several switches 

which connect to a controller and send packet-in messages. It supports latency and 

https://en.wikipedia.org/wiki/Computer_program


A Qualitative Study of SDN Controllers 

70 
 

throughput modes. Latency mode measures the OpenFlow controller’s request 

processing time under low-load conditions. In latency mode, each switch maintains 

exactly one outstanding new flow request, waiting for a response before soliciting the 

next request. In throughput mode, each switch maintains as many requests as buffering 

will allow. Thus, throughput mode measures the maximum flow setup rate that a 

controller can maintain. Cbench has been reused or in some cases enhanced by 

researchers to identify performance improvements for OpenFlow controllers. 

According to [56], conclusions may be based on different environment and system 

configurations (i.e. number of forwarding devices, network topology, network 

workload, type of equipment). 

Except for Cbench, other frameworks have been used to facilitate the evaluation of 

performance aspects of controllers. Examples are Hcprobe and EstiNet. EstiNet, 

introduced in [6], simulates a network, where each host uses the real-world Linux 

operating system. It supports two modes. In simulation mode, an open source 

OpenFlow controller can directly run on a node in the simulated network to control 

switches. In emulation mode, the controller application can run on an external machine,  

different from the machine used to simulate OpenFlow switches. EstiNet can accurately 

simulate the properties of the links that connect simulated OpenFlow switches. These 

properties include link bandwidth, link delay, link downtime, medium access control 

and others. Hcprobe, introduced in [1], is written in Haskell and emulates OpenFlow 

switches and hosts, which are connected to a controller. Its main features include packet 

generation, an API for custom tests design and the introduction of a domain-specific 

language that is used for creating tests. 

 

5.1.2 Related Work 

 

Most comparative studies regarding SDN controllers refer to performance. Most of 

them use Cbench or other benchmarking tools to assess metrics related to throughput 

and latency. In most cases, popular OpenFlow controllers have been chosen since they 

are open-source and helpful documentation exists. In the following paragraphs, a 

summary of related work may be found. What should be noted is that in some cases in 

the literature, performance and scalability are considered identical. Therefore, some of 

the below experiments refer also to scalability, that is going to be further analyzed in 

the following paragraph. 
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In [46] the performance of the SDN controllers POX, Ryu, ONOS and OpenDaylight 

has been measured using the Mininet tool. Mininet is a network tool which creates a 

network of virtual hosts, switches, controllers, and links. Mininet hosts run standard 

Linux network software, and its switches support OpenFlow for highly flexible custom 

routing and SDN. In this case performance was indicated by the Round Trip Time 

(RTT) of ICMP packets between two hosts. This refers to the interval from the moment 

a message is dispatched from the switch to the controller until the corresponding 

message is received by the switch. A tree topology consisting of 4 layers of Open 

Virtual switches and 16 hosts was used. Two modes of switches were used: Hub mode 

(every packet is flooded to all ports), and L2 Switching mode. In the latter case, the 

SDN controller when receiving a packet, associates the source MAC address with the 

switch port from which the packet arrived. In both modes, performance tests were 

conducted using the ping and iperf (measures the maximum network throughput a 

server can handle) commands between specified nodes. The main conclusions regard 

both the type of topology and the type of controller used each time. In hub mode, RTT 

differentiations among controllers are minor due to the rather simple topology. In 

switch mode, the minimum RTΤ was observed for ONOS while the maximum for POX. 

ONOS performance has also exceeded the other controllers in the case of the iperf tests. 

In [39] the performance of NOX, Beacon, Maestro and Floodlight was measured in 

terms of traffic handling. Firstly, 32 switches (100.000 MAC addresses per switch) that 

sent packet to a controller were simulated. The maximum throughput in this case was 

exhibited by Beacon due to its partitioning and batching technique. Maestro’s 

throughput was lower since it employs adaptive-batching technique and improves its 

latency by compromising its throughput performance. Floodlight had the lowest 

performance. As a next step, performance was measured by simulating various numbers 

of switches. In this case, decreasing performance as the number of switches increased 

was observed. Beacon had again the best performance because of its static switch 

partitioning, packet batching technique and low synchronization overhead. To measure 

latency, a constant number of threads was used. In this case, Maestro had the best 

performance due to its workload adaptive batching technique that dynamically changes 

the batch sizes. NOX-MT, Beacon and Floodlight showed a degradation in performance 

compared to Maestro because of their static packet batching design. Based on their 

findings, writers propose that controllers designed for high throughput should use static 

switch partitioning and packet batching. Moreover, controllers designed for delay-
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sensitive control plane applications should use workload adaptive packet batching and 

task batching to reduce per-packet latencies. Finally, to further improve latency, 

controllers should send each outgoing control message individually.  

