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ABSTRACT OF THE DISSERTATION

Incentives-Based Power Control in Wireless Networks of Autonomous Entities
with Various Degrees of Cooperation

Wireless networks have grown tremendously in recent years: wireless communications
are now available anytime, anywhere, and with varying degrees of Quality-of-Service (QoS).
More and more smartphones and tablets come into the market, making the dream for ubig-
uitous connectivity a reality. To continue this trend in the forthcoming fifth generation (5G)
era (and beyond), new communication paradigms are expected to arise and be exploited.
In particular, next generation multi-tier cellular networks (consisting of traditional cellular
networks, small cell networks, device-to-device networks, etc.) are expected to be the norm.
To ensure scalability, devices on these heterogeneous networks should be autonomous; this
means that they will be controlling their transmission parameters (notably, their radio chan-
nel and power level) rather than have them dictated by a centralized entity. Therefore, the
choices of each device will have a direct impact on the performance of (some of) the devices
with which they share the same portion of the spectrum, and the network as a whole.

Motivated by the above trends, the fundamental goal of this dissertation is to design
efficient distributed radio resource management methods for the smooth deployment of these
emerging wireless network architectures. We apply two of the most powerful resource allo-
cation methods: power control, .e., what transmission power a device should choose, and
channel access control, i.e., when to transmit. We study settings under a variety of practical
scenarios such as the coexistence of small cells and traditional macrocells with different QoS
targets, the channel access competition in device-to-device networks (where devices com-
municate directly without a Base Station or Access Point) and licensed spectrum sharing
scenarios (where operators share their spectrum, combining power control with bargaining
to improve their revenues).

We analyse these challenging settings under the prism of game theory, which is a
natural choice for modelling scenarios where players with conflicting interests interact with
each other. We formulate non-cooperative games where the devices are the players, focusing
on the solution concept of the Nash Equilibrium. We explore the existence and uniqueness
of Nash Equilibria, we devise distributed schemes that converge to them, and we study their
performance through analysis and simulations. In cases where the resulting Nash Equilibria
are suboptimal, meaning that the devices are not satisfied with their performance at these
points, we introduce bargaining as a means for creating incentives to the devices to change
their transmission parameters. Then, we propose schemes that are guaranteed to lead to

operating points more efficient than the Nash Equilibria obtained without bargaining.

Xlil



ITEPIAHVYH AIATPIBHY

PYYpion IoyYoc Exnounng Bdoel KivAtpwy o Aclppata Alxtua

Avtovouwy Oviothtwy pe Aldpopoug Baduoig Yuvepyaciog

To acOpuata dixtua avantiocovto pe paydaioug puluolc Ta tekeutaior ypovia: Ot
ACUPUATES ETLXOVWVIEC efvarl Bld€aIUES OTOUBATOTE %ol OTOTEDHTOTE, TAPEYOVTAS OLdpopa
eninedo motoTnTag unneeciog otoug yerotes. Ohoéva xal TEQLIOCOTEPES ECUTVES XIVNTEC GU-
oxeLég xadmg xar wxpol popnTol LTOAOYIOTES BIELGO0OLY GTNY AY0pPd, TEUYUNTOTOLWYTAS TO
OVELWO Tou amavToy ol utoloyile. Avoyxola cuvDxn Yo Vo oUVEYLOTEL aUTH 1) TdoT Xxaddg
00EVOVUE TPOSC TNV ETOYY TV OXTUWY ONG YEVLAC (%o Tépay AUTOV) elvou 1 UETECEMEN TV
ACUPUATOY TNAETIXOWOVLOXWY TeoTOTwWY. TTo cuyxexpéva, ta xuPehwTd dixTuo TOAAUTAGDY
eMMEdWY ToU TEPLAAUBAVOUY TOGO TIC Topadoslaxéc xUPELeS 0G0 xan wixpoxuléhes, dixTua
ETUXOVWYIOY CUOXEUNC TPOS GUGKELY| XAT. aVOEVETOL VoL €y ouv deomolovoa V€ar ta TpoceEy
yeovia. To eTepoyevr auTd BiXTUX ATOTEAOUVTOL UG AUTOVOUES OVIOTNTES OL OTOLES EAEYYOLY
xou amo@uoilouy HOVES TOUC YIo TIC TORUUETEOUS Aeltoupyioc Touc (Yior TopddELyUa, O TOLo
XOUPATL TOU QACUATOC XU UE oL Loy L Do sxnépq)ouv), avTl var eCapTOVTAL aAT6 TIC ATOPAGELS
xdmotog xevtphc ovtotnTac. To yeyovog autd GUVETAYETAL OTL Ol ETLAOYES UL ACUPUATNC
GUOXEUTS €Y 0LV JUEGO AVTIXTUTO TOGO OTIC EMLOOOELS XATOLWY (TouldytoToV) CUGKELGY (TOU
YENOWOTO0Y TO (810 XOUUATL TOU YACUATOSC) GO0 oL GTY) GUVORXT| amdB0oT TOU BLXTVUOL.

Me agetnpla Tic dvew cuviixeg, 0 YeUehmdng 6ToY0¢ TNS SdaxTopAC dlatelPrc el
VoL 1) GYEDLUGT] ATOBOTIXWY XATAVEUNUEVODY Gy NUdTwY Olayelpiong padlondpmwy Ue oTdyYo TNy
QPUOVIXY) CUVUTORET TWY CUCXEUWY TOU GUVUTHQYOUY OE AUTE T OVAOUOUEVOL TEOTUTA AOUE-
udtwy dxtiwy. Egoapuolovue 800 xhacowxés teyvinés dayeipione padtondpwv: Tr pdduion
oy Vog exnounic (power control), dnhady| ue ol 1oy ) TEENEL VoL UETABWOEL 1) GUOXEUT| XL THY
np6oPoon oto xavdht (channel access), Onhadh note va yetadooel. Meletolue wa oelpd and
TEOXTIXE GEVApLa TOU TEpthoWBAvouy (a) TV apuovixh cuvinapdr GUOXELWY TOL GUVBEOVTAL
UE Tapad0otoned dixTud XVNTHS TNAEPWVINS Xl CUCXELGY TOU GUVOEOVTOL UE ULXpOXUDENES, UE
oL 000 ALTE D) GUGAELWY VAL EYOLV BLAPOPETIXONS BIXTUAXOUE GTHYOUC, (B) o TEOBANUAL TOU
AVTAYWVIOUOU YLd TPOCBACT) GTO XAVAAL OE BIXTUN ETUXOVWYLOY CUGKEVHC TROC GUGXELT|, OTOU
Ol AUTOVOUES ACUPUITES GUOXEVES ETXOW®VOUY ameuieiog petald Toug, yweic TN UECONIPBN-
on tou ataduol Bdone ¥ xdmotou acvpudtou anueiov mpdoPBaong xat () cevdpia and xowou
YPiONS TOL ADEODOTNUEVOL YAGUATOS, GTA oTold oL TdEoY oL XVNTHS THAEQWVIG dev Eyouv
TNV ATOXAELOTIXY YEH|ON) OF TURUATA QAcUATOS Xt eQapuolouvy pldulon oy bog exTOUTAC UE
TEYVIXES DLATPAYUATEVOTS YLt VoL BEATIOGOLY Ta EG00E TOUG.

Avolboupe TIC TORATEVEL XATAGTAGE UTO To Tplopa Tne Vewplag mouyvieny, 1 omola

elvo Wiar XAaootnr| xot TETUYNUEVY) ETAOYT Yol TN LOVTEAOTOINGT GEVAPIWY OTOU Ol OVTOTNTES
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€)(OLV OYTIXQOUOUEVY GUUPELOVTO X0 OL GTRATNYIXES TNS LIS EYOLY JUECO AVTIXTUTO GTIC ETL-
060el TNg dhhng. Xpnoworolue T Un-cuvepyatixr Vewplo tonyviny Ue Toug maixteg va lvor
oL ACUPUITES OLUGKEVES xou eoTidlouue otny elpeat onueiny wopporiag xotd Nash, wo and
TIC XEVTPIXOTEPES €VVOlEC 0TY) Vewpla mouyviwy. Eetdlouvye tny Omapdn xon Tr LovadxoTnTa
TETOLWY OTUEIWY 1GOPPOTIAC XoL TEOTEVOUUE Uil GELRS ATh XATAVEUNUEVA OYHUNTA TOL GUYXAL-
YOUV G€ x34molo and autd. Emmiéov, anoTigolue T EMBOCE TwY oY NUATWY PECW VEWENTIXNC
AVIAUGTG XL EXTEVRY TPOCOUOLWOEWY. ME TEQITTWOELS TOUL oL loopponieg elvar utoPéhTioTeg,
UTO TNV €VVOL OTL Ol OGUPUATES CUOXEVES OEV EVOL EUYUPIOTNUEVES UE TIC ETOOOEIS TOUC,
ELOAYYOUUE TEYVIXEG OLUTEAUYUATEVONS YE OTHYO TN ONULOLEYIO XIVATPWY GTIC GUGXEVES Yid
VoL AAAGEOUY TEQUTERW TIC TUPAUETEOUS UETABOGNE Touc. ExueToadlheuduevol auTtéc TIc TEYVI-
A€, TEOTEIVOUUE XUTAVEUNUEVO OYAUATA XOL ATOOEYIOUUE OTL 00N YOUV O xUALTERY OTuEi

Aertoupyiog amd Tic wwoppotieg xatd Nash ywpelc autd.

Yuvelcpopes AlaTelBNg

O xevtpog 0Toy0¢ TN dLatplPric etvan 1) oyediaot, Ue yeron epyahelwy and T Vewpio
TOLY VWY, ATOdOTIXWY XATAVEUNUEVLY alyopliduwy phluiorg oylog extounhc xat TeocPBacng
OTO XAVAAL TOU ETMTEETOUY OTIC QUTOVOUES OVIOTNTES GUYYPOVWY ETEQOYEVRY ACUPUATWY Ol
XTUWVY VoL GUYUTEEE0LY AmOBOTIXG.

ITpo¢ v xatedYuvorn extifpwong autod Tou otoyou, oto Kepdhoo 2, tpoywpdue o
Hial EXTEVT| ETLOXOTNOT VEUEAWOWY TpooeYYioEwY Tng pliong oy bog EXTOUTG GE aGUEUITA
OlXTUA, XATNYOPLOTOLOVTUC XAl oLUYXpivovTag TIC oyetéc mpooeyyioe. Ta Kegpdhawo 3-6
AVTIOTOLYOUY GTOV TURHVA TNG EPELVAS UG, OTOU TEAYUATOTOLACUUE TIG 0xXOAOVIES XEVTOLXES

OUVEIGQOPEC:

o Y10 Kegdhowo 3, uoviehonotolue €va un-cuvepyatixd natyvio pOduiong oy dog extounic
o€ aoVPUATO OiXTL AUTOVOUWY OVIOTATWY, OTOU OL OVIOTNTES GTOYEVOLY VA TETOYOLY
HLOL EYYUNUEVT TOLOTNTA UTNEEGIAS Yol XAACE QWVS, YPNOHIOTOWWVTAS TOV TEplonuo
alyoprduo twv Foschini-Miljanic [32] (tov onolo avakboupe Sie€odxd oto Kegdhouo
2). Amobetxviouue UEow TPOGOUOIOGEDY OTL To Lovadixd onueio wopporiag xutd Nash
auTtoV Tou Taryviou efvon UTOPBEATIOTO, UTO TNV EVVOLA OTL XATOIEC GUGKEVES OEV TETUY -
vouv Tty emuunty ntodtnta unneecioc. To gouvouevo autd Tapatreeitar axdun xo ot
acUpuaTa dixTua Ue Alyeg cuoxevéc. Tio vor avTiueTwicouye autd 10 TEOBANUL, Elooyd-
YOUUE TEYVIXES DLATPAYUATEUGNS Xou Tic ouVdLALouue Ue TN pvYUo 16y 00g EXTOUTS,
ToeéyovTa xvnTed OTIC ACVUPUATES CUGXEVESC Yiol Vo ETAECOUY amodoTixdTEpa oNueia
Aertoupyiog and to onuelo hettovpylag xatd Nash ywplc tic teyvinég dampaypdteucng.

[Tpotetvoupe €va xotaveunuévo oyrfua mou evtornilel Tétola onueld, omUTOVTIC WXEd
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enimeda ouvepyaoiog UETUEY TWY ACUPUATWY cuoxeuwy. Emniéov, delyvouue péow mpo-
GOUOLOCE®Y OTL TO Oy U G EVOL TO ATODOTIXG X0l OIXUO EVAVTL XAACCUWY TEYVIXMY

mou evtomilouv xahlTepa onueia Acttoupyiag amd To onueio Aertoupylag xatd Nash.

Y10 Kegdhawo 4, yehetodue €va oviépvo aclpuato dixTuo 000 EMTEDWY, AROTENOVUE-
VO am6 GUOXEVEC oL €Y0LV GUVOEVEL 6TO TaPABOGLUXG BIXTLO XWVNTAC THAEPWVING %ot
amO GUOXEVES oL €YouY cLVOEVEL e Uixpoxuhéres. MovtehomololUe T0 GUYXEXQIUEVO
olxtuo ue N PorRdela Tng un-ocuvepyatinic Vewplog mawyvimy UE TIC CUGKEVES VOl EQUPUG-
Couv piduLom 1oy DOC EXTOUTAS Xl VAL OTOYEVOLY GE BIAPOPETIXO0VS BIXTUAXOUE OTOYOUC.
Ye avtieor e Tic cuVAVES TPOCEYYIOEL, TROTEIVOUUE OLUPOPETIXEG GUVIPTATELS Y-
OOTNTAC Yiot TOUS 000 TUTOUC GUGKEUWY WOTE VO UOVTEAOTIOLACOUUE UXPUBECTERA TOUS
0TOY0US TOUC. ATOBEWYOOUUE OTL TO TafyVio €yel Eva TOLAAYLOTOV GTUElD IGoppOoTiag Xa-
té Nash xot avahGouye Tt cUVITKEC TOU TEETEL VoL TANEOUVTOL YOl T1) LOVADLXOTNTA TOU.
ITpotetvoupe €va xaTavenuévo Gy o Tou GUYXAIVEL YO Y0RO GTO Hovadixd oTuelo Loop-
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Chapter 1

Introduction and Fundamentals

1.1 Motivation for the Dissertation

Wireless communications technology has developed rapidly in the last 25 years.
Firstly, it was cellular communications that satisfied the need for untethered mobile real
time communication. After the widespread market adoption of laptop computers, the dream
for ubiquitous Internet data connectivity became a reality with the success of wireless local
area network technology, and in particular the IEEE 802.11 family of standards. The next
step was the shrinkage of the laptop and its merging with the cellular telephone, resulting in
today’s smartphones and tablets. Due to them, we enjoy access to every kind of information
in any situation and at any place.

The trend towards ubiquitous connectivity of ever-increasing quality will remain
strong in the near future; according to Cisco’s 2014 forecast [I], the number of Internet-
connected mobile devices will exceed the world’s population by 2014. Moreover, in 2013,
mobile data traffic was nearly 18 times the size of the entire global Internet traffic of 2000;
as shown in Fig. [LIl it is expected that, by 2018, mobile data traffic will reach the level of
15.9 exabytes per month (1 exabyte is 1 billion gigabytes). In the same year, traffic from
wireless devices will exceed traffic from wired devices.

Nowadays, the Long Term Evolution (LTE) system, embodying the fourth generation
(4G) set of standards, has been extensively deployed and is reaching maturity, offering a
DSL-like experience in the mobile broadband era, with nominal speeds that make it feasible
to download an 1-hour High Definition (HD) movie in just six minutes [I].

However, existing wireless systems will not be able to adequately support the increase
in mobile broadband data that is expected in the next years. Therefore, research around the
world is currently undergoing towards a fifth generation (5G) standard. A key expectation

is to provide a fibre-like ubiquitous connectivity experience with nominal speeds that could



20 20
) =
. g 15 %. 15
210 % 10
g z
.8 2
= S
g 5 55
0 [ 1]
2013 2018 2013 2018
Year Year
(a) Mobile devices. (b) Mobile data traffic.

Fig. 1.1: Forecast for mobile devices and mobile data traffic (based on statistics provided
by Cisco [1]).

make it feasible to download an 1-hour HD movie in just six seconds, i.e., 60 times faster
than the current nominal LTE data rates [I]. In fact, 5G networks are currently considered
one of the “hottest” topics among wireless networks researchers. Although it is still unclear
what exactly a 5G network will look like and what services it will offer, there are two issues
on which there is a broad consensus: Firstly, to support the massive growth of connected
devices, 5G networks should be denser [2] and, secondly, new communication paradigms

should arise and be exploited.

To satisfy the tremendous increase in traffic and the addition of different devices and
services, more spectrum beyond what was previously allocated for 4G networks is sought for.
Since the traditional spectrum availability is scarce and the process of clearing spectrum that
is used for other purposes is time-consuming, many more systems and devices are expected
to coexist and share the same portion of the spectrum. As the number of devices and their
heterogeneity increases, it may be hard for some of them to achieve their Quality-of-Service
(QoS) targets due to the interference from the transmission signals of the other devices.
Note that the devices will be autonomous in the sense that they may either use unlicensed
spectrum or use licensed spectrum in non-exclusive mode for each operator. Therefore, no
unique external entity can dictate to them whether to transmit or not, which spectrum band
to occupy, and which transmission power to use. Such scenarios are expected to be the norm
in the 5G era, making the successful deployment and operation of all systems and devices a
challenging task [3].

There are various radio resource management methods (e.g., power control, channel
allocation, admission control) that have been used extensively for interference mitigation in
wireless networks. However, these approaches should be revisited by taking into considera-

tion the unique features of these challenging environments so as to provide efficient solutions.
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1.2 5G Fundamentals

In this section, we shall briefly discuss 3 communications paradigms that are expected
to play a significant role in forthcoming 5G standards: Small Cells, Device-to-Device Com-
munications, and Licensed Spectrum Sharing. For each one communication paradigm, we
will devote a separate chapter of this thesis where we will present a game-theoretic approach

for efficient radio resource management.

1.2.1 Small Cells

The most straightforward approach to increase the data rates available to each user is
to deploy base stations more densely. Thus, the distances covered by wireless transmissions
are reduced, and as a consequence more users can be packed in the same geographical area,
without any reduction in their QoS. However, the high deployment costs of the traditional
cellular networks constitute a serious limitation. The only viable way to support the large
demand for mobile data traffic is to make cells smaller, denser, and smarter.