In [45] ONOS, Floodlight, ODL, POX and RYU are compared in terms of 

throughput and latency. Throughput was measured by usinh a varied number of 

switches with a fixed number of hosts. Then a varied number of hosts was used. In this 

case, ODL achieved the highest performance. It also had the most variation regarding 

the increase of the number of switches, while the other three controllers achieved 

similar results around the maximum value. In general, the increase in the number of 

hosts had close to no impact in the number of responses. Finally, what is also pointed 

out is that in case of ODL and ONOS, some tests returned a considerable amount of 

failed tests. Latency was also measured in a similar way. On the one hand one switch 

with a fixed number of hosts was simulated. On the other a varying number of switches 

was used. When the number of switches increased, ODL clearly achieved better results 

compared to the other three controllers. In general, Ryu and ODL stood out, followed 

closely by ONOS. On the other hand, POX showed higher latency. In case of switch 

scalability, ODL achieved the best results when emulating four or more switches while 

the other controllers had a similar performance, despite the high rate of flows per second 

by Ryu for a lower number of switches. Finally, regarding switch scalability throughput 

tests, ODL clearly achieved better rates than any other controller tested while POX 

placed second. 

In [23] the aim is to evaluate NOX, Floodlight, POX and Trema controllers in both 

reactive and proactive mode. As already mentioned in this thesis, in proactive mode the 

path from source to destination is pre-defined and there is no need for the controller to 

build it upon switch triggering. A real and a simulation network (through Mininet) are 

used for testing. A varying number of switches has been created to test controller 

performance. As expected, all controllers had better performance (reduced with 

increasing number of switches) when running in proactive mode. The improvement is 

due to the fact that a proactive controller receives less request messages from switch 

because the path is already set. However, it should be noted that the proactive approach 

requires the controller to know the traffic flows in advance to configure the paths before 

it is used. The reactive approach reduces controller performance but requires less 

configuration effort.  
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 In [26] Floodlight and OpenDaylight controllers are compared in terms of delay and 

loss in different topologies (single topology, linear, tree) and network loads (zero, half 

of the bandwidth, all the bandwidth. The results showed that OpenDaylight outperforms 

Floodlight in low loaded networks and for tree topologies in mid-loaded networks in 

terms of latency. Maximum latencies in all three topologies belong to Floodlight, but 

there is no significant difference between the results for minimum latency. It is 

noticeable that the maximum latency in Floodlight is much more than in OpenDaylight. 

This means that Floodlight needs more time to find the route and send a decision for 

newly flows. Networks that use Floodlight as their controller have more latency while 

the traffic is low. For mid-loaded networks, in single and linear topologies, there is no 

difference in the latency results for Floodlight and OpenDaylight. 

In [22] NOX, Maestro, Floodlight, Beacon are under evaluation. The authors focus 

in a different aspect of performance, which concerns datacenters and the way 

controllers are implemented on multi-core processors. These are compared to many-

core processors, where many simpler cores are used. Having this in mind, throughput, 

latency and performance per Watt (through respective tools) are measured. What should 

be noted in this case is that the controller responds to packet-in messages reactively. 

Their main conclusion is that the performance of existing controllers does not truly 

leverage the concurrency level of modern machines. The performance results obtained 

on the many-core platform represent a lower portion of network capacity than on the 

multi-core platform. As far as power consumption is concerned, measurements indicate 

that controllers also fail in exploiting the energy savings of multi-core processors.  

In [1] NOX, POX, Beacon, Floodlight, MUL, Maestro and Ryu are examined in 

terms of throughput and latency. Throughput is measured with varying switches, hosts 

and CPUs. It should be highlighted that the performance of POX and Ryu does not 

depend on the number of switches, since they do not support multi-threading. For multi-

threaded controllers, adding more switches leads to better utilization of available CPU 

cores, so their throughput increases until the number of connected switches becomes 

larger than the number of cores. The results of performance tests showed that Beacon 

controller achieved and had a potential for further throughput scalability when the 

number of CPU cores increased. The scalability of other multi-threaded controllers was 

limited by 4-8 CPU cores. Another conclusion was that the number of hosts in the 

network was irrelevant. Specifically, the average response time of the controllers 

demonstrated insignificant correlation with the number of connected hosts. The average 
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throughput achieved with different number of switches influenced the performance of 

most of the controllers. This was caused by the specific details of the Learning Switch 

application implementation, namely, the implementation of its lookup table. Maestro’s 

scalability is limited to 8 cores, as the controller does not run with more than 8 threads. 

The writers conclude that the difference in throughput scalability between 

multithreaded controllers depends on two major factors: the first one is the algorithm 

for distributing incoming messages between threads, and the second one is the 

mechanism or the libraries used for network interaction. Beacon shows the best 

scalability. NOX, MuL and Beacon pin each switch connection to a certain thread. This 

strategy performs well when all switches send approximately an equal number of 

requests per second. Maestro distributes incoming packets using the round-robin 

algorithm, so this approach is expected to show better results with an unbalanced load. 

Due to the round-robin packets distribution algorithm, Maestro shows better results on 

a small number of switches, but the drawback of this approach is that its performance 

decreases when many switches (256) is connected. Floodlight relies on the Netty 

library, which also associates each new connection with a certain thread. To measure 

latency a single switch is used. The switch propagates requests to the controller only 

after a reply to a previous message has been received. The smallest latency was 

demonstrated by the MuL and Beacon controllers, while the largest latency is typical 

of python-based controller POX. The minimum response time was observed in the case 

of MUL and Beacon 

In [4] the tests were conducted for these controllers: ONOX, NOX, Beacon, Maestro, 

Ryu, Libfluid_Raw, POX, MuL, Floodlight, IRIS, Libfluid_Msg and ODL. 

Performance concerned throughout and latency with a varying number of switches and 

threads bound to the controller instance. The results showed that the controllers coded 

in the C language offered the highest performance (Mul, Libfluid_msg) and the next 

best performance was offered by the Java coded controllers (Beacon, Iris and Maestro). 

Furthermore, in latency mode, Maestro, using the adaptive batching mode, gave the 

best latency results. In addition, it was noted that controllers coded in C and Java offer 

higher performance when varying the number of threads. However, POX, coded in 

Python, does not show any significant difference when using multithreading because 

Python’s support of multithreading is not very efficient.  
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5.2 Scalability 
 

Scalability is one of the major concerns for both traditional networks and SDN. 

Scalability, as a network property, is generally difficult to explain and in some cases it 

is necessary to define the specific requirements to conclude on a system’s scalability. 

Generally, scalability is the capability of a network, or process to handle a growing 

amount of work, or its potential to be enlarged to accommodate that growth. The 

traditional LAN networks that form a multi-tier architecture do not scale in an optimal 

way, especially when it comes to east-west traffic. In the case of SDN, scalability 

concerns the decoupling of the control and data planes. It is obvious that controller 

scalability is directly related to their performance. The changes in throughput and 

latency when adding more switches and hosts to the network or adding more CPU cores 

to the server where the controller runs define the scalability of the controller.  

An SDN enables IT organizations to move to a scale-out model of networking 

whereby they add networking functionality when needed, and the SDN controller 

enables them to manage the networking functionality as if it was one device. In terms 

of the SDN controller, this needs to effectively scale to control extra devices and meet 

the demands of a distributed environment. There are several factors affecting controller 

scalability. One of them is the number of switches that the controller can support. 

Another is the fact that network broadcast overhead will limit the scalability of the 

solutions implemented. Moreover, controller scalability may be limited by the 

proliferation of flow table entries. The controller architecture should also allow for 

horizontal scaling in clustered and cloud environments. Finally, another aspect of 

scalability is the ability of the SDN controller to create an SDN that can span multiple 

sites. This capability enables the movement of VMs and virtual storage between sites. 

Run-time extensibility is also needed to avoid the lengthy release cycle of legacy 

systems. In terms of expandability, the controller architecture must allow for plugins to 

be developed independently of each other and of the controller infrastructure, and it 

must support short system integration times. For example, in cases of open source 

controllers (i.e. ODL), there can be many active and proposed projects concurrently. 

These projects need to be autonomous, since they and are being developed by 

independent teams, with little coordination between them.  
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5.2.1 Related Work 

 

In [12] solutions regarding SDN scalability are proposed. Most of the research 

efforts addressing scaling limitations of SDN can be classified in three categories: data 

plane, control plane, and hybrid. While targeting the data plane, proposals such as 

DevoFlow and Software-Defined Counters (SDC) reduce the overhead of the control 

plane by delegating some work to the forwarding devices. In terms of controller 

solutions, DIFANE, Onix, HyperFlow, Kandoo, and others are mentioned. These are 

considered efforts for designing and deploying high performance controllers since 

techniques such as buffering, pipelining and parallelism are used. Also related to 

scalability, the notion of elasticity in SDN controllers is mentioned. Elastic approaches 

refer to the dynamic change of the number of controllers and their locations based on 

traffic requirements. Finally, hybrid solutions that aim at splitting scalability between 

controllers and network elements are proposed. In these cases, authoritative switches 

are placed between controllers and network elements. 

In [108] emphasis is given on the modelling of scalability and a metric is proposed 

to quantify scalability. Three control plane structures (hierarchical, centralized, 

decentralized) are studied by implementing numerical experiments. It is concluded that 

the scalability of hierarchical and decentralized structures outweighs the others. 

 

5.3 Security 
 

Today, traditional networks are considered vulnerable in terms of security. Many 

areas such as infrastructure, software and network protocols may be affected by external 

intrusions. Security issues multiply due to growth of Internet throughput, to mobile 

networking development and others. Thus, network solutions have become more 

complex. Malfunctions in these areas result to the violation of basic security principles, 

confidentiality, integrity and availability. In thecase of SDN solutions, despite proven 

advantages in areas such as performance, modularity and programmability, security is 

currently an area where more research and improvements are needed. According to 

[12], there are many areas in SDN that are prone to security incidents. Some of them 

are: faked traffic flows in the data plane, which can be used to attack forwarding devices 

and controllers, vulnerabilities of network devices that may consequently affect the 

whole network, attacks on the control plane and network applications that could re-
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program the entire network and, finally, attacks in administrative stations. Researches 

have shown that SDN networks are subject to a variety of security problems such as 

spoofing, tampering, denial of service and others.  