“Small cells” is an umbrella term for operator-controlled, low-powered radio access
nodes that operate in licensed spectrum and coexist with the traditional cellular networks
(an example is provided in Fig. [2)). Types of small cells include femtocells, picocells,
metrocells, and microcells, broadly increasing in size from femtocells (that have a range

from 10 metres) to microcells (that have a range of several hundred metres). Small cells



provide improved cellular coverage, increased capacity, and many interesting applications
for homes and enterprises as well as metropolitan and rural public spaces [4].

A small cell base station (SCBS) is connected to the mobile operator network using
residential DSL or cable broadband connections and is able to support a small number of
smartphones [5]. Its installation is very easy (plug & play) and the owner of the SCBS can
control who can use it (for example, he might add authorized mobile phone numbers using
a web page or SMS messages). This is the so-called closed access model, as opposed to the
open access model where all users within the range of the SCBS can connect to it (in this
case, owners of SCBSs should be given incentives to share their hardware) [6].

Residential mobile phones that are using small cells experience full third /fourth gen-
eration (3G/4G) connectivity with excellent quality voice calls and fast downloads at very
low transmit powers, since the mobile phone works at a lower power level while being con-
nected to a nearby SCBS. This dramatically increases their battery life. Enterprise small
cells enable business users to take advantage of high-quality mobile services in the office,
while improving coverage, accelerating data rates, and significantly reducing capital costs.
Finally, in remote rural areas with little or no terrestrial network infrastructure, opera-
tors can deploy SCBSs to improve local coverage, increase capacity, and offload traditional
cellular network traffic [4].

Small cells are expected to play a significant role in forthcoming 5G standards since
they lead to the densification of the networks by increasing the spatial reuse. How to
manage the extra interference that arises (from small cells to small cells, from small cells to

the traditional cellular network, and vice versa) is the key to their successful deployment [7].

1.2.2 Device-to-Device Communications

In a traditional cellular network, all communications must go through the Base Sta-
tion (BS) even if both communicating parties are close enough to have direct communication.
Even in the case of small cells, no direct communication can be possible. Device-to-device
(D2D) communication in cellular networks is defined as direct communication between two
Mobile Nodes (MNs) without traversing the BS or core network [8]. An example is pro-
vided in Fig. [L3 Note that a similar idea has already appeared in unlicensed spectrum
technologies, in particular Wi-Fi Direct [9] and Bluetooth. However, these traditional D2D
communication models provide questionable QoS guarantees and the operators could hardly
make a profit from them if they were applied in a cellular context.

With D2D communications in the licensed spectrum, direct peer-to-peer transmis-

sion to support context-aware applications and machine-to-machine applications take place.
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Fig. 1.3: In the traditional cellular network (left), Mobile Nodes (MNs) communicate
through the Base Station (BS). In a D2D network (right), MNs are able to communicate

directly, coexisting with the cellular links.

Furthermore, D2D communication can be critical in natural disasters. For example, in the
case of an earthquake or hurricane, an urgent communication network can be set up us-
ing D2D functionality in a short time, replacing the damaged communication network and
Internet infrastructure [§].

In general, this communication paradigm provides the following advantages: ex-
tended coverage, offloading from cellular networks, increased throughput, and spectrum ef-
ficiency. In addition, as D2D communications are short-range transmissions, the MN power
consumption can be very low; hence, the battery lifetime of MNs with D2D communications
can be extended [I0]. For these reasons, the operators are exploring the possibilities of
introducing D2D functionality in cellular networks. For example, LTE-Direct [I1] has been
recently standardized in 3GPP-R12, enabling discovery of thousands of devices in a range
of about 500 m. However, while the spectral efficiency and system capacity are improved,
extra interference arises for the MNs that communicate with the BS. Therefore, methods
for efficient interference management and coordination should be developed to achieve the

target performance levels for both the cellular and the D2D links [10].

1.2.3 Licensed Spectrum Sharing

Due to the constant need for ever-increasing spectrum efficiency, the original “licensed
vs. unlicensed” spectrum usage model is being revisited. Extending LTE-Advanced to
the unlicensed spectrum [I2] and licensed spectrum sharing approaches, where no exclusive
rights are given to any single operator, are receiving increasing attention as a complementary

way of spectrum use.



These ideas are becoming key concepts of 5G networks [13]. We will focus on the
concept of licensed spectrum sharing that gives the opportunity to a limited number of
licensees in a frequency band, already allocated to one or more incumbent users, to use
jointly the spectrum. The 3.5 GHz band in the USA and the 2.3 GHz band in Europe are
potential candidates for licensed spectrum sharing. A primary benefit is providing additional
capacity in congested areas, especially in indoor locations. A secondary benefit is that the
shared band could be available across all operators, opening up increased opportunities for
national roaming between operators [I4]. In any case, the operators should analyse the
economic benefits from spectrum sharing to decide upon the level of their investments.

Under this setting, the operators, though still selfish, have motivation to cooperate
so as to control the resulting interference aiming at providing high QoS to their customers.
Towards that direction, developing distributed spectrum sharing techniques that allow faster

decisions with less control overhead becomes very important.

1.3 Power Control Fundamentals

In this thesis, we focus on power control, i.e., controlling the transmission power,
which has always been one of the most important radio resource management techniques in

wireless networks, as it addresses two fundamental limitations of wireless networks:

e Radio spectrum is a scarce resource. This makes the mitigation of interference from

devices that transmit in the same spectrum band critically important.

e Mobile wireless devices, such as smartphones, tablets, etc., have significant limitations
on the duration of their “talk time,” as the life of their battery is limited. As technology
improvements in the direction of prolonging battery life are slower than advances in
communications, this constraint continues to have a dramatic impact, particularly
for uplink transmissions (from Mobile Nodes to Base Stations). Therefore, designing

energy efficient wireless networks is very important [15].

For these reasons, applying transmitter power control is a well-known and widely
adopted practice. Furthermore, power control, by its nature, can be smoothly combined with
other interference mitigation techniques (such as channel assignment, admission control, and
directional antennas). These joint radio resource management schemes can further improve
the performance of the nodes in the wireless network.

The results from the adoption of power control algorithms in terms of mitigating the

interference and increasing the network capacity are significant. Although the quantitative



analysis of the benefits from power control techniques needs to be done carefully because
the results depend critically on the assumptions and parameters of the various techniques

and environments, we would like to briefly present some simple illustrative examples.

It was shown early on that applying power control doubles the capacity of a second
generation (2G) Code Division Multiple Access (CDMA) network compared to the non-
power controlled case [16]. Further improvements (up to 50%) can be achieved by suitably
adjusting the update rate of a power control algorithm [17]. More recent studies by Olama
et al. [I8] estimated that the Signal-to-Interference plus Noise Ratio (SINR) gains from the
adoption of power control exceed 10 dB compared to a policy without power control, for
various interesting values of the outage probability (i.e., the probability of a node achieving
SINR lower than a threshold required for communication).

This result is similar to early findings on the advantages of using power control in
Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA)
networks [19]. Moreover, the combination of power control with base station assignment
(and beamforming) increases two to four times the capacity of a CDMA network, compared
to a network that uses only power control techniques [20]. As far as the energy consump-
tion or battery lifetime is concerned, studies show that power control offers a significant
improvement (orders of magnitude) compared to the constant power approach. The exact
value of the gain strongly depends on the transmission rate [21]. For mobile ad hoc networks,
the adoption of power control leads to an over 50% improvement on the energy expended

compared to the IEEE 802.11 standard [22].

As discussed, power control is generally adopted for at least one of the following
reasons: (i) to mitigate the interference in order to increase the capacity of the network
and /or provide QoS, (ii) to conserve energy in order to prolong battery life and—nowadays—
to “green” the Internet/mobile networks. The first one is correlated with the Signal-to-
Interference (plus Noise) Ratio—SI(N)R-metric. We shall introduce the SI(N)R in the con-
text of wireless networks without explicitly defining the type of the network. The only
assumption is that the nodes that form the wireless network can obtain feedback (which is

the case in modern wireless networks).

Fig. [L4] presents a single channel wireless network with N transmitter-receiver
(Tx-Rx) pairs. As the same channel is used for the transmission of all Txs considered,
all signals interfere with each other. Using the standard notation, we denote the path gain
coefficient from Tx; to Rx; as G;; € (0,1). Note that we assume that the path gains do
not change due to mobility, traffic arrivals etc. For such dynamic systems (which are out of
the scope of this thesis), stochastic power control using, e.g., robust H> control theory [23],

annealed Gibbs sampling [24], and Kalman filters [25], should be applied.
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Fig. 1.4: Each transmitter i, Tx;, serves one receiver i, Rx;. We denote the path gain

between Tx; and Rx; as Gy;.

We now state the definition of SINR for Rx;, denoted as ~;:

G P;

~v; £ SINR; = (1.1)

~
> GjiPi+n
j#i

The numerator G;; P; expresses the power that Rx; receives from Tx;, whereas the denomi-
nator % Gj; P; + n is the sum of the received power from the remaining N-1 Txs plus the
thermgxiélnoise power of the channel, n.

To compute the value of 7;, Tx; and Rx; exchange information about the interference
that Rx; receives. This is a standard procedure that is adopted in each power control scheme.
Note that, in general, Tx; does not need to know the exact level of interference that each
other Tx creates to Rx;.

The higher the SINR value, the better the quality of the communication. As sug-
gested by (ILI]), Tx; can apply power control to improve ;. This will be the case if, e.g., it
increases its power P; and the remaining N-1 Txs keep their powers constant. Of course, it
is entirely possible that the other Txs will respond by increasing their own powers, possibly
leading us back to where we started. This conundrum lies in the heart of power control

research and also this thesis.

1.4 Game Theory in Wireless Networks

As we discussed in the previous section, when a node applies power control, it modifies
not only its own SINR, but also the SINR of all other nodes that share the same portion
of the spectrum. This situation can be efficiently analysed by game theory, i.e., “the study
of mathematical models of conflict and cooperation between intelligent rational decision-
makers” as defined in [26].

Game theory has emerged as an important tool in the design of future wireless

networks. Three indicative examples follow:



e In multihop communications, whether a node should act as a relay (forwarding some

data to another node) or not can be directly transformed into a game [27].

e In multichannel networks, game theory can be used to find optimal channel assign-

ments with distributed schemes [2§].

e In spectrum sharing scenarios, multiple non-cooperative wireless nodes compete for
spectrum access [29]. Game theory is a natural choice for deciding upon who is going

to transmit and with what power.

In wireless networks that consist of autonomous nodes, the branch of non-cooperative
game theory should be applied. Contrary to coalitional game theory, where decisions are
based on the formation of teams, in a non-cooperative game each node decides on its own.

Two important properties that characterize the nodes of such wireless networks are
rationality and selfishness. Rationality means that the decisions of each node are the best
possible for the satisfaction of its target. Selfishness means that each node aims at achiev-
ing its target without being interested in the way that it may affect the communication
capabilities of other nodes. Note that this does not mean that it wants to harm other nodes.

To define a non-cooperative game, we need to specify the set of players and, for
each playe, its strategy and its utility function that expresses its (dis)satisfaction with the
current state of the game. Since players are rational and selfish, they aim at maximizing

their own utility functions. A formal definition follows:

Definition 1. A strategic (or normal form) non-cooperative game G with a finite number
of players consists of the following triplet: A set of players N = {1,2,..., N} and, for each
player i, a set of strategies S;, and a utility function Uy(+).

A powerful solution concept in non-cooperative game theory is the pure Nash Equi-
librium (NE) [30] which predicts outcomes of games that are stable, in a sense described

below. A formal definition follows:

Definition 2. The strategy vector s* = [s},s5,...,sN|T is a pure NE for a game G if Vi € N
and Vs; € S;:

Ui(S:7 Siz) Z UZ(S/Z) Sii)) where Stz’ = [S)Ik’ 857 ce 78?—17 3?—&—17 tt S;V}T'

Consequently, a pure NE corresponds to a steady state of a game in the sense that
no player has an incentive to change unilaterally its own strategy. In this thesis, we deal

with pure Nash Equilibria only (and we will not deal with mixed Nash Equilibria [30]), so

we omit the term “pure”.

!'Throughout the thesis, we use the pronoun “it” to refer to a device that acts as a player, rather than
“he” or “she”.
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Table 1.1: A general form of a non-cooperative power control game.

Set of players Set of nodes N ={1,2,..., N}
Strategy s; of player ¢ P, € [0, P max]
Utility function U; for player ¢ Various choices

1.5 A General Non-Cooperative Power Control Game

in Wireless Networks

In this section, we discuss a general non-cooperative power control game that will be
used extensively in Chapters 3], [4], and [6l

We consider wireless networks such as the one in Fig. [[.4] that consists of N directly
interfering links (transmitter-receiver pairs) that share the same channel. Under this broad
definition, various types of wireless networks may be considered: Traditional cellular net-
works, Wi-Fi networks, multi-tier heterogeneous cellular networks that consist of traditional
cellular networks overlaid with small cells, device-to-device networks, etc. We focus on sce-
narios that include autonomous nodes, e.g., nodes that belong to different operators. These
nodes have full control of their own equipment, therefore centralized solutions are difficult
to be adopted in practice. Nodes apply power control, updating their transmission powers
to achieve their QoS target.

In Table [I. 1, we present a general form of a non-cooperative power control game GG
for this setup. The players are the N nodes that act as transmitters. Throughout the thesis,
we use the terms “nodes” and “entities” interchangeably to refer to the “transmitter nodes”
and “transmitter entities”, i.e., we omit the term “transmitter” when it is clear from the
context. The strategy that each player ¢ decides on is its transmission power P; that belongs
to [0, Pimax]. Each player i aims at maximizing a utility function U;(Py, P, ..., Py). We
will study various utility functions in the next chapters, typically related with the SINR,
which is a key performance metric in every wireless network [31I]. In each case, after the

definition of the game G, we follow a general roadmap:

e Existence of a Nash Equilibrium: Has the game G at least one Nash Equilibrium (NE)

power vector P* = [P}, Py, ..., Px]|T?

e Uniqueness of the NE: Are there conditions that guarantee the existence of a unique

NE for the game G?

e Algorithm for finding a NE: Can we find a distributed (iterative) algorithm that con-
verges to a NE of the game G?
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e Efficiency and optimality of the operating points: Can we find more efficient operat-
ing points by introducing bargaining among some of the entities? Have the players

incentives to end up at these points?

When we propose an algorithmH, we take into consideration the fact that each entity
has limited knowledge of the parameters of the whole wireless network. Therefore, we look
for distributed schemes, so that the transmission power can be updated by using information
that is available only to the transmitter and its associated receiver. We discuss scenarios
where nodes have various degrees of cooperation, in the sense that even though in principle
they are non-cooperative, they may still exchange information with other nodes. The exact
level of information exchanged and the set of nodes with whom messages are exchanged

influences significantly the performance of the proposed schemes.

1.6 Contributions

The fundamental goal of this dissertation is to design efficient distributed power
control and channel access schemes for modern heterogeneous wireless networks using various
tools from game theory, aiming at the seamless coexistence of wireless nodes.

As a preliminary step towards this goal, in Chapter [2 we review fundamental ap-
proaches for power control in wireless networks. We present key classifications pointing out
relationships and differences in approaches and their consequences and applicability.

Chapters constitute the main part of our research, where we make the following

key contributions:

e In Chapter Bl we formulate a power control game where autonomous wireless nodes
initially aim at achieving their SINR targets by applying the famous Foschini-Miljanic
algorithm [32] (which we describe and discuss in Chapter ). We show through sim-
ulations that the resulting unique Nash Equilibrium (NE) of the game is quite often
inefficient, since, even in small networks, many nodes are unsatisfied with the payoff
that they receive there. To tackle this issue, we introduce bargaining and combine
it with power control as a way to provide incentives to the wireless nodes to find
operating points that are more efficient than the NE. We show that our distributed
scheme can indeed find such points, demanding minimal cooperation among the nodes.
Moreover, we show through simulations that it outperforms well-adopted approaches

in terms of finding fair and efficient operating points.

2Throughout the thesis, we use the terms “scheme” and “algorithm” interchangeably.
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e In Chapter ] we study a two-tier wireless cellular network that consists of traditional

cellular nodes overlaid with small cell nodes. A key challenge in this network is that
nodes are heterogeneous and aim at different objectives. We model this setting as a
non-cooperative game with all nodes applying power control, but, contrary to typical
formulations, we propose that the two types of nodes have different utility functions.
We show the existence of a NE and derive conditions that guarantee its uniqueness.
We present a distributed scheme that converges fast at the NE and we evaluate its
efficiency through simulations showing that the payoff that the nodes receive at that

NE is satisfactory in most scenarios.

In Chapter B we study the fundamental problem of channel access competition in
device-to-device networks. Nodes are autonomous and decide on their own whether to
transmit or not. Focusing on linear and tree device-to-device networks, we present a
non-cooperative game formulation with two variations of the payoff of the nodes. We
show the existence of Nash Equilibria, we analyse their structural properties, and we
propose two distributed schemes with different levels of cooperation among the nodes
that converge to a NE. We evaluate by simulation the resulting Nash Equilibria in
terms of fairness and efficiency and compare the performance of our non-cooperative
game against classical scheduling approaches showing that these approaches do not

always lead to incentive-compatible operating points.

In Chapter[6lwe study licensed spectrum sharing scenarios and define a non-cooperative
power control game where operators aim at maximizing their revenues. We show that
this game admits a unique NE that is inefficient. We then combine power control with
bargaining and derive conditions that guarantee that the operators will end up at a
point that is more efficient than the NE. For the case of 2 operators, we compute the
socially optimal operating point, where the sum of the revenues of the operators is
maximized, and we define bargaining strategies that guarantee that our scheme will
lead to that point and also exhibit lower communication overhead than the state-of-
the-art. Moreover, we show that our approach strictly outperforms the idea of linear
pricing of the transmission power [33] (a well-adopted approach for finding efficient

operating points), in terms of both the payoff per operator and the sum of payoffs.



Chapter 2

Related Work

2.1 Power Control in Cellular Networks:

The Big Pictur

The goal of this chapter is two-fold:

1. To provide a taxonomy of approaches to power control in cellular networks into some

fundamental sub-areas.

2. For each sub-area, to review and comment on key power control approaches.

We focus our discussion on cellular networks, as this is the type of wireless networks
considered in the majority of power control schemes in the literature and also the type
with the most significant commercial and societal impact at present. Furthermore, our
approaches in the contexts of small cell networks (Chapter @) and licensed spectrum sharing
scenarios (Chapter []), which are expected to be critical in the forthcoming 5G era, are
mostly influenced by works that focus on cellular networks. However, we do mention and
discuss issues and applications of power control to other modern wireless networks.