Due to the centralized design of SDN, a secure controller would result in the security 

of a whole network. The controller is considered the main component of SDN, 

providing multiple levels of access to network users, applications, and devices based 

on requirements. In addition, there are multiple critical data structures or data stores 

comprised by the controller. These data stores may include topology information, user 

details, access control, and policy information. For the above reasons, the controller 

remains a potential high value target of the security attackers. Initially, the fact that a 

centralized controller could end up to be a single point of failure was the main concern 

in terms of security and reliability. However, with the evolution of SDN, the 

vulnerability of the centralized controller is no longer the main security issue. 

Controllers have a set of processes which implement and perform important networking 

functions (i.e. topology management, load balancing, authentication mechanism, access 

control, etc.). All these may be affected from a security incident. Other issues of concern 

are the integration with network applications policy conflict resolution between 

multiple applications in the SDN, and the complexity of multiple controller 

deployments [12]. Moreover, communication channels between a switch and a 

controller or between an application and a controller are prone to incidents.  

To sum up, security for an SDN controller may be translated into several 

requirements. Firstly, encryption of communications is expected. Moreover, to provide 

security to the network, an SDN controller must be able to support authentication, 

authorization and other types of administrative controls. Multi-tenant isolation is 

another example of security. This is the capability of the controller to ensure that each 

tenant that is sharing the infrastructure has complete isolation from all the other tenants. 

Finally, SDN controllers need the ability to respond to malicious attacks (i.e. Denial of 

Service). This could be achieved with a modular structure in which individual modules 

are responsible for certain functionality and the main process is offloaded. However, in 

designs where the core process of a controller acts as a single monolithic module, it 

becomes a bottleneck, and if not handled properly, may lead to a DoS attack. This might 

be achieved by being able to both rate-limit the control communications and to alert at 

a real-time the network administrators regarding the event 
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  Since no controller implements all the security features, [48] recommends a few best 

practices which we think are necessary for controller security. These are isolation of 

the user process, monitoring of resources, intrusion detection system, secure 

communication channel (recent versions of TLS should be used), use of safe mode or 

partial restart (for recovery purposes) and conflict resolver. Monitoring of resources 

refers to both Northbound and Southbound interfaces and is proposed to pushed on to 

data path for an earlier detection. According to [48], monitoring could be extended to a 

system, which could monitor malicious traffic or system upon notified by a monitoring 

agent and neutralize the same upon detecting the anomaly. A conflict resolver is 

necessary for a system if it participates in a multiple-domain or multiple-controller 

network. There could be a conflict of trust between switches, domains, and controllers. 

Currently, ODL and ONOS have a flow conflict resolver based on the user role. If there 

is a flow conflict between two users, then a user with higher privilege overrides the 

other change. However, this needs to be further extended to controller level conflicts.  

There is no single SDN controller that currently delivers security, robustness, and 

resilience in parallel. [47] By secure, robust, and resilient, it is meant that the controller 

is designed to reduce the risk of intrusion/attack at the network control layer, can 

withstand errors in control layer logic, and can recover quickly from disruption and 

maintain an acceptable level of service in the face of faults.  

 

5.3.1 Related Work 

 

Although initially, the security domain was not analyzed in depth, several 

comparative studies have been published during the last years. Different methodologies 

are used for this purpose. One of the most popular ones is the STRIDE method 

(Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and 

Elevation of Privilege). This is a threat classification model developed by Microsoft, 

used to help reason and find threats related to an information system. As in the case of 

performance, OpenFlow controllers have been chosen since they are open-source and 

helpful documentation exists. In the following paragraphs a summary of related work 

may be found. 

In [1], one of the first attempts to review the security of SDN controllers has been 

made. NOX, POX, Beacon, Floodlight, MUL, Maestro and Ryu were taken into 

consideration. Controller security was examined by using malformed OpenFlow 
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messages that are sent to the controller to test its reaction and tendency to failure. The 

expected behavior for the controller when receiving a malformed message is to ignore 

it and remove it from the incoming queue, without affecting other messages. If the 

controller processes the malformed message without indicating an error, this could 

possibly cause incorrect network operation. Malformed OpenFlow header and body 

messages have been generated for this purpose. In the case of the header, tests with 

invalid packet length, OpenFlow version and message type were conducted. In the case 

of the body, protocol type and port status were modified. To examine how the controller 

parses the queue of incoming messages, the field denoting packet length was modified 

to depict different values. Ryu was the only controller whose operation was not affected 

in this case. In case of invalid OpenFlow version, POX, MuL and Ryu closed the 

connection with the switch upon receiving a message with invalid protocol version. 

Other controllers process messages regardless of an invalid protocol version. Similar 

behavior was observed in the case of an incorrect message type. In general, these tests 

highlighted several possible security vulnerabilities of the tested controllers. 

In [47] a detailed analysis of ONOS, ODL (Helium version), Rosemary, Ryu and 

SE-Floodlight (Security Enhanced version) is attempted. Based on documentation and 

code verification, security attributes (figure) have been divided into three categories: 

Secure controller design, Controller Interfaces and Security Services.  

 

 

Figure 1: [79] Security Attributes of SDN controllers 

 

Control process isolation refers to the ability of separating the application processes 

running at the controller to provide logical segmentation, to support authentication of 

individual applications and to apply levels of authorization. As demonstrated in the 

figure, Rosemary and SE-Floodlight, cover the process isolation requirement. In 
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Rosemary each application is run within an independent instance of Rosemary 

effectively sandboxing the application to protect the control layer from any 

vulnerability or malicious operation of the application. SE-Floodlight uses the 

northbound API to separate the application and control processes. Privilege-based OF 

operations are enforced with privileges defined by Role and Group Access Control Lists 

and credential files for internal Java-based Floodlight modules. Groups define 

permissible OF operations. On the other hand, ONOS and ODL, which are based on the 

OSGi framework, are not able to provide protection at the level of the control processes 

that support the application, since the respective attribute is not part of Apache Karaf. 

Of the five controllers analyzed in this work, only ONOS and SE-Floodlight implement 

policy conflict resolution. In ONOS, the application describes its network requirements 

in the form of “intents” and ONOS translates these intents with respect to the network 

configuration. With multiple controller instances, the provision of multiple application 

instances must also be considered. None of the studied controllers provides a mature 

solution for handling network state coordination across multiple app instances. Finally, 

as far as security storage is concerned, after reviewing the controllers, writers concluded 

that standard security practices are applied e.g. default permissions on log files to allow 

owner read/write privilege but read-only to others. Additional measures are applied to 

the individual controllers.  

As far as controller interfaces are concerned and taking into consideration that the 

southbound interface (mentioned as D-CPI) is the only standardized interface, writers 

conclude that ODL, SE-Floodlight and Ryu are compatible with security requirements. 

The criterion that drove the above conclusion was SSL/TSL support. 

In addition to protecting the control framework and interfaces, security services have 

been also evaluated. An Intrusion Detection System/Intrusion Prevention System 

(IDS/IPS) is provided in cases of ODL, Ryu and Floodlight. Relevant components, 

(Defense4All, Snort, BotHunter and Sec.Actuator) are used for this purpose. 

Defense4All is an application for detecting and mitigating DDoS attacks. The 

application communicates with the OpenDaylight Controller via the north-bound REST 

API to monitor the behavior of protected traffic and divert attack traffic to selected 

Attack Mitigation Systems (AMSs). Snort installs a flow to mirror incoming packets to 

the Snort network interface. A set of custom rules are generated and a packet matching 

a custom rule generates a Snort alert that generates an event alert in Ryu. The code can 

be extended for intrusion prevention. BotHunter monitors traffic to identify 
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communication patterns consistent with coordination-centric malware, BHResponder 

decides whether the identified asset should be quarantined from the network, and SDN 

Security Actuator links with SE-Floodlight to implement the quarantine i.e. generate 

OF rules to redirect suspicious traffic flows. Authentication, Authorization, and 

Accounting (AAA) are important aspects of the controller design, providing effective 

access control to users, applications, and resources. Although ONOS does not explicitly 

implement an AAA functions, the applications register with CoreService for a unique 

App ID to use ONOS services. The AAA project was launched in ODL mid-2014. The 

identity of users is authenticated, and user access to resources is authorized and 

recorded. The user is authenticated to the controller with a username/password 

combination and receives an access token so as to access protected resources on the 

controller. Access to specific resources is determined by the user role and permissions. 

Rosemary provides a similar AAA system in which applications are authorized to 

access specific controller resources. For privileged system calls, an application 

authorization module determines whether the application is authorized by investigating 

its signed key. In SE-Floodlight, authorization roles are assigned to applications during 

an application authentication procedure, which involves generation of a runtime 

credential to uniquely identify the application. The authorization role includes a set of 

associated permissions. The credential is added to each message produced by the 

application. Without the credential, the application will not run. All controllers have 

been identified as compliant with logging and auditing requirements. 

In [48] the STRIDE method is used to analyze the security levels of four individual 

controllers: ODL, ONOS, Ryu and Rosemary. As expected, the authors concluded that 

none of the controllers is completely secure from threats and free from vulnerabilities. 

It is noted that the secure modes which are available in some of the controllers are only 

optional. As far as the controllers under evaluation are concerned, ONOS is vulnerable 

to known security threats. The multi-threaded architecture of Ryu may lead in DoS 

because of a lack of authorization for the addition of flow rules and event consumption. 

Rosemary handles resource access in an effective manner with the help of a finely-

grained access control mechanism. Overall, ODL is recommended for the following 

reasons. The code is continuously checked for security vulnerabilities and improved by 

the security experts as it is an open-source project. Secondly, the modular structure of 

ODL has a performance benefit over other studied controllers. Finally, ODL has 

provided security mechanisms both for NBI and SBI including AAA and SNBI.  
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In [41], the behavior of POX and ODL controllers in case of Distributed Denial of 

Service (DDOS) attacks is analyzed. The Hping3 tool was used to simulate a DoS 

attack. Hping3 is a packet generator and analyzer for the TCP/IP protocol. The aim was 

to flood a controller with a bunch of packets using the Packet-In event. These packets 

were received in the switch with different IP addresses, which resulted in a missed flow 

that was automatically forwarded to a controller. In order to measure the effect of the 

attack, the bandwidth between the two hosts was measured. ODL proactively installs 

default flow tables in the data plane, but these flow tables cannot prevent flooded 

packets from reaching the controller. From our investigation, as the time for waiting for 

response from the server increases, it affects the bandwidth between the hosts. 