Fig. 2.1l illustrates the power control taxonomy that we are going to discuss in the
following sections. The left part of Fig. 2.1 corresponds to power control techniques that
emerged in 2G networks, where voice applications are the norm and each node aims at

achieving a target SINR. We distinguish two broad categories:

e Interference-limited networks, where the level of the thermal noise power n is too small

and can be neglected. In this case, the SINR definition in (I.1]) is modified to:
Gl
-~

> GiiP
i

!This chapter is based on paper [31].
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2G (Voice) 3G/4G (Data)
SIR-Based SINR-Based Utility without Utility with
Approaches Approaches cost part cost part
. Joint PC &
Joint P C&BS Admission Discrete PC
Assignment
Control

Fig. 2.1: A taxonomy of power control (PC) approaches.

e Networks where the level of the thermal noise power cannot be neglected. Apart from
presenting basic algorithms, we will study three approaches of special interest: Joint
Power Control and Base Station Assignment, Joint Power Control and Admission
Control, and Discrete Power Control. The first two approaches combine power control
with other radio resource management techniques so as to further improve the perfor-
mance of the network. The third approach takes into account that the power levels

are not continuous, but take only discrete (predefined) values.

The right part of Fig. 2] depicts power control approaches that have emerged in
3G/4G networks, where data applications are the most prominent ones. It is natural to
consider utility functions for these cases; furthermore a basic distinction is whether a cost
function is used in the definition of that utility function, in order to demotivate the user
from transmitting or not. When no such cost part is considered, each entity tries selfishly to
maximize its own utility function without having to “pay” for the power that it will choose.

Apart from a thorough description of some representative papers for each area, we
shall provide both inter-area and intra-area comparisons: (i) power control in 3G/4G net-
works vs. power control in 2G networks, (i7) SIR based approaches vs. SINR based ap-
proaches, and (7i) utility-based approaches without a cost function vs. utility-based ap-
proaches with a cost function.

As a final comment, note that there are power control approaches that can be applied
for both voice and data applications. This is the reason that we have joined the first two
rectangles in Fig. 2.1l with a horizontal line.

In the following sections, for generality of exposition, we use the terms “node” and
“entity” interchangeably to refer to a transmitter node/entity, without explicitly mentioning

whether it is a Mobile Node (MN) or a Base Station (BS). When necessary, we shall explicitly
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mention whether the node is a MN (i.e., the transmission is uplink) or a BS (i.e., the

transmission is downlink).

2.2 Power Control in Interference-Limited 2G Cellular

Networks

In this section, we consider interference-limited 2G cellular networks. Zander is one
of the pioneers of this research area, being among the first, in the early nineties, that
studied power control techniques in such networks [19], [34]. In these successive papers,
he considers a TDMA/FDMA network where N nodes, with common SIR target +* for
successful communication, share the same channel. He is interested in applying power
control so as to find a power vector P* = [P}, Py, ..., P%]" (without placing a limit on
the maximum power of each node) that maximizes the minimum SIR of the nodes denoted
by ~*.

In [19], a centralized power control scheme is proposed. By computing the spectral

radius A* (i.e., the maximum eigenvalue) of the normalized gain matrix G:

Gij . .
) Z )

G=2 73 (2.2)
0, i=j.

he shows that there is a unique solution, which is always feasible and leads to SIR balancing,
i.e., all nodes converge to the same SIR, v*:

1

*: . 2
7= (2.3)

Consequently, independently of the initial power vector, knowledge of all path gains from

*

(22) is a sufficient condition to compute 7*. Of course, an important drawback of this
scheme is its centralized nature, because knowledge of the full path gain matrix is difficult
to be achieved in practice.

Even though it is always possible to maximize the minimum SIR in these networks,
this v* may be below the SIR target v which is the threshold for successful communication.
In this case, all nodes would suffer from unacceptable performance. To combat this problem,
the notion of “node removal” is introduced [19]. The idea is to find the optimal set of nodes
that should power off so that the remaining ones fulfil the condition: v* > ~*. As the optimal
policy increases dramatically the complexity of this process, a suboptimal but faster solution
is to remove in each round one node (i.e., one node-the one with the worst SIR—powers off

each time) until the remaining ones fulfil the above condition. This process goes on until an

acceptable solution is achieved.
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In [34], a partially distributed iterative power control scheme is proposed. Each node
i updates its power at round k+1 (Z4]) by taking into account the following parameters from
round k: its power, its SIR, and a positive normalization parameter, b, which is the inverse
of the sum of the powers of the N nodes (2.35). This scheme converges to v* from every

initial strictly positive power vector (i.e., the initial power of each node should be positive).

Pk + 1) = b(k) Pi(k) (1 + SIRt(k)) , (2.4)
bk) =~ (2.5)

i 0

This synchronous (i.e., all nodes update concurrently their power) iterative power
control scheme is similar to the power method of numerical analysis [35]. This is not surpris-
ing, since v* is dependent on the maximum eigenvalue (and the power method is a classical
method to compute it). A drawback of the scheme is that although it should be applied
autonomously from each entity in each round k, it is not fully distributed; the normalization
parameter b (which is necessary to avoid extremely high transmit powers) demands coop-
eration among nodes in each transmission round (as all powers should be known to each
node). The way to choose b is not unique, see [36] for another choice.

In [34], node removal is applied if, after a predefined number of iterations, the par-
tially distributed algorithm (2:4]) has not converged to an acceptable solution. Then, the
node with the worst SIR powers off and the iterative scheme is reapplied for the N-1 nodes.
It is worth mentioning that, to decide which node should power off, cooperation among
nodes is, again, necessary.

Both schemes proposed by Zander increase the capacity of the network, as the out-
age probability (i.e., the probability of a node to achieve SIR lower than +') is decreased
compared with non-power control policies.

In [37], Lee and Lin present the following fully distributed power control scheme:
min(SIR;(k),Y) (8)

SIR; (k) e

that leads to v* starting from the maximum power vector where all nodes transmit at P ..

P(k+1)= (2.6)

If the value of the positive constant Y is predetermined, nodes can update their
powers autonomously. However, if a node needs to power off, the cooperation among nodes
is inevitable, as the target is not to remove a random node (which could be done with a
predefined criterion too), but the “worst” node, and this cannot be done autonomously.
Simulations show that this scheme, for various choices of Y, is faster than Zander’s dis-
tributed scheme [34], as the latter is based on the power method, whose convergence to the

maximum eigenvalue is-generally—slow.
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Table 2.1: A classification of power control approaches in interference-limited 2G networks.

TDMA Uplink & Partially | Fully Prax Different
Paper FDMA | CDMA | Downlink | Centralized Distr. Distr. | constraint o
Lee et al. [37] v v v v
Wu [38] v v v v
Wu [36] v v v v v v
Zander [19] v v v
Zander [34] v v v

In [38], Wu extends Zander’s centralized scheme [19] in the case of CDMA. Contrary
to a TDMA/FDMA network, in CDMA there is only one channel, that is shared by all
nodes in each cell. He proposes a centralized scheme so that the entity that powers off is
the one that leads to the maximum ~* for the remaining N-1 entities.

In [36], Wu studies topologies where the SIR thresholds of the nodes are heteroge-
neous (i.e., each node has its own target 77). He reapplies the centralized scheme in [38] for
this case. Moreover, he proposes a partially distributed scheme, where each node 7 updates
its power as follows:

t

Pi(k + 1) = b(k)P;(k) Slg;(k), (2.7)
b(k) = ———. (2.8)
max P, (k)

This scheme leads to vf = dv}, where d is a positive constant. In case that d > 1, no node
needs to power off. Otherwise, a node needs to power off so that other nodes can achieve
their targets. Again, nodes need to cooperate to compute parameter b(k) (2.8)).

Finally, Table 2.1 depicts our taxonomy of this sub-area by checking with which
criteria each paper is compatible. Besides our comments on the previous paragraphs, it is

worth mentioning that all approaches can be applied for both uplink and downlink.

2.3 Power Control in 2G Cellular Networks with Noise

2.3.1 Basic Algorithms

In 2G networks where the noise level at each node cannot be neglected, the normalized
gain matrix (2.2)) cannot be used to compute v* (Z3]). This is because of the noise power
term in the denominator of the SINR definition (I1l). So, the central question is modified
as follows: Which is the power P} that each node i should transmit to achieve its SINR

arge ;0111 practice, 1most papers se € Salne Or eaci node 7 during € periormance
target v/7 1 ti t t th At h node ¢ during th f
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evaluation of their method. This is reasonable because, in voice applications (which is the
traditional case in 2G networks), the QoS target and the need for resources are (practically)
the same for all nodes. However, this assumption is no longer acceptable in today’s networks.
In [32], Foschini and Miljanic are the first who answered this question by providing
a fully distributed scheme that computes the power that each node 7 should use to achieve
its target. This algorithm is fully distributed, as there is no need for cooperation among the
wireless nodes to compute their powers. In [39] this algorithm is further simplified to:
Pi(k)
vi(k)’

which we refer to as the simplified Foschini-Miljanic algorithm. When a feasible solution

Pk+1) =+ (2.9)

exists, each node has achieved its 7} target. However, the authors do not discuss the condi-
tions that guarantee the convergence of the scheme. Actually, when nodes cannot achieve
their 7/ targets, their powers will diverge to infinity. Moreover, no maximum power Py
limitation is imposed.

In [40], Mitra shows that a sufficient and necessary condition for the convergence
of the power vector P* = [P! P ... PL]T that arises after the application of (23] to
vt = [, 94]T is that the spectral radius of the gain matrix (Z2) to be smaller
than 1. Moreover, he shows that this power vector Pt is Pareto optimal, in the sense that
any power vector P that satisfies the target for all nodes demands at least as much power
for every node and at least one node’s power to be greater, i.e., P > P* component-wise.
Furthermore, he proposes an asynchronous (i.e., all nodes do not necessarily have to update
their power concurrently) version of the Foschini-Miljanic algorithm where nodes satisfy
their targets under the above mentioned condition.

In [41], Grandhi, Zander, and Yates incorporate a Pp.x constraint for each node and

restate the Foschini-Miljanic algorithm with a P, constraint:

3 = min ’?Pi(k)
Pk+1) = {Pmax,% — } (2.10)

We call (2I0) the FM algorithm. A version with asynchronous updates is provided as well.
Moreover, the authors propose a centralized algorithm that, finds the maximum common ~*
that can be achieved by all nodes (in that case, clearly v'=+*).

In [42], Yates studies the following interesting problem: If somebody devises an
iterative power update scheme P(k + 1) = I(P(k)), where I(P) stands for the interference
that each node must overcome, is there any way to know whether this scheme is going to
converge to a power vector P (if that exists) that satisfies the 4! target for each node 4?
The answer is positive, provided that the—so called—Interference function I(P) is standard,

1.e., it fulfils the following properties:
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1. Positivity: I(P) > 0.
2. Monotonicity: P > P = I(P) > I(P’).
3. Scalability: al(P) > I(aP), a > 1.
Yates shows that this framework holds for:
e Power Control in both the uplink and the downlink, under fixed BS assignment.
e Power Control and BS Assignment in the uplink.

In the above cases, the framework is valid under very general settings, including
support for Ppay, Puin, Or no power constraints, synchronous or even asynchronous updates,
as well as for joint power control and admission control techniques. The importance of this
result is that it functions as a “convergence guarantee” for every proposed power control

algorithm that is valid for that framework.

2.3.2 Power Control and Base Station Assignment in the Uplink

Yates and Huang in [43] and Hanly in [44] study the joint power control and BS
assignment problem for a single-channel cellular network in the uplink. They are interested
in finding the optimal power vector P* (component-wise) that satisfies the SINR targets,
provided that each MN can switch to a different BS. They independently show that, by
applying FM (29]), but allowing each MN to know the interference at each BS and to
connect to the one for which the least power is needed to transmit, the algorithm converges
to a unique power vector P*, provided the problem has a solution. It is worth mentioning
that, even though P* is unique, the assignment BS-MN that leads to P* may not be unique
(for example, in case there is symmetry in the topology).

These works differ in the following points: Hanly’s approach in [44] predetermines the
set of BSs that each MN can connect to. This set may be adjusted dynamically throughout
the process. In [43], this knowledge is not necessary. Moreover, Yates and Huang in [43]
present both synchronous and asynchronous versions of their algorithm, whereas Hanly
deals only with the synchronous case. Lastly, Hanly discusses the case where a MN notices
rapid oscillations back and forth between two BSs and proposes a small modification of the
algorithm to alleviate this phenomenon. A limitation of these works is the absence of a Py .«
constraint.

Further power control issues such as joint power control, BS assignment, and beam-

forming, as well as downlink extensions, are discussed in [45].
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2.3.3 Power Control and Admission Control

An important disadvantage of all the above mentioned power control schemes is that
nodes suffer from fluctuations during the evolution of their powers. In other words, there is
no guarantee that when an entity i becomes active, i.e., its SINR is at least ~7, it will remain
so in the following iterations of the algorithm. New nodes may desire to enter the network
and nodes already in the network might power up, so that some active nodes may not be
able to absorb this extra interference. A consequence of this problem is that these power
control schemes lead to the following type of error: A new entity is admitted even though
it could not safely be admitted. This is the well known dropping probability error (Type I
error), which is very annoying for users [46]. Next, we discuss some important works that
address this issue and hold for both uplink and downlink.

Bambos and his colleagues [47] are the first that dealt extensively with the joint
power control and admission control problem. They divide nodes into two sets that are
updated in each transmission round k: the set Ay of admissible nodes and the set By of
inadmissible nodes. For the former, they use a modification of the FM formula as seen in

(2110, introducing a parameter d, where: d = 1 + e, with e being a small positive number:

2 i € Ax,

Pk+1)=¢ '™
dP;(k),i € By.

(2.11)

The parameter d allows each active entity i to set its target to dvf, so as to provide
an e-protection margin for its communication. This scheme has the following nice property
for each i € Ay:

(k) >y = vk +1) > ;. (2.12)

Consequently, Ax C Ayx.; and By O By,.;. However, in cases where an entity
remains inadmissible for many iterations of the algorithm, chances are that it will remain so
in future iterations too. For these cases, it may be better for some nodes to follow a so-called
voluntary drop-out policy, i.e., to power off for a while (until channel conditions change)
and to retry to power up later on. More specifically, Bambos et al. propose two policies:
A time-out drop-out policy and a SINR saturation drop-out policy. The former dictates
that if an entity ¢ remains inadmissible for K iterations of the algorithm, then it will try
only up to M more times—this number will grow inversely proportionally to the difference
between ! and ~;(K)-to achieve its target, before powering off. The latter proposes that if
the SINRs of some nodes do not present a significant improvement for K successive rounds
of the algorithm, then they flip independent coins to decide whether to power off in the
next iteration of the algorithm. Again, the smaller the difference between ~! and ~;(K), the

higher the chance for entity ¢ to go on updating its power.
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A great advantage of the approach in [47] is that it is fully distributed. However, in
case a Py, limitation exists, then some cooperation among nodes is considered necessary,
as an active entity should inform the inadmissible ones to power off (forced drop-out policy)
when its Pa, constraint should be violated in order for it to remain admissible. Moreover,
some cooperation is necessary to find the maximum allowable initial power that an entity
can transmit without “impacting” the already active nodes. If this does not happen, then
an active entity may instantaneously become inactive. Authors eloquently use the motto
“once active, always active!” to describe the power update policy for these cases.

A problem of the scheme in [47] is that it may (rarely) lead to Type I errors, as
an entity may become admissible with its power diverging to infinity. Moreover, since a
voluntary /forced drop-out policy is used, it is possible that an entity is requested to power-
off unnecessarily, as it could have been become eventually active (the so-called blocking
probability error, or Type II error).

In [46], Andersin, Rosberg, and Zander invent a partially distributed soft and safe
(SaS) joint power control and admission control algorithm under a P, constraint, which
is Type I and Type II error free. The key idea of the algorithm is the following: Each
time a new entity powers up, all other entities scale their powers uniformly (this demands
cooperation among the entities) to overcome the extra interference. If this is possible, then
all entities (including the not yet admitted one) apply (2.10) with a view to finding a solution
that both demands less power for at least some of the admitted entities and the new entity

becomes admissible, with two stopping conditions:
e An admitted entity becomes inadmissible or gets assigned a power higher than P,,..
e The new entity becomes admissible, or its power is set higher than P..

This iterative process converges to the desired solution, though this happens—in
general—quite slowly. For this reason, the authors proposed a fast version of the SaS al-
gorithm (F-SaS), where after only one iteration of (2.I0]), either the new entity becomes
active, or it powers off. Though this version is very fast, it is only Type I error free, as Type
IT errors may arise. However, in general, blocking a new call is less annoying than dropping
an ongoing call.

In Table 2.2 we compare the main characteristics of the joint power control and
admission control algorithms in [47] and [46]. Apart from our comments in the previous
paragraphs, we would like to mention that a disadvantage in [47] is some loss of capacity
due to the safety margin that is defined by parameter d. Of course, as d approaches 1, this
capacity loss decreases. However, the smaller the d, the more difficult is the admission of

new nodes, as active nodes have a lower safety margin to tolerate extra interference. On the
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Table 2.2: Joint power control and admission control approaches: a comparison.

Paper Bambos et al. [47] Andersin et al. [40)
Type I and 1T Error Free v'(only SaS)

Type I Errors v (very rare)

Type II Errors v (voluntary Drop-Out) v (only F-SaS)
Fast Convergence v v (only F-SaS)
Loss of Capacity v
Fully Distributed v (if No Ppax) v
One Inactive User
per Time Update v

Synchronous Updates v v

other hand, algorithms in [46] assume that only one entity desires to power up every time
(which is compatible with the assumption for Poisson arrivals made in the paper). Thus, in
order to further minimize the probability of two concurrent inadmissible nodes, the authors
use only the synchronous version of [41]. Note that synchronous updates are a prerequisite

in [47] as well.

As a final note, Gitzenis and Bambos [48] propose a variation for the power update
of inadmissible nodes (ZI1]). By introducing some mini slot time periods, they periodically
offer the opportunity to inadmissible nodes to test any desired power in these mini slots.
For example, they may even decide to choose the power to be equal to the power they would
use if they were to become active in the next iteration of the algorithm. If, during that mini
slot, all the active nodes can tolerate this extra interference, then, during the next slot of the
algorithm, these nodes deviate from (2.I1]) and transmit with the power of the previous mini
slot period. Clearly, this process will converge faster compared to [47]. Moreover, (partially)
asynchronous convergence may be achieved. It remains an open issue whether this scheme
will prove even more beneficial if nodes cooperate in order to decide when each one will try
to update its power to a higher level than the one that is imposed by (ZI1]). Of course, this
will destroy the fully distributed notion of the algorithm, even in the unconstrained case

(i.e., with no Ppax)-

2.3.4 Discrete Power Control

Apart from introducing a Py, constraint, a practical power control scheme should
take into account the fact that power is updated only at discrete levels. This is the motivation
for discrete power control algorithms [49], [50] that are valid for both uplink and downlink,

a subject that has not been developed much all these years.
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In [49], Andersin, Rosberg, and Zander use the synchronous and asynchronous ver-
sions of [41] and modify each component of the power vector P* that arises to the nearest
higher or lower discrete power so as to try to satisfy the target of each node. Unless the
powers are at exactly the discrete levels, taking the lower discrete power level leads always
to a solution where no node is satisfied. On the other hand, by applying the ceiling version,
it is proven that convergence to a unique power vector is not guaranteed, as oscillations
between power vectors may appear. Smith et al. [5I] build upon this work proposing a
game-theoretic treatment of this problem.

In [50], Sung and Wong firstly prove that if, for each node i, P} converges to v,

there exists a quantized power vector that converges to the region [d~14f,d~{], for any d > 1.

Then, they propose the power control scheme:

dP;(k), if (k) < d™'~f
Pk +1) =< d'P(k), if yi(k) > dv} (2.13)
Pi(k), otherwise.

They prove that this scheme converges in the above region as well.

Moreover, they incorporate an admission control scheme by showing that if, at round
k, vi(k) > d~24%, this inequality will also hold in the following transmission rounds. Of
course, this extra d margin leads to some loss of capacity for the network.

Comparing the schemes in [49] and [50], we remark the following: The main advan-
tages of [49] are the inclusion of a Pp.x constraint, as well as the possibility for asynchronous
convergence. On the other hand, it is a quite complex algorithm and does not incorporate
any admission control mechanism. The algorithm in [50] is simpler and permits an admis-
sion control process (sacrificing some capacity), but its performance worsens when P,y is
taken into account. As a last note, the performance of discrete power control algorithms
depends on the number of power levels. The more power levels there are, the smaller is the
loss of capacity, but the slower is the convergence to a power vector. The opposites hold for
fewer power levels. However, the distance between two consecutive power levels should not
be defined arbitrarily, but it should arise from the type of the cellular network technology
that is used.

2.3.5 Classification

We complete this section by providing Table 2.3l which presents the big picture, i.e.,
we provide some properties and examine which of them are satisfied by the power control

algorithms of the works that we discussed. The only exception has to do with [42], as no
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Table 2.3: A taxonomy of power control approaches in 2G networks with noise.

Power Control & | Power Control & | Discrete | Asynchronous
Paper Ppax | Admission Control | BS Assignment Powers Version Approach
Partially
Andersin et al. [40] v v Distributed
Partially
Andersin et al. [49] v v v Distributed
Fully
Distributed
Bambos [47] v v (when no Ppax)
Fully
Foschini et al. [32] Distributed
Partially
Gitzenis et al. [48] v v Distributed
Fully
Distributed
Grandhi et al. [41] v v (& Centralized)
Fully
Hanly [44] v Distributed
Fully
Mitra [40] v Distributed
Fully
Sung et al. [50] v v Distributed
Fully
Yates et al. [43] v v Distributed
No algorithm
Yates [42) v v v v proposed
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algorithm (but a framework) has been presented. It is interesting to note that the paper
by Foschini and Miljanic [32] does not fulfil any of the properties that we have chosen to
compare these papers against. However, that paper was the basis for most of the approaches

of the papers that were discussed in this section.

2.4 Power Control in 3G /4G Cellular Networks

2.4.1 Introduction

In 3G/4G cellular networks, data applications are the prominent ones. For a data
link, in principle, there is no specific acceptable performance level, below which the link is
considered useless and above which improved performance is indifferent (as in voice nodes),
but a continuous trade-off between achieved performance and the cost to achieve it. Thus,
in general, there is never a question of whether a node should power off or not, but rather
a question of how to decide on power levels to best optimize various metrics.

A good methodology for modelling and addressing these issues is to consider utility,
value, and cost functions. A utility function U(-) expresses the (dis)satisfaction of a link that
utilizes system resources. In the case of power control games, the general form of a utility
function is U;(P;, ;) = Vi(P;,vi) — Ci(FP;), where V;(+) is a value function that expresses the
value that (the owner of) link i perceives and C;(-) is a cost function that expresses the
resources that it has to spend to achieve this value. In the following, we will present some
fundamental approaches in this direction. Further material can be found in [45] (mainly in

Chapters 5 and 6).

2.4.2 Key Approaches

In [52], Saraydar, Mandayam, and Goodman propose a utility function for each player
7 that approximates the number of information bits that are successfully received per Joule

of energy expended.

LR

UPi) = 37 00 (2.14)

where L is the number of information bits per frame, M is the total number of bits in
a frame, R expresses the bit rate, P; is the power of node i and f(7;) is a function that
approximates the probability of correct reception of a frame. They model the problem as
a non-cooperative game, where each node tries selfishly to maximize (2I4]). The authors

show that as long as each node uses the same function f, there is a unique Nash Equilibrium

(NE), where the achieved SINR will be the same for each node.
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They then modify the utility function to

LR

Ui(Pi; %‘) = MP

f(vi) — e, (2.15)

where each node 7 pays proportional to its power P;. Parameter c; is a positive constant.

By applying supermodularity theory, they show that this utility function admits
many Nash Equilibria and the NE with the smallest powers can be computed in a (syn-
chronous or asynchronous) distributed way. This NE is more efficient than the one of
(2.14)), though it leads to different SINRs for the nodes, so it is unfair in that sense. As a
final note, they also investigate general (non-linear) pricing functions as a way to find more
efficient Nash Equilibria. This idea has two disadvantages: It complicates the problem and
it destroys its distributed solution aspect.

Xiao, Shroff, and Chong in [53] choose a sigmoid function with parameters a; and b;
and apply linear pricing of the transmission power:

1

1+ exp(—a; (v — b;))

By adjusting the values of parameters a; and b;, utility functions that are suitable for either

— P, (2.16)

data nodes (higher SINR target but acceptable to power off for a while), or voice nodes
(lower SINR target but not desirable to power off even for a while) may be constructed.
They reformulate the FM formula as

Pi(k)
i (k) ’

where 7;" is the SINR target that changes from round to round.

Fi(k+1) =~ (2.17)

By applying the Yates’ framework [42], (ZIT) converges (synchronously or asyn-
chronously) to a unique power vector from every initial power vector, provided that such a
vector exists. The performance of the scheme is improved by applying adaptive pricing, i.e.,
by taking into account both the channel conditions and the distance between the transmitter
and the receiver to decide the pricing coefficient ¢;. However, a complete analysis of the
optimal linear pricing policy is left as an open issue.

In [54], Leung and Sung propose the concept of opportunistic power control. This
means that not only do they decrease SINR targets when channel conditions worsen (as
done in [53] too), but they also decrease their transmit powers in this case. An interesting
property and significant advantage of this approach is that if some nodes targeting voice
applications update their powers using (ZI0) and can achieve their 4} targets, they can
coexist without falling below their targets.

Finally, Table 2.4 presents a comparison of the schemes that we have discussed. In

addition to our previous comments, we mention that the main drawback of [52] is that
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Table 2.4: A taxonomy of power control approaches in 3G /4G networks.

Zero Non-Zero Voice Nodes & | Asynchronous
Paper Cost Function | Cost Function Data nodes Version Prax
Leung et al. [54] v v v
Saraydar et al. [52] v v v v
Xiao et al. [53] v v v

it is only suitable for data nodes. A major limitation of [53] is that no Pp.x constraint
is included in the analysis. Lastly, [54] does not discuss an asynchronous version of the

proposed scheme.

2.5 Power Control in Other Types

of Wireless Networks

In this section, we shall briefly discuss some power control approaches that focus on
various types of wireless networks other than cellular networks using a representative paper

for each type.

In [55], Kawadia and Kumar propose various algorithms that focus on either max-
imizing the network capacity or minimizing the energy consumption of a wireless ad hoc
network. They firstly present COMPOW, an algorithm that finds the minimum (common)
power that can be used by all nodes of the network so as to maximize the network capacity.
This is feasible provided that the distribution of the nodes is homogeneous. If this is not
the case, they propose CLUSTERPOW, an algorithm that dynamically creates clusters of
nodes that use the same power. They show that this process is optimal in terms of network
capacity too. Then, they focus on the energy consumption minimization, by using a varia-
tion of the Bellman-Ford Algorithm named MINPOW that leads to a global minimization of
the energy spent. Finally, authors present LOADPOW, a scheme that applies power control
based on the network load, i.e., nodes increase their power when the load is low and vice

versa. We have already seen an application of this idea in [53].

It is worth mentioning that these schemes correspond to a cross-layer design, involv-
ing both the physical layer and the MAC sub-layer of the IEEE 802.11 protocol. A common
limitation of these ideas is the demand of synchronization among nodes, which is both diffi-
cult to achieve and adds an overhead to each method. However, even if the implementation
of many of these schemes is questionable (mainly) due to various firmware limitations, these

ideas remain interesting.
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Table 2.5: A taxonomy of power control approaches in non-cellular wireless networks.

Max Network | Min Energy Congestion/ Power Control &
Paper Capacity Consumption | Fairness | Load Control | Channel Assignment
Kawadia et al. [55] v v v
Messier et al. [57] v
Morreno et al. [5§] v v
Nie et al. [56] v v v v

In [56], Nie, Comaniciu, and Agrawal deal with power control in the context of
cognitive radio networks. A game theoretic model is proposed by using a utility function
that takes into account both the interference that an entity receives from other entities
and the interference it imposes to other entities that are using the same channel. The key
difference from other game theoretic works that we have discussed (e.g., [52], [53]) is that
these cognitive devices are able to also adapt their transmission rate. Thus, by changing their
modulation scheme, their SINR targets change as well. Extensive simulations that consider
power control with and without channel assignment as well as with and without power
limitation are presented. They show that the joint power control and channel assignment
scheme presents the best performance in terms of (i) throughput, (i) energy consumption,
and (74) fairness. However, analytical models have not been developed so as to formally
prove these findings.

In [57], Messier, Hartwell, and Davies discuss power control in wireless sensor net-
works. As expected, they focus on minimizing energy consumption, which is reasonable
since battery replacement is not always possible in cases where sensors are placed in remote
places. They present a cross-layer approach (extending many previous works) that takes
into account the link and the physical layers. The goal is to minimize the energy that is
spent per symbol transmitted at both the physical layer and at the link layer (due to poten-
tial retransmissions of the frames). Further work on reducing the complexity of the scheme
is needed to ease its adoption and facilitate its implementation. Moreover, the demand for
synchronous nodes is a disadvantage which should be treated carefully. A framework similar
to the Yates’ seminal paper [42] would be very useful.

Lastly, in [58], Morreno, Mittal, Santi, and Hartenstein apply power control in the
context of Vehicular Ad hoc NETworks (VANETSs). They present a power control scheme
with a view to increasing vehicular traffic safety. Messages that a VANET vehicle may send
belong into two categories: (7) some periodic messages that transfer standard information
and are transmitted by all vehicles and (1) some safety-critical messages that are transmitted
only when some emergency arises. The latter have higher priority and are transmitted by

higher power (when necessary). Thus, channel saturation for priority messages due to the
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transmission of periodic messages is avoided. Moreover, their scheme considers fairness in the
sense that it maximizes the minimum power used for the transmission of periodic messages
by all the nodes of the vehicular network. It is quite interesting that this conception is
similar to the key idea of Zander’s early works [19], [34], though VANETSs do not share
many similarities with cellular networks. Fairness is achieved provided there is perfect
communication among all the interfering nodes. This is quite unrealistic for a VANET as
nodes change their positions rapidly. However, simulations show that the results are close
to the theoretical ones. Egea-Lopez et al. [59] have recently presented a scheme that meets
similar goals by reducing the number of periodic messages that need to be exchanged.

In Table 2.5 we compare the above mentioned approaches in terms of various char-
acteristics, summarizing our comments in the previous paragraphs.

Finally, it is worth mentioning that whereas power control is implemented in the
core of the 3G and 4G technology (a detailed description is provided, e.g., in [45]-mainly
in Chapter 10), it has not been so widely adopted in other technologies. Notably, power
control schemes that are compliant with IEEE 802.15.4 (a standard for low-rate wireless
personal area networks) have been recently proposed, for example, in [60]. This is not so
much the case currently for IEEE 802.11 networks, as the hardware and wireless driver
support for power control is very limited in many cases. IEEE 802.11h supports transmitter
power control, but this standard is not yet supported by the bulk of the current wireless

cards [61]. Wide industry adoption of power control for Wi-Fi remains an open issue.



Chapter 3

Power Control and Bargaining in

Wireless Networks with Autonomous

Nodes

3.1 Introduction and Motivatio

In this chapter, we consider a wireless network as described in Section[I.Al We assume
that the nodes apply the Foschini-Miljanic (FM) algorithm [32] that we have reviewed in
Section 2.3.1l As we have discussed, in this context, nodes are competitors in the sense that
each one creates interference to all others, influencing negatively their SINRs. In Table B.1]
we present an equivalent model of FM under the prism of non-cooperative game theory. N
wireless nodes apply transmitter power control; the utility function U; of each player ¢ is
the absolute value of the difference of its current SINR ~; (L) minus its SINR target 7.
Indeed, it is easy to show [54] that this game admits a unique Nash Equilibrium (NE) and

the iterative scheme that updates the power at round k+1 as:

Pi(k+1) = min {Pmax,vf];j((:)) } , (3.1)

converges to this NE. As we have discussed in Chapter 2], (B.I]) corresponds to the FM scheme
that was subsequently simplified by Bambos [39] and Grandhi, Zander, and Yates [41]. At
the NE (B.1)), where P;(k + 1) = P;(k), player i has either achieved its target or it is below
its target and transmits with Py ..

An important question, which motivates our work in this chapter, is the following:
How often does the FM scheme end up at an efficient NE, i.e., How often have all nodes

achieved their targets at the NE?

!This chapter is based on papers [62], [63].

30
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Table 3.1: Game formulation.

Set of players Set of nodes N = {1,2,..., N}
Strategy of player i P; € [0, Prax]
Utility function for player @ U=—|vi — '7f|
100 - - '
- Efficient NE point
z 80y B 1 fficient NE point i
=
S
o 60Ff
5]
[P]
g
[0}
2
& 20t
0
4 7 10
Number of Links

Fig. 3.1: Application of the Foschini-Miljanic (FM) algorithm. The horizontal axis depicts

the number of links of the topology and the vertical axis the percentage of scenarios.

To explore this issue, we have simulated a number of small wireless networks consist-
ing of 4, 7, and 10 links (i.e., transmitter-receiver pairs). For each set of links, we run 50,000
scenarios where uniformly distributed links apply the FM algorithm. Fig. Bl presents the
number of topologies that lead to either (i) an efficient NE (meaning that all links reached
their targets), or (ii) an inefficient NE (meaning that at least one link cannot achieve its
target). Simulation parameters are presented in Table Even in these small setups where
few entities coexist, inefficient NE arise for a significant number of cases (over 10%, over

30%, and over 60%, for 4, 7, and 10 links respectively).

For these cases, some interesting approaches have been proposed in [34] and [53].
In [34], Zander proposes that the t > 1 weakest entities (i.e., the ones that are farthest from
their targets) should power off. We call this approach the Trunc(ated) FM power control
algorithm, as N-t entities update their powers according to FM, whereas ¢ entities power
off. This is a partially distributed algorithm, as entities need to cooperate to find out the ¢

weakest ones.

In [53], Xiao, Shroff, and Chong formulate a non-cooperative game where entities
adapt their targets (which are now soft) to the channel conditions. As a link feels more
interference, it decreases its target and may even power off. Pricing of the power is intro-

duced as a way to encourage the nodes to adjust their targets.
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Table 3.2: Simulation parameters.

Parameter Value
# Links of each Topology 4,7, 10
# Scenarios per Topology 50,000
Simulation Terrain A square of size 100
Transmitter (Tx) Distribution Uniform
Rx is placed randomly in the interior
Receiver (Rx) Distribution of a circle of radius 5 from its associated Tx
Path Loss Model G = f(d™%), d: distance between Tx and Rx
Noise Power 10-¢
SINR Targets (in dB) [10,15]
Initial Transmission Powers (0, Prax]
Initial Budget for Tx; B;(0) 1000

Both these policies, though effective, are not appealing to nodes and therefore quite
difficult to implement in practice. Indeed, in modern wireless networks, entities are in
general autonomous (e.g., they may belong to different operators that share spectrum) and
could not be obliged to power on/off based on the instructions of an external entity.

Motivated by the above remarks, in this chapter, we deal with scenarios that lead to

inefficient NE after the application of FM and we make the following contributions:

e We propose the Distributed Bargaining Foschini-Miljanic algorithm (DBFM) that
combines FM with a bargaining approach. DBFM is a heuristic method that aims
at finding a (N-t)-efficient NE, which we define as a state where N-t nodes achieve
their targets.

e We compare DBFM with key related approaches [34], [53] in terms of efficiency (per-
centage of scenarios that can find (N-t)-efficient NE) and fairness (which subset of
nodes achieve their targets at the (N-t)-efficient NE). Simulations show that our

scheme outperforms the above approaches under these metrics.

3.2 DBFM: The Distributed Bargaining
Foschini-Miljanic Algorithm

We propose the Distributed Bargaining Foschini-Miljanic (DBFM) algorithm for the
network that consists of N nodes, which is a heuristic that aims at finding (N-t)-efficient

NE, which we define as states where N-t nodes have achieved their targets. DBFM works
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on top of FM. It takes as input the NE power vector that arises after the application of FM;
some nodes have just achieved their 4} targets, whereas those that have failed to achieve
their targets transmit with P ..

We now provide a detailed description of how nodes update their powers at a partic-

ular round of the scheme.

e Which nodes take part in the negotiations?

At the NE that arises after the application of FM, nodes are separated in two sets:
The set of satisfied nodes L, that have achieved their targets and the set of unsatisfied
nodes Ly, that are below their targets and transmit at P... Nodes in the former set
are not interested in participating in any sort of negotiation. Nodes in the latter set
negotiate pairwise. Negotiations take place through the budget that each node has
collected previously from this scheme or other network operations. This budget can
be based either on real money or some virtual currency [64] that is used to promote
the efficient completion of network operations. It is not critical for our approach to

explicitly define the exact form of the budget.

e How does a node decide whether it is going to make or receive an offer?