Additionally, th etime taken to receive a response was too large compared to the real 

time used in the iperf command. Using the l3_learning component in POX controller, 

no default flow table is installed by controller unless a controller learns about them 

when a Packet_In event is triggered. Results showed that as the number of flooding host 

attacks increases, a negative impact on the bandwidth between these hosts is seen. Low 

bandwidth was exhibited from the results on ODL and POX controller after launching 

a DoS attack. The authors suggest that these attacks may be prevented by implementing 

a packets rate limiter to prevent any traffic that isolates the SDN architecture. However, 

this should be implemented carefully, especially if a network consists of many hosts 

accessing the same server at a time. To avoid this, a flow aggregator may be used 

depending on the target host or application.  

In [44] the STRIDE method and vulnerability testing tools were used to evaluate 

security features of ODL controller. Vulnerability tools (i.e. NMAP, Nexpose) revealed 

a number of vulnerabilities, such as missing flags in case of some cookies, unencyrpted 

credentials, open oports and “smuggling attacks”.  
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6. Conclusions 

 

In this thesis, a number of SDN controllers and their capabilities have been studied. 

In the beginning of the thesis, a background study on SDN was made to show how this 

architecture can serve existing and future network requirements in terms of aspects such 

as programmability and flexibility. The rest of the thesis focused on SDN controllers. 

Firstly, the history, types, capabilities and main components of controllers have been 

described. Then a number of open source controllers were analyzed and compared in 

terms of their architecture components and basic features. Finally, emphasis was given 

to SDN controller efficiency its attributes (performance, scalability, security). Terms 

have been defined and relevant studies concerning open source controllers have been 

presented. Taking into consideration the above, the following conclusions can be 

drawn: 

 

• SDN is a concept that exists for about 20 years. However, only the last few years 

it has become prevalent in the network community. This is due to the increasing 

needs in terms of network traffic and programmability that have been driven by 

the development of other areas, such as mobile devices, network virtualization 

and others. 

• Due to that fact, that SDN concept is not considered mature enough and many 

areas have not been thoroughly researched. These refer to various areas of an 

SDN architecture such as the northbound interface, network security and others. 

• The controller is the main building block of SDN. Its necessity and importance 

has led to the introduction and continuous development of several 

implementations. These belong to both the open-source community and to 

commercial vendors. In some cases, vendors have made some of their 

implementations available to open-source community for it to contribute.  

• SDN controllers vary in many areas. On the one hand, this is considered positive 

since a lot of use cases and different requirements may be covered. On the other 

hand, proper controller selection is a multi-faceted problem that depends on the 

various factors. 
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• The analysis of some open source controllers has revealed that most of them are 

aligned as far as some basic features such as southbound support, multi-

threading and modularity are concerned.  

• Comparative analysis of northbound APIs is not comprehensive enough to 

provide significant insight. 

• The aforementioned controllers are also aligned regarding some basic 

architecture components. What differentiates them is the way these are 

implemented and the extra features each of them has. 

• Most of the research in controller capabilities is restricted to controller 

efficiency. This includes performance, security and scalability. Other 

parameters such as mobility and controller capacity have not been addressed to 

a large extent. 

• Existing research regarding controller efficiency is considered immature. 

Analysis of open-source controllers have been performed using different 

controller versions and experiment set ups. Therefore, such a comparison cannot 

lead to valid conclusions. 

• Most commercial controllers restrict their comparative analysis as far as their 

features are concerned and therefore, the way these are suitable to specific use 

cases cannot be analyzed within the scope of this thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A Qualitative Study of SDN Controllers 

85 
 

Bibliography 
 
[1] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, Ruslan Smeliansky, 

“Advanced study of SDN/Openflow controllers”, Conference: Proceedings of the 9th Central 

& Eastern European Software Engineering, 2013 

 

[2] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, Rob Sherwood “On 

Controller Performance in Software-Defined Networks”, 2012 

 

[3] Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, Kpatcha Bayarou, “Feature-based 

Comparison and Selection of Software Defined Networking (SDN) Controllers”, 

Conference: ICCSA, 2014 

 

[4] Ola Salman, Imad Elhajj, Ayman Kayssi, Ali Chehab, “SDN Controllers: A Comparative 

Study”, 2016 

 

[5] SDX Central, “The Future of Network Virtualization and SDN Controllers”, 

https://www.sdxcentral.com, 2016 

 

[6] Shie-Yuan Wang, Hung-Wei Chiu, Chih-Liang Chou, “Comparisons of SDN OpenFlow 

Controllers over EstiNet: Ryu vs. NOX”, ICN 2015: The Fourteenth International Conference 

on Networks, 2015 

 