In each transmission round, each unsatisfied node i chooses independently whether to
belong to the set of Buyers B or to the set of Sellers S. Then, it broadcasts its status
to the network. Each ¢ € B makes an offer to a node 5 € S.

e How does a Buyer 7 select its Seller 57

Provided that there is at least one Seller j € S, each Buyer ¢ picks up independently
a Seller j to negotiate with. It is clear that many Buyers may choose the same Seller

to negotiate with.

e How much a Buyer ¢ offers and what does it ask for?

Buyer ¢ makes a “take it or leave it” offer to Seller j of the form: “I offer you R;(7)
units if you reduce your power X;(7)%.” X;(j) is the minimum needed power reduction
from j so that ¢ achieves its target in the next round. To compute this, ¢ should be
able to estimate the exact level of interference from j. R;(j) is set to

R;(j) = max {O,B%Xi(j)} . (3.2)

7

Note that R;(j) depends on three factors: i’s budget B;, i’s distance from its target !,
and the percentage power reduction X;(j) that it asks for. The closer it is to achieve
its target, the bigger the offer that it makes. In case that ¢ cannot achieve its target

in the next round by making an offer to j, it makes no offer.
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e How does a Seller j evaluate the offers it has received?

Seller j collects all the offers that it receives and compares each offer R;(j) that it has
received from a Buyer ¢ with the quantity:

R;(i) = max {o, B%Xi(j)} . (3.3)

J

Seller j accepts every offer that fulfils the inequality: R;(i) < R;(j), t.e., every offer
that is greater or equal to the offer that it would have made to Buyer ¢ had it asked for
the same percentage reduction. Simulations reveal that this symmetric rule promotes
the fairness of our scheme. Let X7** be the maximum power reduction that Seller j

accepts. Therefore, its power at the next round will be:

(1= X")P(5). (3.4)

How do nodes update their powers at the end of the negotiations?

Let M = {1,2,..., M} be the set of Sellers that have a successful negotiation. Each
m € M transmits at (1 — X2*)P(m) and will receive a smaller QoS in the next
transmission round. The remaining N-m nodes apply the FM scheme. In case that

m = t, an (N-t)-efficient state has been achieved and the algorithm stops.

We conclude this section by presenting Algorithm [ that formalizes the previous discussion.

Algorithm 1 DBFM: Distributed Bargaining Foschini-Miljanic Algorithm.

1: N: Set of nodes, Ly: Set of nodes that are below their SINR targets, L,: Set of

nodes that have achieved their SINR targets, S: Set of Sellers, B: Set of Buyers, k:
transmission round.

: for k =1 — MAX_NUMBER_OF_ITERATIONS do

Each a € L, applies FM.
Each b € Ly, independently decides whether it is a Seller or a Buyer and broadcasts

its status to the network.

if S>1AB>1then
Each i € B selects at random one j € S to negotiate with.
i offers R;(j) units to j using (3.2)).
Each j € S collects all the offers that it receives and evaluates them using (3.3)).
if j has accepted at least one offer then

J updates its power using (3.4]).
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Fig. 3.2: A small wireless network consisting of 4 links. Each transmitter node (Tx) wants

to communicate with its associated receiver node (Rx) causing interference to all other links.

Algorithm 1 DBFM (continued)

11: else

12: it applies FM.

13: end if

14: Each ¢ € B applies FM.
15: if L, < N —t then

16: break;

17: end if

18: end if

19: end for

3.3 DBFM: An Example

In this section, we illustrate the functionality of DBFM with an example. Fig. B.2]
presents a small wireless network consisting of N=4 interfering links. This setup corresponds
to a wireless network as described in Section [L.Al

Fig. B3.3al presents the SINR evolution after the application of FM. After four itera-
tions, FM finds out the unique NE where both Tx, and Tx, are below their targets (targets
are presented as dashed lines on the diagram). In this example, we look for a (IN-1)-efficient
state, where 3 (out of 4) nodes achieve their targets.

We then apply DBFM, which takes as input the NE state of FM (Fig. B.3Dhl). This
is the reason why the SINR of each link at the 1" round of DBFM coincides with the SINR
value at the last round of FM.
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Table 3.3: Negotiations among nodes.

Corresponding | Buyer’s Buyer’s Request Seller’s
Round || Buyer Seller Offer for % Power Reduction | Decision
1 Txy Txo 70.5 330 NO
2 Txy Txg 77.3 380 NO
3 Txy Txg 82.6 450 NO
4 Txo Txy 74 470 YES

Table presents an example scenario that arises after the application of DBFM
in that topology. It shows the negotiations among the unsatisfied nodes during each round
of DBFM. The last column depicts the outcome of the negotiation. NO means that the
Buyer’s offer is not accepted. YES means that the Buyer’s offer is accepted.

In the first 3 rounds, Tx,; makes an offer to Tx, that is rejected. After a rejected
offer, Tx4 voluntarily reduces a bit its power (10%) to avoid re-offering the same amount
(Fig. B.3d). This voluntarily reduction of the power is not, in general, necessary. This is
the reason why we have not included it in Algorithm [Il However, in cases where are 2 nodes
that negotiate with each other, it is of the Buyer’s benefit to do that to be able to make a
bigger offer.

In the 4% round (Fig. B30, Fig. B.3d), Tx, makes an offer to Tx, that is accepted.
Tx4 reduces its power to the level so that Tx, achieves its target at the next iteration.

Therefore, the algorithm stops and a (IN-1)-efficient state arises.

3.4 DBFM vs. Trunc FM

We then compare DBFM with the Trunc(ated) FM power control algorithm. In
Fig. B.3d Txs is the one who powers off, since it is farthest from its target at the NE.
Then, the SINRs of all other nodes are improved (to notice this, just compare the SINR
values at the 1%° round of Trunc FM and the 5™ round of FM). However, after two more
iterations, Trunc FM stops. Indeed, as Fig. B.3¢ shows, the powers at 2°¢ and 3" round
remain invariable. However, this state is not (N-1)-efficient, as, although Txs powers off,
Tx,4 remains below its target.

This small example illustrates how powerful the integration of power control and
bargaining can be. Though Trunc FM has forced Txsy to power off, this is not sufficient so
that Tx,4 achieves its target. On the other hand, with our scheme, we give the opportunity
to Txs to achieve its target.

We finally compare the number of (IN-1)-efficient states that DBFM and Trunc FM
find. We use the simulation parameters from Table3.2l As shown in Fig. B.4] DBFM slightly
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Fig. 3.3: SINR and power evolution of nodes after the application of FM, DBFM, and

Trunc FM. Horizontal dashed lines correspond to the targets of the nodes.
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Fig. 3.4: Percentage of (N-1)-efficient states after the application of both DBFM and Trunc
FM for 1000 scenarios where FM did not lead to a NE with all nodes achieving their targets.

outperforms Trunc FM (and this becomes clearer as the number of entities increases), even
if it does not force an entity to power off. Therefore, our scheme is a preferable choice both

in theory and in practice than Trunc FM.

3.5 DBFM vs. Utility-Based Power Control

In this section, we compare DBFM with the utility-based power control (UBPC)
scheme [53] for the same topology and path loss model that the authors of [53] have used in
their simulations. There are six transmitter-receiver pairs, where each one should satisfy the
respective SINR targets (units are in dB): 12.5, 14, 17, 13.75, 13.5, and 13. As previously,
we look for a (IN-1)-efficient state.

Table 3.4 presents the negotiations for DBFM. N/A means that there is no available
Seller. As discussed previously, when the Buyer’s offer is rejected, the Buyer reduces its
power by 10%. Fig. B.5al shows the SINR evolution and Fig. B.50 the power evolution in
logarithmic scale. We notice that, after the 2"! round, Tx; and Tx, fall below their targets,
though they had achieved their targets at the last state of FM. This happens as FM does not
provide an “active node protection” mechanism as that of [39], so that a node that achieves
its target would not necessarily retain it during the next iterations of the algorithm.

Another observation concerns the SINR evolution after the 3'¢ round. We can see
that Txy and Tx3 overcome their targets without having offered any reward. In addition, the
SINR of Txg is two times its target, even though Txg has asked for the minimum reduction
needed (19.38%) to simply reach its target. This happens because Tx; asked for a bigger
reduction (86.74%) and since both offers got accepted, the SINR of Txg is greatly increased.



Table 3.4: Negotiations

among nodes.

Corresponding Buyer’s Buyer’s Request Seller’s
Round || Buyer Seller Offer for % Power Reduction | Decision
Txs N/A NO OFFER NO OFFER N/A
1 Txe N/A NO OFFER NO OFFER N/A
2 Txs Txg 171.64 77.99 NO
Txy Txs 819.37 86.74 YES
Txy Txs NO OFFER NO OFFER NO
3 Txg Txs 156.24 19.38 YES
4 Txs Txy NO OFFER NO OFFER NO
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Fig. 3.6: Comparison of the SINR that arises after the application of DBFM and UBPC.
In both cases, 5 out of 6 nodes achieve their SINR targets. DBFM leads to a better SINR

for 4 out of 6 nodes.

This is due to the fact that each successful bargaining causes a positive side effect
even to nodes that do not take part in any negotiation, since each of them can increase its
SINR as well. However, this positive side effect is, in general, not sufficient for an unsatisfied
node to achieve its target.

In Fig. B.6l we compare the performance of UBPC vs. DBFM. We have used the
parameters for UBPC that have proposed the authors in [53]. Both algorithms lead to
an (N-1)-efficient solution; DBFM outperforms UBPC as 4 out of the 6 nodes achieve
higher SINR, even though DBFM does not enforce a node to power off; the reason is that

negotiations among nodes provide the opportunity to lead to more efficient operating points.

3.6 On the Fairness of DBFM

Up to now, we have studied the results of the proposed schemes focusing on a single
transmission round. However, nodes are expected to coexist in the same topology for longer
intervals. This implies that a power control scheme should be fair in the following sense: if
the same set of entities with the same targets apply the proposed scheme continuously, the
set of entities that satisfy their targets should vary over time. Unfortunately, Trunc FM
and UBPC are by design unfair, as they always penalize the weakest node, which will never
have the opportunity (not even to try) to transmit.

We propose that during the (m + 1)™ transmission round, nodes reset all their pa-

rameters to the last state of FM except their budgets, which are the ones that arise after the
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Fig. 3.7: We apply DBFM for the same set of nodes, by resetting their parameters to the
last state of FM. The budget at the (m + 1)* round is the one that arises at the end of the

m*™ round. For every period of 100 transmission rounds, we count how many times Txs and

Txg do not achieve their targets.

application of DBFM at the m! transmission round. So, the rewards that the unsatisfied
nodes may have collected during negotiations of previous rounds could be used to increase

their chances to make an offer that will get accepted during a following round.

Fig. B presents the results of DBFM for the topology of the previous section for
10000 transmission rounds. The initial budget is set to 1000 units for all nodes. Every
period of 100 transmission rounds, we count the number of times that each node fails to
achieve their target. In our example, these are Tx5 and Txg. The numbers of their respective
transmissions have an an average ratio 3:2 per period, i.e., 60 out of 100 transmission rounds
Txs powers off, whereas the remaining 40 Txg powers off. Most importantly, simulations
reveal that the rotation between the two transmissions are frequent, so that our scheme
promotes fairness even in short time scales. This is an important advantage of DBFM, as

all nodes regularly and frequently get the opportunity to transmit their data.

This behaviour is due to the dynamically adjusting mechanism that nodes follow
when they either make or evaluate an offer. Each Buyer i« computes its offer in terms of
percentage of its current budget, not as an absolute value of the form “I offer up to X units
to ask for a reduction up to Y%”. Each Seller j follows the same strategy too. This is a fair
system as: (i) Each Buyer offers the same percentage of its budget when it asks for the same
percentage reduction. (ii) Each Seller rejects/accepts an offer based on the reward that it

would have offered had it asked for the same power reduction. Observe that the exclusive
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use of percentages means that the operation of the scheme does not depend on the absolute

values of the initial budgets, but only their relative sizes.

3.7 Conclusions

In modern wireless heterogeneous networks, distributed schemes for efficient spectrum
management are a prerequisite for their successful deployment. Our work provides a solution
to a problem that arises very often in such networks, i.e., how to increase the number of
entities that can achieve their QoS targets. Through bargaining, nodes create incentives
to other nodes to reduce their powers, leading to operating points that are more preferable
than the NE point without bargaining. Simulations show that our distributed approach is

efficient and fair, promoting the smooth coexistence of the nodes.



Chapter 4

Non-Cooperative Power Control in

Two-Tier Small Cell Networks

4.1 Introduction and Motivatio

As discussed in Chapter [Il the demand for mobile data is currently increasing with
a tremendous rate, with about 80% of the traffic generated indoors (mostly at home or at
the office) [66]. A major challenge for mobile operators is to continue to provide excellent
data experience indoors given this significant growth of data traffic. However, a prerequisite
for excellent indoor data traffic is excellent signal strength. New wireless cellular standards,
such as 3GPP High Speed Packet Access (HSPA) and Long Term Evolution (LTE) achieve
considerable improvements in system capacity and throughput, but at the cost of high
operational expenses and capital expenditures. A way to solve this problem is to deploy, in
addition to standard cells, termed macrocells in our context, a large number of smaller and
cheaper cells which are called small cells and connect to the mobile operator network using
residential DSL or cable broadband connections [6]. Small cells are expected to be a key
feature of 5G networks, where all cells will be self-organizing [4].

Indoor users that are connected to small cells experience superior indoor reception
and achieve better data rates than the users that are connected to macrocells. Often, this
is achieved with low transmission power, so that battery life prolongation is also achieved.
Such networks, comprised of a conventional macrocell network overlaid with a number of
small cell base stations are referred to as two-tier small cell networks.

One of the biggest challenges for the successful deployment of these networks is
mitigating the interference that small cell nodes cause to macrocell nodes (and vice versa)

when they share the same frequency bands (which is the typical case) [67]. If the level of

IThis chapter is based on paper [65].
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interference is not controlled, the deployment of two-tier small cell networks is problematic.
Observe that cellular networks have been dimensioned without taking into account the future
existence of small cells, and therefore it is imperative that their mobile nodes be protected.
Consequently, the adoption of radio resource management techniques is of crucial importance
in alleviating the problems of the additional interference that arises in these networks.

Moreover, in such networks, where both macrocells and small cells are present, enti-
ties have heterogeneous targets and needs. Providing schemes that, depending on the entity,
will focus either on voice or on data services remains an important open topic. In our work,
we assume that macrocell (traditional) nodes are mostly interested in making voice calls.
On the other hand, small cell nodes focus on data services.

The goal of this chapter is to study the above challenging scenario under the prism
of non-cooperative game theory. Contrary to typical formulations that use a single util-
ity function, we capture the different behaviours of the nodes by defining different utility

functions. Our contributions are the following:

e For the above defined game, we prove the existence and derive conditions for the

uniqueness of a Nash Equilibrium (NE).

e We propose a distributed power control scheme that, based on the best response

dynamics method [68], converges to the unique NE.

e We show through simulations that, with our scheme, nodes can efficiently coexist,

achieving their performance targets in the vast majority of simulated scenarios.
4.2 System Model

We study a CDMA network that consists of N7 macrocell mobile nodes (MNs) and N,
small cell mobile nodes (SCMNs) that coexist in the same area as described in Section [
We focus on the uplink and we assume a closed-access model [6]. This means that each
small cell base station (SCBS) may associate only with predefined SCMNs and no MNs can
connect to it. In Table [4.1] we present the non-cooperative game formulation of this setup.

In this game G, each MN; updates its transmission power P; that belongs to [0, Pyax]
aiming at maximizing its utility function which is a logarithmic function of the SINR.We

restate in (4]) the SINR definition having explicitly included the spread factor of the CDMA
N
network, denoted by L. We also define as R; = > G; P; +n the total interference plus noise
#i
Giibi G b
7 = SINR; = L— =L : (4.1)

R;
2. Gl +n
i

that node 7 receives:
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Table 4.1: Game formulation.

Set of MNs Set of SCMNSs
Set of players Ny, ={1,2,..., Ny} Ny, =1{1,2,...,No}
Strategy of player 1 P; € [0, Ppax] P; € [0,SCPmax]
Ui = B;log(1 + i),
Utility function for player i where v; <~} U; = Bjlog(1+v;) — ¢ P

The utility function we use (see Table 1)) can be interpreted as being proportional
to the Shannon capacity and is weighted by a positive player-specific parameter B; that
corresponds to the player’s desire for SINR. Moreover, there is one constraint: The SINR of
player 7 should belong to the interval (0, ~/].

On the other hand, each SCMN; updates its power P; such that it belongs to a
different interval [0, SCPy,.,] and uses a different utility function. Clearly, according to the
current state-of-the-art, SCP . < Punax. Apart from the value part (which is the same with
the one of a macrocell node), there is also a cost part, which is a linear function of P; and
reflects a price that player ¢ has to pay for using a specific amount of power. This utility
function is inspired by the one proposed in [33].

The reason that we choose different objective functions for each category of players is
the following: Macrocell nodes have a higher priority to be served by the mobile operators,
as they will be mostly used for inelastic, voice traffic. For this reason, they are not interested
in having an SINR higher than 4f. They can use any power up to Py (without paying for
their choice) to overcome the extra interference that is caused by the small cell nodes. On the
other hand, small cells are deployed by indoor users for their own interest. Consequently, a
pricing policy is applied to discourage them from creating high interference to the macrocell
nodes. However, as small cells have generally higher demands for QoS, there is no maximum
SINR constraint for them.

As a final comment, we point out that the idea of using different objective functions
for small cell and macrocell nodes has already been proposed in [69]. However, the approach
there is based directly on the SINR. The authors demand that the SINR of each node @
belongs to an interval [minSINR;, maxSINR;], and in case that the targets of macrocell
nodes cannot be achieved, small cell nodes are obliged to adjust their targets to the interval
[k - minSINR;, k£ - maxSINR;|, where 0 < k& < 1. Other power control approaches in small
cells are reviewed in [70)].