[7] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, Wu Chou, “A roadmap for traffic 

engineering in SDN-OpenFlow networks”, Elsevier Computer Networks 71 (2014) 1–30 

 

[8] Brandon Heller, Rob Sherwood, Nick McKeown, “The Controller Placement Problem”, 

HotSDN’12, 2012 

 

[9] Hyojoon Kim, Nick Feamster, “Improving Network Management with Software Defined 

Networking”, IEEE Communications Magazine, 2013 

 

[10] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and 

Thierry Turletti, “A Survey of Software-Defined Networking: Past, Present, and Future of 

Programmable Networks”, Communications Surveys and Tutorials, IEEE Communications 

Society, Institute of Electrical and Electronics Engineers, 2014, 16 (3), pp.1617 - 1634 

 

[11] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve Rothenberg, 

Siamak Azodolmolky and Steve Uhlig, Member, “Software-Defined Networking: A 

Comprehensive Survey”, https://arxiv.org/abs/1406.0440, 2014 

 

[12] SDX, “SDN Controllers Report”, https://www.sdxcentral.com, 2015 

 

[13] Siamak Azodolmolky, “Software Defined Networking with Open Flow”, 2013 

 

[14] Verizon, “SDN-NFV Reference Architecture”, http://innovation.verizon.com, 2016 

 

https://www.sdxcentral.com/
https://arxiv.org/abs/1406.0440
https://www.sdxcentral.com/
http://innovation.verizon.com/


A Qualitative Study of SDN Controllers 

86 
 

[15] Pritesh Ranjan, Pankaj Pande, Ramesh Oswal, Zainab Qurani, Rajneeshkaur Bedi, “A 

Survey of Past, Present and Future of Software Defined Networking”, Volume 2, Issue 4, 

International Journal of Advance Research in Computer Science and Management Studies, 

2014 

 

[16] Andrei Bondkovskii, John Keeney, Sven van der Meer, Stefan Weber, “Qualitative 

Comparison of Open Source SDN Controllers”, 2016 

 

[17] Zuhran Khan Khattak, Muhammad Awais and Adnan Iqbal, “Performance Evaluation of 

OpenDaylight SDN Controller”, 2014 

 

[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, 

Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen 

Stuart and Amin Vahdat, “B4-Google”, SIGCOMM’13, August 12–16, 2013, Hong Kong, 

China 

 

[19] Bing Xiong, Kun Yang, Jinyuan Zhao, Wei Li, Keqin Li, “Performance evaluation of 

OpenFlow-based software-defined networks based on queueing model”, Elsevier Computer 

Networks 102 (2016) 172–185 

 

[20] Michael Jarschel, Frank Lehrieder, Zsolt Magyari, Rastin Pries, “A Flexible OpenFlow-

Controller Benchmark”, 1st European Workshop on Software Defined Networks, 2012 

 

[21] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, Shriram Krishnamurthi, 

“An API for Application Control of SDNs”, SIGCOMM’13, August 12–16, 2013, Hong Kong, 

China 

 

[22] Stephen Mallon, Vincent Gramoli, and Guillaume Jourjon, “Are Today’s SDN Controllers 

Ready for Primetime?”, https://arxiv.org/abs/1608.05140,  2016 

 

[23] Marcial P. Fernandez, “Evaluating OpenFlow Controller Paradigms”, ICN 2013 : The 

Twelfth International Conference on Networks, 2013 

 

[24] Guillermo Romero de Tejada Muntaner, “Evaluation of OpenFlow Controllers”, 2012 

 

[25] Pankaj Berdey, Matteo Gerolaz, Jonathan Harty, Yuta Higuchi, Masayoshi Kobayashi, 

Toshio Koide, Bob Lantzy, Brian O’Connory, Pavlin Radoslavovy, William Snowy, Guru 

Parulkary, “ONOS: Towards an Open, Distributed SDN OS”, HotSDN’14, August 22, 2014, 

Chicago, IL, USA 

 

[26] Shiva Rowshanrad, Vajihe Abdi and Mamijeh Keshtgari, “Performance Evaluation of 

SDN Controllers: FloodLight and OpenDaylight”, IIUM Engineering Journal, Vol. 17, No. 2, 

2016 

 

[27] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, Ramana Kompella, “Towards 

an Elastic Distributed SDN Controller”, HotSDN’13, August 16, 2013, Hong Kong, China 

 

[28] https://www.opendaylight.org 

https://arxiv.org/abs/1608.05140


A Qualitative Study of SDN Controllers 

87 
 

 

[29] http://zhengcai.github.io/maestro-platform 

 

[30] Zheng Cai, “Using and Programming in Maestro” 

 

[31] Eugen Borcoci, Radu Badea, Serban Georgica Obreja, Marius Vochin “On Multi-

Controller Placement Optimization”, ICN 2015: The Fourteenth International Conference on 

Networks,  2015 

 

[32] https://openflow.stanford.edu/display/Beacon/Home 

 

[33] David Erickson, “How Beacon works”, 2011 

 