Finally, after our work in [65] that is summarized in this chapter, there have been
published two works that share a similar vantage point: [71], [72]. In [71], Tsiropoulou et al.
present a non-cooperative power control scheme focusing on the uplink. They also propose

different utility functions to model the preferences of the heterogeneous users. However,
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contrary to our work, they build upon [52]. They adopt similar utility functions (which are
somehow artificial, as we have discussed in Chapter 2]) so as to formulate a supermodular
game. In [72], Huang et al. focus on the downlink and adopt a variation of the utility
function that we have used for the small cells nodes. Instead of using as a pricing function
a linear function of the transmission power, they apply a linear function of the sum of the
interference that each SCBS causes to the neighbouring nodes. They show that the scheme

admits a NE, however conditions on the uniqueness are missing.

4.3 Existence of a NE in the Two-Tier Small Cell Net-

work Game
To prove that the game G has at least one NE, we use the following theorem by
Debreu-Fan-Glicksberg (1952) [73]:
Theorem 1. Let G be a strategic non-cooperative game. Suppose thatVi € N = {1,2,..., N}:

o The strategy set S; is compact and convez.

o The utility U;(s), where s = [s1,89,...,58n|T, is continuous in s and quasi-concave

m Ss;.
Then the game G has at least one NE.

Theorem 2 (Existence of a NE). The two-tier small cell network game G that was defined

i the previous section has at least one NE.

Proof. We distinguish two cases. In case 1, let player ¢ be a SCMN. Each SCMN; has a strat-
egy set P; € [0, SCP .x], which is compact and convex. The utility function U;(P;,P_;) =
B;log(1+ ;) — ¢;P;, is continuous in P = [Py, P, ..., Py]". Tt is also twice differentiable so

we can take the second order partial derivative with respect to P;.

2
*U; —_B G ? (1 T %> (4.2)
orr = P\ R) Tii @ '

As the second order partial derivative with respect to P; is negative, the function U;(P;, P_;)
is concave in P;, hence quasi-concave [74]. Therefore, we prove that both conditions of
Theorem [l hold for each SCMN;.

In case 2, let player i be a MN. Similarly, the strategy set [0, Ppax] is a compact and
convex set. The utility function U;(P;, P_;) = B;log(1 + ;) is continuous in P and concave
in P; (it coincides with ([4.2])). So, all conditions of Theorem [ hold for each MN too.

Consequently, our game G has at least one NE. m
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Table 4.2: Application of best responses in a two-players game. Numbers in cells correspond

to the utility of each player.

Player, )
Bach Stravinsky
Player,
Bach (2,2) (0,0)
Stravinsky (0,0) (1,1)

4.4 Best Response Dynamics Schemes

Given the fact that we know that a game has a NE, how can we devise an algorithm
that converges to a NE? We shall present the fundamentals of best response dynamics

schemes, which may lead to a NE.

Definition 3. Let G be a strategic non-cooperative game. The best response strateqy of

player i is the one that mazximizes its utility, taking other players’ strategies as given.
An equivalent definition of the NE incorporates the notion of best response:

Definition 4. s = [sy, 8o,...,sx|! is a NE of a game G with N players iff every player’s

strateqy is a best response to the other players’ strategies.

The idea of best response is useful when we are trying to find an approach to reach
a NE of a game. A best response dynamics scheme consists of a sequence of rounds, where
in each round after the first, each player ¢ chooses the best response to the other players’
strategies in the previous round. In the first round, the choice of each player is the best
response based on its arbitrary belief about what the other players will choose.

In some games, the sequence of strategies generated by best response dynamics con-
verges to a NE, regardless of the players’ initial strategies. However, this does not hold
in general. A nice counter-example is presented in Table .2 [30]. Let us suppose that,
at round 1, Player; believes that Players will choose Bach, whereas Playery believes that
Player; will choose Stravinsky. So, Player; will choose Bach as best response to that belief
and Players will choose Stravinsky correspondingly. So, at round 1, they will play (Bach,
Stravinsky) and the utilities will be (0,0). At round 2, the best responses to round 1 will
lead to (Stravinsky, Bach) and the utilities will be (0, 0). So, the choices will infinitely switch
from (Bach, Stravinsky) to (Stravinsky, Bach) and vice versa. Players will never reach one

of the two NE of the game, i.e., (Bach, Bach), (Stravinsky, Stravinsky).
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4.5 Power Control under Best Response Dynamics

Although the adoption of the best response dynamics scheme is neither a necessary
nor a sufficient condition for reaching a NE, it has been used as the basis for distributed
power control schemes in many cases [73], [75]. We shall adopt it here as well, exploring the
conditions that guarantee its convergence.

We can see our game G as a collection of N parallel optimization problems, where
each (SC)MN aims at maximizing its own utility function U; (equivalently, minimizing —Uj;)
with no interest for the others. We shall pose these optimization problems and solve them
with the use of Karush-Kuhn-Taker (KKT) conditions [74].

The minimization problem of MN; is defined as follows:
II}lDin —U;(P;,P_;) = min{—B; log(1 + )},
subject to: 0 < P; < Ppax and v; < ’yf.

The constraints can be rewritten as:

—.PZSO, -PiSPmaxa L

The KKT conditions are:

_/\IR = 07 >\2<-P1 - Pmax) - 07

Q. P G G
M L—" —~t) =0, —B,L——— —\ A A L—2 =0
5( R; ”yl> 7 R, + G P 1A A R; ’

>0, i={1,2,3}

The objective function and the inequality constraints functions are differentiable
convex functions. Therefore, the KKT conditions are necessary and sufficient conditions for
having primal and dual optimality [74]. By solving the system of the KKT conditions, we
get the optimal power P’:

R:
P* =min{ Poax, Vi—— ¢ . 4.3
g min { Yi IG. } ( )

Therefore, we arrive at the well-known Simplified Foschini-Miljanic formula with a
Ppax constraint [41]. However, the key difference is that, contrary to [41], where each node’s
utility value is either 0 (when the 7} target is not achieved) or 1 (when the target is achieved),
each node gets a non-zero value even if it has not achieved its target.

The minimization problem of SCMN; is defined as follows:
H}Din —U;(P;,P_;) = min{¢; P, — B;log(1 + )},

subject to: 0 < P; < SCPpax-



49

The constraints can be rewritten as:

_PZ S 07 PZ S SCPmaX7 L

The KKT conditions are:

_)\1P1 = 07 )\2(P7, - SCPmaX) = Oa

G- P G G-
M| L/ At ) =0, —BL——=—— — )\ A A L— =0
3( R; %> ’ R, +GuP At R; ’

A >0, i={1,2,3}.

The objective function and the inequality constraints functions are differentiable
convex functions. By solving the system of the above equations, we can compute the optimal

power P
B. .
P’ = max {0, min {C—Z — _L}C%;»' , SCPmaX}} ) (4.4)

We then present the pseudocode of Algorithm 2] which is based on an iterative application
of the equations (4.3) and (4.4]).

Algorithm 2 Power control under best response dynamics for a two-tier small cell network
1: for k=1 — MAX_NUMBER_OF_ITERATIONS do

2: each (SC)MN;, passes to its associated (SC)BS, the level of the total received power

N
Ri = Z G]ZPJ + n.
J#i

3: each (SC)MN, computes the quantity v, = L%{é{“).
4: if 7 is a macrocell node then
5: it updates its power at round k+1 according to (£.3]), as follows:
P(k+1) = min {Pmax, 5! }Zé@ } , (4.5)
6: end if
7: if 7 is a small cell node then
8: it updates its power according to (4.4]), as follows:
. [ Bi Rik
P(k+1) =max {0, min {C_z — LC(?“) : SCPmaX}} . (4.6)
9: end if
10: if Vi e N: ||P;(k+ 1) — P;(k)|| < € then > € : a small positive quantity.
11: break;
12: end if

13: end for
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Observe from Algorithm 2] that each (SC)MN, needs to know the following elements

to update its power:

1. its power at the previous transmission round k,

2. the values of the parameters L, Gj;,

3. the total interference that it has received at the previous transmission round,
4. (if it is a MN) its target ~/,

5. (if it is a SCMN) the values of the parameters B; and ¢;.

Elements 1, 2, 4, and 5 are known to (SC)MN,; element 3 can be passed by the associated
receiver of node i. Therefore, Algorithm 2] is a fully distributed scheme. We also mention
that Algorithm 2] is a synchronous scheme, in the sense that (SC)MNs should update their
powers concurrently. Note that it works even with asynchronous updates, provided that
each (SC)MN measures its level of interference at round k and updates its power in the

semi-open time interval [k, k + 1).

4.6 Uniqueness of the NE for Two-Tier Small Cell Net-

work

In this section, we prove that Algorithm 2] converges to a NE and this is the unique NE
of the game. Mathematically, the uniqueness of a NE is equivalent to proving the existence
of a unique fized point. Given a function f(z), ¢ is a fixed point of the function f(z) if and
only if f(c) = ¢. We restate the following notions from distributed optimization [76], which

will be useful in the rest of this section.

Definition 5. Let M(-): X — X be a mapping and x* € X be a fived point. M is a

pseudo-contraction mapping with respect to some norm || - || if there ezists k € [0,1) so that
IM(x) - x| < hlx— x*[, Vxe X,

The difference from a contraction mapping is that, in a pseudo-contraction mapping,

x* 1is fixed.

Theorem 3. Let X C R" and the mapping M(-) : X — X be a pseudo-contraction with a
fized point x* € X, i.e., M(x*) = x*. Then M has no other fized points and the sequence
{x(k)} generated by x(k + 1) = M(x(k)) converges to x*.
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Let T;(k) = Gi;P;(k) be the received power from the transmission of (SC)MN, at
time k. Equations (£3) and (£0) can be rewritten as:

(4.7)

T:(k
MN received power: T;(k + 1) = min {szax,% i + ’YZM} )

iiBi i (K
SCMN received power: T;(k 4+ 1) = max {O, min { G _ M, SCTiymaX}} )

C; L L
4.8)
Similarly, the received power level at the NE 77 can be rewritten as:
T:
MN NE received power: T} = min {TZ maxs ”yl 7 + %%} ) (4.9)

GiiB; i 17
SCMN NE received power: T} = max {O, min { e h, SCTi,max}} .
(4.10)
Let also

ATi(k) = Ti(k) — T (4.11)

(2

be the distance between the received power from the transmission of (SC)MN, at time &

and the received power level at the NE. We state the following theorem:

Theorem 4. Let N = {1,2,..., N} be the set of players in the two-tier small cell network
game. The following inequalities hold Vi € N:

e [fiws a MN, then:

AT (k+1)] < |y }:AT
J#l
e [fiis a SCMN, then:
|AT;(k+1) E:AT
J#Z

Proof. The proof is based on the examination of all possible combinations for the form of

the pair (T;(k + 1), T7). For each combination, we use properties of the absolute value.

e Let 7 be a MN. We distinguish 4 cases:
Case 1:

iz Li(K) iz LF
Tk +1) = #%—T_ tiF T
(k+1) %L+7 7 , %L+% 7
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Then:
iz Li(k) no 2 uly
AT (k+ 1) = |Ti(k+1) =T = Bl BN SN o b S N
|ATy(k + 1) = |Ti(k + 1) = T %L+% 7 N TN
> izi(Li(k) = T7) 1
= | =i DU (AT (R)|
J#i
Case 2:
iz I
Ti(k+1) = Thmax, T} = =ty
(k+1) = Ti max, %L+% 7
From (£7) and ([@3) we get:
Z#T(k) n ST
t g I Tiax, 0 el ’?ﬂ<Tlmax
’YZL—FF)/ L > 3 Y <72L+72 L
So:

ST (o ST 0 ST
(el LA PN SN, Lo ki N NS o NN (PN SN Lo s B RO
% I + Y I <7@ I + Vi I > = E,max (’Yz I + Yi I ) (4 12)

By using (4.12) we get:

T*
AT+ 1) = 05+ 1)~ T7] = [T 1 222505 | <
STk n ST )
<@1 t gL TINTS Tt 4 4e§Fi T | _Casel b
JFi
Case 3:
T;(k
Ti(k+1) —%L+%%, T} = T max
From (£7) and ([@3) we get:
Zﬁfz 77 t 1 tzj#Tj(k)
g g , u p g )
,}/’L L _I— ’Y’L L > E,maxa 0 < ,}/’L L _l_ ,}/’L L — Eﬂnax
So:
’L— - i T i . > T max — — ?—]7&1
’YZL—i_fy L (’YZL—’—’YZ L )— 5 (’Y’LL_F’YI L
(4.13)
By using (£13) we get:
2 (K _ﬂmax
AT+ 1) = [T+ 1) — Ty = |yt — g2t o) = Tima |
L L
Z T(kﬁ) n Z T 1
< EID) J#L Y p4egFE T | _Casel .t A
< %L 7= T TN i ;(AT](kz))
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Case 4:
E(k + 1) — ,-Ti,maxu E* - E,max-

Then:

|ATi(k + 1) = [Ti(k + 1) = T7| = |Ti max — Timax| = 0.
After examining all possible cases, we find that:

1

t
i %ﬁ, AT;(k)| -
VE

AT (k+1)| <

Let ¢ be a SCMN. We distinguish 9 cases:

Case 1:
GuBz j 1T k G“Bz j ZT*
Ti(k+1) = _E_M7 T = _ﬁ_zﬁf j
Ci L L C; L L
Then:
AT (k4 1) = |Ty(k + 1) — T¥| = | 2820 _ 2 =i _ a1 J#i
AT R+ )] = T+ 1) - 7] = [ S5 D o 0D Gulh By 2
>(L(k) =T7)] 1
] 3 =7 [2_(AT(#)
JFi
Case 2:
GuB; n i Tr
T(k+1)=0, Tr=-—9"t__— _Zi7zi’J
( + ) Y 7 Cl L L
From (4.8) and (LI0) we get:
GiBi _ n_ EJ#%TJUC) <0, GuB; no Zj#z‘ 13 >0
Ci L L C; L L
So:
C; L L C L L c; L L . .

By using (4.14) we get:

GuB; n 217
AT, | =|T; =T =|0— 282 _ 2 &=i7ii | <
ATk + )] = [T+ 1) - 77 = [0~ S5 - 2 S <
<@ GiiBi _n Zj;ﬁi Tf . GiB; _n ZﬁszTJ(k) _
- ¢ L L i L L
1
=0l 21D (AT (k)
i
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Case 3:
GuB: n D T*F
Tk +1) = SOT, e, T = 2000 1 Ziti s
(k+1) maxs 1 . 7 Z
From (L8) and ([@I0) we get:
o I L L S SCT ey, 0 < —— — — — =920 1 < SCT)
CZ L L ’ ’ - C’L L L - k]
So:
Gii B; _n Z;;éz]}(k) B (GiiB,- n Z#i Tj) -
Z z (4.15)
G:B: n .. TF
> SCTimax - - 77 .
- ’ < ¢ L L

By using (4.15) we get:

. B. T
AT+ ) = [0+ 1) = 77 = [SCTy e — S22 2 Zite | o
G
c@m |GaBi _n 2l (GuBi o 2. Ti(k) _
- C; L L C; L L
ase 1
=Cot LIS (AT ()
i
Case 4:
G.B, n YT
Tik+1) =220 2 &A1 pr o
From (4.8) and ([A.I0) we get:
G;iB; _n Z];AzT‘J(k) >0, GiiB; _n Zj?fl T’]* <0
C; L L C; L L
So:
0 < G B; _n Zj;éi T(k) < G B; _n Zj;éi T(k) B G B; _n Zj;éi Tj*
TG L L ¢ L L ¢ L L
(4.16)

By using (.10 we get:

G.B: n .. Ti(k)
ATk +1)| = |Ti(k+1) - TF| = |22 - 2 =iz I

AT+ )] = T3+ 1) - 77 = [ F25 - 5 - S ) <
@1) Gn'Bi_ﬁ_Zﬁein_ GiiBi_ﬁ_Zj;éiTj(k) _

¢ L L ci L L

1

=0l 21D (AT (k)

J#




55

Case 5:
Ti(k+1)=0, Tr=0.
Then:
ATy (k+1)| = |Ty(k +1) = T7| = [0 — 0] = 0.
Case 6:
Ti;(k+1) =SCTimax, 17 =0.
From (£8) and (£I0) we get:
GuBi _n_ 2T > SCT max, Gabi _n _ 2] <0
C; L L ' C; L L
So:
GiiBi_ﬁ_ijéiTj(k)_ G B; _n Zj;éi Tj* > GiiBi_ﬁ_ijéij}(k) (4 17)
C; L L C; L L C; L L . .

By using (LI7) we get:

iiBi i Li(k
AT (k + 1) = [Ti(k + 1) = T7| = |SCTi puax — 0] < ‘GC‘ - - M <
<(m G B; _n ZﬁézTJ(k) _ G B; _n Zj;éi Tj* _
&) L L C; L L
1
=Cel Z 1D (ATH(R)|
J#i
Case T:
T:(k 1) = 2 Z———j#z— Tr = Timax-
Z( + ) ¢ L L ’ 7 SC )
From (4.8) and ([A.I0) we get:
GuB;, n Y. Ti(k) GuyB: n D iuT?
< Jui 0 jF#i < ) w70 j#i g ) '
0 = c; L I = SCTl,maxy c; L L > SCTl,max
So:
G B; _n Zj;éi T(k?) (GnB' _n Zﬁez Tf) >
L L ; L L -
“ é . s (4.18)
> Timax_ 2 - i#i7] .
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By using (4.18) we get:

B, . Ti(k
AT ) = e+ ) - 17 = |G 2 2 DO g, | <
C;
<@BIy GuB; n o ZﬁézTJ(kf) _ (GuBi n Zﬁez 17 _
- ; L L G L L
ase 1
— ZM(@)‘
J#i
Case 8:
Ti(k+1) =0, T/ =SCTmax
From (4.8)) and (EI0) we get:
G B; _n Z];«ézTJ(k’) <0, G B; _n Z#i Tf > SCT, .
C; L L Ci L L ’
So:
GiiB; _n Zﬁéz T* Gy B; _n ZﬁézTJ(k') > G B; _n Zj;éz g* (4 19)
C; L L C; L L C; L L
By using (£.19) we get:
G B; I
ATk + 1] = [T+ 1) = T2 =10 = SCTy ] < |22 2 UL
<(m G B; _n Z]#TJU{") _ GiiB; _n Zﬁez T* _
C; L L C; L L
ase 1
=Cuel Z(Af@-(k»‘ .
J#i
Case 9:
Tz(k + 1) = SCTi,max; 71* - SCTi,max~
Then:

‘Acrz(k + 1)| = |n(k + 1) - 712*‘ = |SCTi,max - SCTi,max‘ =0.

After examining all possible cases, we find that:

ZAT

1751

AT (k +1
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Theorem 5 (uniqueness of the NE for the two-tier small cell network game). Let L be the

spread factor of the system and Yypax = mzliécyf. If N < max {% +1,L+ 1}, then:
Ze max
o The two-tier small cell network game has a unique NE.

e The power control scheme under best response dynamics of Algorithm [2 for SCMNs
and MNs converges to this NE.

Proof. We introduce the N-size vector AT that contains all the parameters AT; and we
take the maximum norm of that vector. By using Theorem [l and Theorem H], we can prove
the existence of a pseudo-contraction under the above condition and the convergence of
Algorithm 2 to a unique fixed point (i.e., a NE). As the best response dynamics scheme is a
pseudo-contraction in the entire strategy space, this is the unique NE of the two-tier small
cell network game [77].

In more detail, let
AT = [ATyn1, ATun 2, - -+ s ATunnt, ATsemn 1, ATsonn2, -+ ATscmnnz) "
be a N-size vector. Its maximum norm [|AT||, is defined as:
|AT||oo = max {|ATyun.1l], [ATvnz2|, - 5 [ATvx |, [ATsomnal, -+ [ATsomn N |} -

Then, by using Theorem [, we get:

IAT(kE + 1)]|0o = max{|ATun_1(k + 1), |[ATyno2(k + 1), -,
|ATyn w1 (B + 1), [ATsenn s (k + 1), |ATscmn o (k + 1)], -+, [ATsomn e (k + 1)}

We distinguish two cases:

e Case 1: The maximum norm ||AT(k + 1)|« belongs to a SCMN. Then:

}

} < %mgX{ilﬁfj(kﬂ} <

JF

|AT(k+ 1) = m?x{]ATi(k +1)[} < mzax{‘% ZAT](k)

J#i
1
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e Case 2: The maximum norm ||AT(k + 1)|| belongs to a MN. Then:

N
|AT(k+ 1) = max{|AT(k + 1)} < m{ 29T AT (k) } =
' ' i#i
1 al 1 al
_ t
- Emgx{%}m?X{ > AT } < mgX{Z |ATj<k>|} <
J#i j#i
1
< z’Ymax(N - 1) mjax{|A7}(k;)|} :
So:
N —1
AT+ 1) oo < ¥ AT(E) . (121)

From (£20) and (421]) we get:
N -1 N -1

IAT0+ Dl < max { e T AT (0

. N-1  N-1 \
200 +1) = T < ma {2 S ) -

From Definition [3], this is a pseudo-contraction mapping IFF:

N1 N1 <1 N<
max 7 Tmax T max

+1,L+1}.

,Ymax
Consequently, from Theorem[3] the power control game under best response dynamics
for SCMNs and MNs converges to a unique NE.
Moreover, as the best response dynamics scheme is a pseudo-contraction in the entire

strategy space, this is the unique NE of the two-tier small cell network game [77]. [l

4.7 Performance Evaluation

We have simulated our scheme for topologies that consist of one BS that is placed
at the origin (0,0) and is associated with two MNs (MN;, MN,), as well as two SCBSs
(SCBS;,SCSBy), each one having two SCMNs: SCMN; and SCMN, that are associated
with SCBS;, and SCMN3 and SCMN, that are associated with SCBS,.

We focus on the uplink and we examine the utility values and the SINR for each
(SC)MN at the NE. All system parameters are available in Table and are based on an
extensive study conducted by the Small Cell forum [5]. For the computation of the received

power P,., we use the following formula:
PT(dBm) :.P75+Gt+GT—At—AT—PL,

where G denotes the antenna gain, A denotes the loss, PL denotes the path loss, subscript

t refers to the transmitter, and subscript r refers to the receiver.



Table 4.3: Simulation parameters.
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Base Station Antenna Gain 17 dBi
Base Station Loss 3 dB
Small Cell Base Station Antenna Gain 0 dBi
Small Cell Base Station Loss 1dB
(Small Cell) Mobile Node Antenna Gain 0 dBi
(Small Cell) Mobile Node Loss 3 dB
(Small Cell) Mobile Node Height 1.5 m
Small Cell Base Station Height 1.5 m
Base Station Height 30 m
Max. Power Mobile Node P, .« 40 dBm
Max. Power Small Cell Mobile Node SCP .« | 21 dBm
Frequency 850 MHz
CDMA Spread Factor 128
Initial MN SINR Target 8 dB
Update of the MN SINR Target Aging 0.5 dB
Update of the Position of (SC)MN Agcyun | 2 m
Update of the Position of SCBS Agcgs 2 m
Indoor-to-Indoor Path Loss Model: ITU P.1238
Indoor-to-Outdoor Path Loss Model: Okumura-Hata for large cities
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X MNI
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Position of the nodes in the x—y axis

Fig. 4.1: Evolution of the positions of the nodes. SCMN;, SCMN,, and SCBS; are moving
towards the north-east. SCMNj3, SCMN,, and SCBS; are moving towards the south-west.

MN; is moving towards the south-east and MNj is moving towards the north-west.
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We distinguish two cases for the path loss model. For the indoor-to-indoor commu-

nication where (SC)MNs communicate with the SCBS, we use the ITU P.1238 model [5]:

PL(dB) = 201log;,(f) + V'1og,gd + Ls(2) — 28.

According to [5], V' = 28 is a suitable value and Lf(z) = 0, as we consider that all
nodes are placed on the same floor. By replacing the values from Table 4.3 we get the Path
Loss formula as a function of the distance d (in meters) between the (SC)MN and the SCBS:

PL(dB) = 30.59 + 28log,, d.

For the indoor-to-outdoor communication where (SC)MNs communicate with the BS,
we use the Okumura-Hata model for large cities [5]. By replacing the values from Table 3],
we get the Path Loss formula as a function of the distance d (in km) between the (SC)MN
and the BS:

PL(dB) = 125.76 + 35.221og,yd, d > 1km.

We have studied 6 scenarios and simulated 20 simulation rounds per scenario. In each
scenario, we gradually update some of the following parameters of the topology: the positions
of the MNs, the positions of the SCMNs, the positions of the SCBSs, and MN targets.
Simulation round 1 corresponds to the initial topology. Simulation round 20 corresponds
to the topology in which the values of the parameters that are updated in that particular
scenario differ the most from the ones of the initial topology (Fig. H.I]).We present the
utility value and the SINR value at the NE for each round for each MN and SCMN. As we
have studied symmetric topologies, all (SC)MNs end up at the same utility value (and the
corresponding SINR is the same).

Scenario 1 (Fig. E2al Fig. 2D]) corresponds to the case that the positions of all
entities are fixed. In each new simulation round, the target of each MN increases with a step
equal to Aginr. As expected, the utility value/SINR at the NE of the MN is increasing as
the target increases. In addition, so as to achieve a higher utility value/SINR, each MN uses
higher power. As the positions of all entities are fixed, the interference that each SCMN
receives is increasing. So, the utility value/SINR at the NE is decreasing. However, it is
worth noting that apart from the last simulation, the SINR achieved per SCMN is over
8 dB, which is sufficient for smooth voice communication [5]. This means that even if MNs
choose a high target (up to 17.5 dB), SCBSs will be able to serve their SCMNs efficiently
at least for voice.

Scenario 2 (Fig. E2d, Fig. [4.2d)) corresponds to the case where, in each new simu-
lation round, MN; updates its position to (MN;.x + Ayn, MN1.y — Ayn) and MN, sets its
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new position to (MNa.x — Ay, MNo.y + Ay ). All other parameters are fixed. We can see
that at the NE of each simulation round, the MN utility value/SINR is invariable. This is
justified as the MN is able to achieve its target even if it moves away from the BS. As far as
the SCMN, utility value/SINR at the NE presents a small increase as the MN moves away.
This increase is expected as the SCBS receives a bit less interference from the MNs. In any
case, it is worth mentioning that the SINR of each SCMN at the NE is always more than

17 dB, which is sufficient for data communications.

Scenario 3 (Fig. 24, Fig. [4.2f) corresponds to the case where, in each new simulation
round, each pair (SCBS, SCMN) updates jointly its position. All other parameters are fixed.
Each MN always manages to achieve its target. From round to round this happens easier
as the interference from the SCMNs lowers. Concerning the SCMNs, the farthest we place
them from the MNs, the more utility value (SINR) they achieve at the NE. As in Scenario
2, the SINR of each SCMN at the NE is always more than 17 dB.

Scenario 4 (Fig. 3al Fig. 4.3D]) corresponds to the case that, in each new simulation
round, each SCMN gradually moves away from its associated SCBS. All other parameters
are fixed. Up to round 4, the utility value/SINR at the NE of each SCMN is increasing. This
means that each SCMN is able to increase its power so as to augment its utility /SINR. From
round 5 and on, the utility value/SINR at the NE is decreasing. This happens as each SCBS
gradually receives less power from each SCMN (which transmits at SCP,,.x but the distance
SCMN-SCBS increases). However, apart from the last two rounds, the SINR achieved per
SCMN is over 8 dB, which is sufficient for smooth voice communication. Concerning the

MNs, they keep the same level of utility value/SINR at the NE.

Scenario 5 (Fig. B.3d Fig. [4.3d]) corresponds to the case that, in each new simulation
round, both the SCMNs and the MNs gradually move away from their associated SCBS/BS
respectively. All other parameters are fixed. These changes have no influence in the MN
utility value/SINR at the NE. Concerning the SCMNSs, up to round 4, the utility value/SINR
at the NE follows the same trend with Scenario 4. From round 5 and on, we notice a rather
small decrease in the utility value/SINR. Though, as in Scenario 4, each SCBS gradually
receives less power from each SCMN, it also receives less interference, since the MNs are
moving away from both the BS and the SCBSs. This restricts the utility value/SINR loss
at the NE.

Scenario 6 (Fig. E3d Fig. [.3) corresponds to the case that the positions of all
entities (SCBSs, SCMNs, MNs) are changing from round to round. The results are similar
with Scenario 3. The MN utility values/SINR are not influenced by these changes, whereas
each SCMN achieves a small increase in the utility value/SINR.
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4.8 Conclusions

In this work, we present a distributed power control scheme under best response
dynamics that promotes the smooth coexistence of nodes that share the same portion of
the radio spectrum in a two-tier small cell network. We argue that in this type of network
MNs focus mostly on voice communications, whereas SCMNs focus on data communications.
Based on that, we define a non-cooperative power control game where each (SC)MN aims at
maximizing its own objective function. We derive conditions that guarantee the existence
of a unique NE of our game, we determine the corresponding powers at the NE and we
provide a distributed scheme that converges to them. Extensive simulations that are based
on realistic assumptions examine the evolution of the NE utility values/SINRs of (SC)MNs.
In all cases, MNs achieve sufficient SINR for voice communication. In almost all cases,
SCMNs achieved more than sufficient SINR for data communications. The above results
clearly indicate that the application of power control by distinguishing the utility functions
for each category of players based on their QoS requirements leads almost always to a smooth

coexistence in a two-tier small cell network.



Chapter 5

Channel Access Competition in

Device-to-Device Networks

5.1 Introduction and Motivatio

As discussed in Chapter [Il mobile data traffic, especially mobile video traffic, has
dramatically increased in recent years with the emergence of smartphones and tablets. A
major issue in future cellular networks is to make high bit rates available to a larger portion
of the cell, especially to users in exposed positions in-between several base stations. We
already discussed in Chapter 4 how small cells can be used to meet this challenge. Apart
from them, in future 5G wireless networks, devices that use the same channel and are close
to each other are expected to be able to communicate directly, without needing to use a Base
Station or Access Point. This concept, called Device-to-Device (D2D) communication [80],
is receiving increasing attention since it can facilitate various applications: peer-to-peer file
sharing, video dissemination, cellular offloading, etc. Traffic can be offloaded from the core
networks, better service is provided to users, and both cellular coverage and energy efficiency
are improved.

In such networks, devices can naturally form dense ad hoc wireless networks that
have various applications. For example, Nishiyama et al. present in May 2014 trials in
Japan where smartphones exchanged messages in a densely populated area without using
the cellular network infrastructure [§]. Since these devices belong to different users, they
are selfishly competing for channel access, meaning that each one is interested in sending
its own data, without regard for the interference it is causing to other users.

There have been various multiple access methods proposed that allow multiple nodes

to share a common channel when they transmit. Such multiple access schemes can be

!This chapter is based on papers [78], [79).
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classified as either contention-free channel access (e.g., FDMA) or contention-based random
access methods (e.g., Aloha). In a multiple access scheme, nodes can either compete or
cooperate so that either an individual or a group objective can be achieved. For this reason,
the framework of game theory has recently become a very useful mathematical tool for
modelling and analysing multiple access schemes in wireless networks [81].

In our setting, solving the problem of multiple access through a centralized scheme
imposes a significant communication and computation overhead that increases significantly
with the network size. In contrast, efficient distributed algorithms can be designed based
on non-cooperative game theory that neither are computationally expensive, nor increase
network overhead.

We model such D2D networks as graphs, focusing on linear networks and tree net-
works. We assume that nodes want to transmit their packets only to other nodes that are
1-hop away, i.e., their immediate neighbours. Many interesting scenarios fall into this cat-
egory. For example, there have been proposed important real-life applications where nodes
naturally form a linear ad hoc network: monitoring some critical infrastructures and geo-
graphic areas by using wireless sensor networks [82] as well as vehicle-to-vehicle networks
for road safety communications [83].

In the context of D2D networks, there are scenarios that a tree topology arises nat-
urally. Consider a cell phone that is connected to an access point and some other devices
to be connected to the cell phone. These devices may be far from each other or tune their
power to connect only to the cell phone, making direct transmission and loops impossible.
Finally, the access point to which the cell phone connects might be connected to other cell
phones in a similar way, leading to a 3-level tree topology. If the access point is not fixed,
but also a mobile device, it could be part of an ad hoc network, possibly with a tree topology,
leading to deeper trees.

The goal of this chapter is to study these types of D2D networks using a special
class of non-cooperative games called graphical games [84]. Contrary to the general case of
a non-cooperative game where the payoff of a node depends on the strategies of the other
players in an arbitrary manner, in the case of graphical games this dependence is structured.
In the particular case of our game, all nodes are placed on an undirected graph, and the
payoff of the nodes depends only on the strategies of (some of) their near neighbours on this

graph, specifically those that are up to 2-hops away. Our contributions are the followings:

e We show that a Nash Equilibrium (NE) exists under any tree and linear network
that is also a Pareto optimal point. In fact, at a NE, an efficient scheduling of the
transmissions is achieved, in the sense that there are no collisions, i.e., a node either

transmits successfully, or stays quiet.
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e We present Scheme 1, a simple distributed scheme that iteratively converges to a NE

in any tree and linear network.

e For linear D2D networks, we analyse the structural properties of a strategy vector
that is a NE. Based on this analysis, we propose Scheme 2, a sophisticated distributed

scheme that is guaranteed to monotonically converge to a NE using these properties.

e We study the performance of these schemes in terms of the speed of convergence
to the NE and the number of successful transmissions at a NE through extensive
simulations. Finally, we compare our schemes with the idea of simply aiming at
finding a maximal transmission schedule, which is the standard goal of transmission

scheduling algorithms [85], [86], highlighting the differences from our work.

5.2 Related Work

Various channel access schemes under the prism of non-cooperative game theory
have been studied during the last decade. Mackenzie et al. [87] were the first to propose
the modelling of Slotted Aloha as a non-cooperative game and analyse the NE of the game.
In [88], Altman et al. extend this work by relaxing the assumption that each node has a
packet to send at each time slot. Moreover, they also consider a team optimization approach
(though without applying coalitional game theory). In [89], Wang et al. use pricing in the
utility function to motivate the nodes to cooperate. With this mechanism, the throughput of
the centralized Slotted Aloha can be achieved in a distributed network in which selfish users
access the network attempting to maximize their own utility. However, in contrast to our
work, these approaches consider a fully connected wireless network, where all nodes interfere
with each other and consequently only one among the N nodes of the network is able to
transmit successfully at each slot. In [90], Cui et al. consider a single-cell wireless local
area network providing a general game-theoretic framework for designing contention-based
medium access control protocols. Various utility functions are proposed and conditions for
the existence and the uniqueness of a NE are derived. Simulation results show that the
framework can achieve superior performance over the standard IEEE 802.11 Distributed
Coordination Function. Again, the assumption is that every wireless node can hear every
other node in the network.

Graphical games have already been applied a few times in wireless networks. In [91],
Li and Han study channel selection for cognitive radio networks. Fach secondary user
chooses a channel to transmit, assuming that only its neighbouring nodes that have chosen

the same channel cause non-negligible interference to it. The target is the minimization
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of the total regret. The no-regret approach is used in conjunction with other learning
techniques to find a NE of the game. In [92], Hu et al. study the same problem using
graphical games (even though they call them “local interaction games”) and propose two
approaches: (i) the minimization of the number of competing neighbours (aiming at network
collision minimization) and (i) an approach based on an altruistic payoff that includes also
the payoff of its neighbours (aiming at network throughput maximization). Contrary to our
work, these communication targets correspond to nodes that belong to the same operator.

There is a substantial body of work on the topic of transmission scheduling in wireless
ad hoc networks. A work close to ours is the Five-Phase Reservation Protocol (FPRP) [85]
that is used for distributed scheduling. Similar to our approach, the scheme is based on local
interactions among the neighbouring nodes that examine whether they can have a successful
transmission (and inform their neighbours when they achieve it). However, contrary to
our schemes, FPRP is used only for multicast transmissions and the target is simply to
schedule the transmissions to find a maximal transmission vector and not to find a NE of
the game. This is not necessarily a NE, as we will show. Therefore, a maximal transmission
vector is not always a unanimously desirable outcome. Given the fact that nodes are selfish
(this assumption holds in FPRP even if nodes do not follow a game-theoretic approach),
FPRP may produce a strategy vector where there will be at least one node that could
have had a successful transmission but is forced to stay quiet. Finally, in rare cases, the
FPRP algorithm leads to a transmission vector where a node both transmits successfully
and receives packets that cannot decode. In our approach, this will never happen at a NE.
Another distributed scheduling algorithm that aims at eliminating collisions is presented
in [86]. Each time slot is divided in six mini-slots and the first five of them are used by
neighbouring nodes that exchange control messages aiming at reserving the channel. If
the channel is guaranteed to be idle, a transmission occurs. The approach considers both

multicast and unicast transmissions. Simulations show that the performance of this scheme
is similar to FPRP.