[34] David Erickson, “The Beacon OpenFlow controller”, HotSDN’13, August 16, 2013, Hong 

Kong, China 

 

[35] Zheng Cai Alan L. Cox T. S. Eugene Ng, “Maestro A System for Scalable OpenFlow 

Control”, https://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf 

 

[36] https://en.wikipedia.org 

 

[38] https://thenewstack.io 

 

[39] Abhishek Rastogi, Abdul Bais, “Comparative Analysis of Software Defined Networking 

(SDN) Controllers – In Terms of Traffic Handling Capabilities”, Multi-Topic Conference 

(INMIC), 2016 19th International 

 

[40] Abhinandan S Prasad, David Koll, Xiaoming Fu, “On the Security of Software-Defined 

Networks”, Conference: EWSDN, At Bilbao Spain, 2015 

 

[41] Huseyin Polat, Onur Polat, “The Effects of DoS Attacks on ODL and POX SDN 

Controllers”, ICIT 2017 The 8th International Conference on Information Technology 
 

[42] Nguyen Tri-Hai, “Vulnerability Analysis of Controllers in SDN”, 

https://www.researchgate.net, 2017  

 

[43] Ruslan. L. Smeliansky “SDN is it a solution for network security?”, 

https://www.researchgate.net, 2013 

 

[44] Izzat Alsmadi, William Unger “Evaluating security of SDN controllers”, 

Conference: Software Defined Networking (SDN) for Scientific Networking Workshop, At 

Austin, 2015 

 

[45] Pedro Bispo, Daniel Corujo, Rui L. Aguiar “A Qualitative and Quantitative assessment of 

SDN controllers”, 20171nlemalional Young Engineers Forum (YEF~ECE), 2017 

 

http://zhengcai.github.io/maestro-platform
https://openflow.stanford.edu/display/Beacon/Home
https://en.wikipedia.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7828313
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7828313
https://www.researchgate.net/
https://www.researchgate.net/


A Qualitative Study of SDN Controllers 

88 
 

[46] Alexandru L. Stancu1, Simona Halunga1, Alexandru Vulpe1, George Suciu1, Octavian 

Fratu1, Eduard C. Popovici1 “A comparison between several SDN Controllers”, TELSIKS 

2015 conference 

 

[47] Sandra Scott-Hayward, “Design and deployment of secure, robust and resilient SDN 

controllers”,  Network Softwarization, 2015 1st IEEE Conference  

 

[48] Ramachandra Kamath Arbettu, Rahamatullah Khondoker, Kpatcha Bayarou, Frank 

Weber, “Security analysis of ODL, ONOS, Rosemary and Ryu SDN Controllers” 

 

[49] “SDxCentral: Future of Network Virtualization and SDN Controllers Report”, 

https://www.sdxcentral.com,  2016 

 

[50] Thomas Nadeau D., Ken Gray, “SDN Software Defined Networks”, 2013 

 

[51] Siddharth Valluvan, T. Manoranjitham, V.Nagarajan “A study of SDN Controllers”, 

International Journal of Pharmacy & Technology, 2016 

 

[52] Taimur Bakhshi, “State of the art and recent research in SDN”, Wireless 

Communications and Mobile Computing Volume 2017 Article ID 7191647 

 

[53] E. Haleplidis, K. Pentikousis, S. Denazis, J. Hadi Salim, D. Meyer, O. Koufopavlou 

“SDN Layers and Architecture Terminology”, Internet Research Task Force (IRTF), 2015 

 

[54] Paul Goransson, Chuck Black “Software Defined Networks, A Comprehensive 

Approach”, 2014 

 

[55] “OpenFlow Version Roadmap”, Ching-Hao, Chang and Dr. Ying-Dar Lin,2015 

 

[56] R. Sherwood, and K. Yap, “Cbench Controller Benchmarker”, 2011 

 

[57] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet 

Sharma, Sujata Banerjee, Nick McKeown, “ElasticTree: Saving Energy in Data Center 

Networks”, 7th USENIX conference on Networked systems design and implementation Pages 

17-17 

 

[58] Kok-Kiong Yap, Masayoshi Kobayashi, David Underhill, Srinivasan Seetharaman†, 

Peyman Kazemian and Nick McKeown, “The Stanford OpenRoads Deployment”, 

WiNTECH’09, 2009 

 

[59] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker 

“Modular SDN Programming with Pyretic”, https://www.cs.princeton.edu, 2013 

 

[60] https://wiki.onosproject.org 

 

[61] http://www.projectfloodlight.org 

 

[62] J.E. van der Merwe, S. Rooney, L. Leslie, “The Tempest-a practical framework for 

network programmability”, IEEE Network, Volume: 12, Issue: 3, May/Jun 1998 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sandra%20Scott-Hayward.QT.&newsearch=true
https://www.sdxcentral.com/
http://www.sciencedirect.com/science/article/pii/B9780124166752000048
http://www.sciencedirect.com/science/article/pii/B9780124166752000048
http://www.sciencedirect.com/science/book/9780124166752
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=65
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=15117


A Qualitative Study of SDN Controllers 

89 
 

 

 

 

 

 