5.3 Tree D2D Networks

5.3.1 System Model

We consider a single channel wireless network that consists of N > 2 wireless nodes,
indexed by {1,2,..., N}. These nodes form an undirected graph G = (V, E'), where a vertex
v € V corresponds to a wireless node and an edge e € F corresponds to a communication

link that connects a pair of nodes {u,v}. We consider any type of tree D2D networks. For
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Fig. 5.1: A wireless D2D network that consists of 7 nodes. Each node can send a packet

to one of its 1-hop neighbours.

illustration purposes, we present a particular example of a perfect tree network in Fig. .1l
We denote the set of nodes that are 1-hop away from ¢ with D; and the number of nodes of
this set with |D,].

We assume that time is divided in slots, transmissions can start only at the beginning
of a time slot, and that each packet needs exactly one slot to be transmitted. In addition,
all queues are always full. We consider the unicast case, where a node ¢ aims at transmitting
a packet to exactly one of its neighbours, but has packets in its queues for all neighbours.
Under our model, a node is not interested in transmitting at a particular node, but simply
wants to transmit a packet to any of its 1-hop neighbouring nodes.

Each node i has |D;|+1 options at each time slot: (i) To send a packet to a neighbour
d; € D;. We denote that option with 7;. (i) To not transmit a packet (i.e., to wait). We
denote that option with . We mention at this point that, when ¢ transmits to d;, all other
1-hop neighbours of i also receive the packet, but this packet is “noise” for them, as it is
not intended to them.

As a collision model, we assume that a collision occurs under the following circum-
stances (similar to the collision models typically assumed in the study of Slotted Aloha [03]):
(i) When a node receives packets simultaneously from at least two nodes, in which case all
such packets collide. (77) When node i transmits a packet to node 7 and node j also trans-

mits. In this case, the transmission of 7 fails.

5.3.2 Graphical Game Model

To model the given graph setting as a non-cooperative game, we need to specify 3
elements: The players of the game and, for each player, its strategy, as well as its payoft.
Concerning the players, these are the N nodes of the graph that correspond to the wireless
nodes. The strategy of a player ¢ is one of the following: Either to transmit to one of its

|D;| 1-hop neighbours or to wait.
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Table 5.1: Payoff models. Tx corresponds to transmission, Rx corresponds to reception.

Model 1 Model 2
Status Payoff Status Payoff
Successful Tx 1-c Wait and Successful Rx 1-e
Wait 0 Successful Tx 1-c
Failed Tx -c Wait and No Rx 0
Wait and Failed Rx -e
Failed Tx -c

Concerning the payoff of each player i, we should take into account the collision model
of the previous section. We study two payoff models that are summarized in Table [5.1] (the
strategies are presented in decreasing order of payoff): In model 1 (inspired by [87]), the
motivation is that a successful transmission is preferable to waiting, which is also preferable
to a failed transmission. Note also that a receiver gets zero payoff no matter whether
it receives successfully a packet or not. If a transmission is successful, a node receives a
payoff 1 — ¢, where 1 corresponds to the throughput from the transmission of the packet
and ¢ € (0,1) is a constant that corresponds to the cost of transmission. If a transmission
collides with another transmission, the payoff is just 0 — ¢ = —c. If a node chooses to wait,

its payoff is 0 — 0 = 0, as its throughput is zero and its cost of transmission is also zero.

Under model 2, the receiver can get a non-zero payoff too. We explicitly make the
standard assumption that a node that transmits cannot receive, so we examine three cases
for a node that waits: If it has a successful reception, it receives a payoff 1 — e, where 1
corresponds to the net benefit from the reception of the packet and e € (0, ¢) is a constant
that corresponds to the cost of decoding the packet. Note that we assume that the decoding
cost e is smaller than the cost of transmission c. If it cannot receive successfully a packet
that is addressed to it, its payoff is 0 — e = —e. If no packet is addressed to it, its payoff is
0-0=0.

Depending on the application, payoff model 1 may be more preferable than payoff
model 2 and vice versa. For example, if nodes are also interested in forwarding the packets

that they receive, then payoff model 2 should be adopted.

For a general game with N players, in which each player has m possible strategies,
the size of a normal form representation of the game would be O(m®) [30], since the payoff
of a player that chooses a particular strategy depends on its strategy and the strategy of
the remaining NV — 1 players. Such a large representation would be needed if our network

was fully connected. However, in our setup, the payoff of a player depends only on its
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strategy and the strategy of some of its neighbours. This corresponds to a special type of
non-cooperative games that are called graphical games [84].

To identify the subset of neighbours that influence the payoff of a player i, we need
to produce the square G? of the graph G, which is a graph that has the same set of nodes,
but in which nodes ¢ and j are neighbours when their distance in the graph G is at most
two edges. In G?, we compute the maximal degree d. If G is a tree and node i wants to
transmit to node j, the payoff that it will receive depends on the strategy of j, as well as the
strategy of all 1-hop neighbours of j, denoted by |D;|. Consequently, the payoff is a function
of |D;| + 1 nodes, i.e., the number of the 1-hop neighbours of i in G?. Therefore, the size of
a graphical form representation would be O(m/!PmexI¥1) where | Dyax| is the maximal degree.
If |Dmax| < N (which is the typical case), the size of the graphical representation of the

game is much smaller than the one in a normal form game.

5.3.3 Nash Equilibria

Having transformed this setup into an equivalent graphical game, we should address
the fundamental question of the existence of a Nash Equilibrium (NE) in this game. As a first
remark, we mention that, at any NE, the corresponding strategy vector s = (s1, S2, ..., Sn)
should be collision-free. This is true since if a NE included collisions, then the nodes whose
transmissions collided could improve their payoffs by simply deciding to wait.

We then explain the difference of a NE under payoff model 1 from the notion of the
maximal strategy (transmission) vector that plays a central role in transmission scheduling
[85], [86]. Using similar terminology with [94], we call a strategy vector feasible if all nodes
in the strategy vector either wait or have a successful transmission. A strategy vector is
called a maximal strategy vector if adding an extra transmission will result in an infeasible
strategy vector, meaning that a collision occurs. All subsets of a maximal strategy vector
are also feasible strategy vectors.

Though a NE under payoff model 1 fulfils the definition of a maximal strategy vector,
a maximal strategy vector is not necessarily a NE under payoff model 1. To show this,
consider Fig. B2l The strategy vector s = (s1, S, S3, S4, S5, S¢, S7) = (T, W, T7, W, W, W, W)
is a maximal strategy vector since none of the nodes 2, 4, 5, 6, and 7 can have a successful
transmission without interfering with at least one active transmission. However, it is not
a NE under payoff model 1 since node 2, being selfish, will transmit to either node 4 or
node 5.

Under payoff model 2, it is easy to check that the above strategy vector is a NE. In

general, the following properties hold: (7) All maximal strategy vectors are Nash Equilibria
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Fig. 5.2: Indicative Nash Equilibria for the network of Fig. Bl The full arrows indicate
the active transmissions at a NE under payoff model 1. The dashed arrows indicate the

active transmissions at a NE under payoff model 2.

under payoff model 2. (i7) All Nash Equilibria under payoff model 1 are Nash Equilibria
under payoff model 2.

We now argue that, in this game, there is at least one NE, regardless of the payoff
model used. Indeed, it is straightforward to construct a NE for each tree D2D network [7§].
For example, in Fig. we have sketched a NE for the perfect tree network of 7 nodes
under both payoff models. The corresponding strategy vector under payoff model 1 is
s = (s1, S2, S3, S4, S5, S¢, S7) = (W, Ty, Ts, W, W, W, W) and the corresponding payoff vector
is u=(0,1-¢,1-2¢0,0,0,0). We can check that, after reaching this strategy vector,
no node can improve its utility on its own. The strategy vector under payoff model 2 is
s = (81, S2, S3, 84, S5, S6, S7) = (To, W, T7, W, W, W, W) and the corresponding payoff vector is
u=(1-¢1—-e1-¢0,0,0,1—¢e). We can check that, after reaching this strategy vector,
no node can improve its utility by simply changing its strategy on its own.

Moreover, a desired property of any NE of this game is that it is Pareto optimal,
meaning that no node can improve its payoff without deteriorating the payoff of at least one
node at the same time [30]. Note that, in general, NE is not Pareto optimal [30]. However,

in our game, the Pareto optimality property of any NE holds under both payoff models.

5.3.4 Finding a Nash Equilibrium

As a NE always exists, the question is how we can find it using a distributed scheme.
A standard approach for finding a NE is by applying the best response scheme [84]. In
this scheme, each node chooses the strategy that, given the strategies of all other nodes,
maximizes its payoff. Unfortunately, as discussed in Chapter 4l the best response scheme
does not necessarily converge to a NE for this particular game as it may lead to oscillations.
As a counter-example for our case, let us consider a simple network consisting of 2 nodes:

{1-2}. It is straightforward to check that, at a NE, either node 1 will transmit to node 2 or
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vice versa. If both nodes choose as their initial strategy to wait, the best response strategy
for each node is to transmit, which will lead to a collision. Then, the best response strategy
for both of them will be to wait, in the next round the best response strategy for both of
them will be to transmit, and so on. Therefore, the algorithm will never converge to one of
the two Nash Equilibria of this game.

Next, we discuss a distributed iterative algorithm, called Scheme 1, that aims at
finding a NE. Firstly, we discuss Scheme 1 under the payoff model 1. Initially, each node
has |D;| + 1 strategies, where D; is the set of its 1-hop neighbouring nodes. Each strategy
is selected with a probability equal to ﬁ. Each strategy has the same probability since,
under our model, a node is not interested in transmitting at a particular node, but rather
wants to transmit a packet to any of its 1-hop neighbouring nodes. The algorithm is executed
in rounds. Initially, nodes select their strategies simultaneously. Then, each node ¢ that
transmits learns from its destination node d; whether its transmission was successful or not
and computes its payoff on this round.

At the next round, each node 7 that had a successful transmission transmits to the
same node d;. This imposes some limitations on the strategies of the 1-hop neighbours of ¢
and d; for the next round. More specifically: (i) None of the 1-hop neighbours of i should
transmit to ¢ in the following round as no successful transmission can arise. (i) None of
the 1-hop neighbours of d; (except, of course, i), that are also 2-hops neighbours of ¢, can
transmit to d; in the following round as no successful transmission can arise. The above
piece of information is passed through the exchange of local 1-hop multicast messages that
are sent by ¢ and d; correspondingly.

On the other hand, each node that did not have a successful transmission takes into
account these limitations to decide its strategy in the next round. Let V; be the set of
unavailable neighbouring nodes for node 4, meaning that ¢ cannot transmit successfully to

any of them in the next round and D; —V; be the set of available nodes. If D,—V,; = ©, then

node 7 should wait in the next round. Else, it chooses to wait with a probability equal to
Vi +1
Di| +1
Similarly, the probability to transmit is equal to
_Vil+ 1 Dy - [V
D;|+1 Dy +1

The motivation under this choice is that, as a node cannot transmit to nodes in |V;], the

probability of transmitting to nodes in V; is transferred to the probability of waiting. As in

1
‘DiH—l'

the initialization phase, the probability of transmitting to a particular node remains
The algorithm ends when each node either has a successful transmission or waits and cannot

have a successful transmission.
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Under the payoff model 2, there are only two differences in Scheme 1: (i) Not only
each node 7 that transmits successfully but also each node d; that receives successfully will
not change its strategy in the next round. This is because a successful reception leads to the
biggest payoff under this payoff model as shown in Table Bl (i) The scheme ends when
each node either has a successful transmission /reception or waits with no packet addressed
to it and cannot have a successful transmission.

Due to the fact that the stopping condition of Scheme 1 corresponds to a strategy
vector that is a NE, it is certain that, if Scheme 1 ends at a particular round, a NE will be
reached, under both payoff models. The other possibility is that the maximum number of
iterations will be reached without a NE. However, as we show in the next section, Scheme 1

converges to a NE after a very modest number of iterations for all examined cases.

5.3.5 Performance Evaluation

We have simulated Scheme 1 to evaluate its performance when the D2D network
forms a perfect k-ary tree, i.e., each non-leaf node has exactly k 1-hop next level neighbours

and all leaf nodes are on the same depth d. For example, the tree in Fig. [5.1]is a perfect

; kitl—1
2-ary tree. It is easy to show that a perfect k-ary tree of depth d has “7—— nodes. We
simulated k-ary trees having a few nodes up to more than 10,000 nodes and, for each k-ary
tree, we performed 1,000 simulations. The maximum number of rounds per simulation was

set to 50 and Scheme 1 found a NE in all simulations for every k-ary tree.

The first set of simulations is used to evaluate the average number of rounds so
that Scheme 1 converges to a NE versus the number of nodes, parameter k, and depth d.
Fig. £.3al presents these results for trees of depth 2, 3, and 4. We can see that Scheme 1
converges fast to a NE performing at most 16 iterations. The results are similar for both
payoff models. We notice that, for a given parameter k, the number of rounds to converge to
a NE is increasing with the depth d. This is natural since more nodes compete for spectrum
access. However, the increase is quite slow. Moreover, for a given depth d, the number
of rounds slightly increases with parameter k. This is natural, since, again, more nodes
compete for spectrum access. However, the effect of parameter k is smaller than the effect
of parameter d, implying that the depth of the tree influences more the convergence speed
of Scheme 1 than the density of the nodes in a particular level.

We then present the average number of rounds to converge to a NE as a function of
the number of nodes of trees with k=2, 3, and 10. In Fig. [5.3DBl the curves do not start from
or end to the same number of nodes, as we study trees of depth at least 2 (trees of depth

1 are trivial to be resolved) that contain at most ~10,000 nodes. The average number of
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Fig. 5.3: Average number of rounds for convergence to a NE as a function of (i) parameter

k and depth d of the k-ary tree and (ii) the number of nodes.

rounds to converge to a NE increases almost linearly with the logarithm of the number of
nodes and this is the reason that the convergence is very fast. This is true for both payoff
models. Finding a NE under payoff model 1 demands marginally more rounds to converge,
which is rather expected since more strategy vectors correspond to a NE under payoff model
2. Tt is interesting that trees with & = 2 need more rounds than trees with £ = 10. This
is justified as follows: Consider a tree of around 100 nodes. It can be constructed either as
a 10-ary tree of depth 2 or as a 2-ary tree of depth 7. As we see from Fig. (.3al, the effect
of the depth is bigger than the effect of the number of nodes in a particular level and this
means that, for similar number of nodes, a longer tree demands more rounds to converge to

a NE.

We then examine the average number of successful transmissions at a NE as a function
of the number of nodes, fixing parameter k. We present these results in log-log scale in
Fig. B.4al As expected, the number of successful transmissions increases linearly with the
number of nodes. For both payoff models, the results almost coincide. Again, for similar
number of nodes, we notice that the number of successful transmissions is larger for longer
trees (i.e., nodes with smaller parameter k). In Fig. B.40 we plot the difference of the NE
with the maximum number of successful transmissions minus the NE with the minimum
number of successful transmissions. We plot the results only under payoff model 2, as the

results from payoff model 1 are very similar. The motivation is to examine whether there are
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Nash Equilibria that are (non-)preferable under this metric due to the fact that significant
fewer /more transmissions take place. Indeed, as simulations show, any NE under a k-ary tree
setup is almost equally preferable. For example, consider a 2-ary tree of depth 12 that has on
average 2487 successful transmissions. The worst NE involves 2456 successful transmissions
and the best NE involves 2519 successful transmissions. The (plotted) difference of 63
corresponds to 2.5% fewer successful transmissions than the best possible case, which is
insignificant. This means that there is no need to drive a solution towards a class of desirable

NE under this metric.

5.4 Linear D2D Networks

5.4.1 System Model

We now consider a linear network that consists of N nodes {1 —2—---— N}, where
each node 7 can communicate with either its left-neighbouring node ¢ — 1 (L transmission)
or its right-neighbouring node i + 1 (R transmission). Using the same collision model with
the tree networks, when i < N — 1 an R transmission is successful iff nodes i + 1 and i + 2
have chosen to wait, whereas for ¢ > 2 a L transmission is successful iff nodes : — 1 and 7 — 2
have chosen to wait. The same conditions hold, mutatis mutandis, for ¢ = 1,2, N — 1, N.

This setup can be easily modelled as a non-cooperative graphical game with the
players being the nodes and the strategy s; of a player i being one of the following: {R, L, W}.
We apply the payoff model 1 of Table .11
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5.4.2 Nash Equilibria Properties

In this section, we state two theorems that specify useful properties of strategy

(sub)vectors at a NE.

Theorem 6. Let s = (s1,82,...,5n) be a strategy vector that corresponds to a NE with
s; = R. Then:
1. Ifi = N — 1, then the subvector (Sy—_1,Sn) is equal to (R, W).

2.

3.

If i = N — 3, then the subvector (Sny_3,Sn—2,SN—_1,SN) 1s equal to (R, W, W, L).

If i < N —4, then the subvector (s;, Sit1, Siv2, Siv3) 1S equal to either (R, W, W, L) or
(R, W, W, R), where, in the second case, the R transmission of node i+ 3 satisfies this

theorem as well.

Proof. For each case, it is enough to show that the following two conditions hold:

e Condition A: Nodes whose strategy appears in one of the above subvectors do not

have motivation to change unilaterally their strategies.

Condition B: There is no other strategy subvector that fulfills condition A with s; = R.

. It is straightforward to verify that condition A holds. As for condition B, the only

other possible subvector is (R, L) which does not fulfil condition A since it leads to a

collision.

Concerning condition A, indeed, no node can improve its payoff by changing its strat-
egy on its own. Concerning condition B, if node N — 2 or node N — 1 chooses to
transmit, condition A cannot be satisfied since there will be a collision with the R
transmission of node N — 3 and it would be motivated to refrain from transmitting.
If node N chooses W, condition A is not satisfied as node N — 1 has motivation to

choose R.

Regarding condition A, we have already discussed the case (R, W, W, L). As for the
case (R, W, W, R), this subvector fulfils condition A only if the subvector that starts
with node i + 3 fulfils condition A as well. As for condition B, we have argued on why

no other subvectors may arise in the previous paragraph.

As a final comment, it is worth mentioning that if ¢ = N — 2, there is no NE where node ¢

makes an R transmission. This is due to the fact that the subvector (sy_2,sy_1,5y) =

(R,W,W), i.e., the only subvector that corresponds to a successful R transmission, is

collision-free but cannot be part of a NE, since node N — 1 is motivated to choose R.

Therefore, node 7 cannot choose R at a NE. [l
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Theorem 7. Let s = (s1,S2,...,5n) be a strategy vector that corresponds to a NE with

s; = L. Then:
1. Ifi =2, then the subvector (s1,sq) is equal to (W, L).
2. Ifi =4, then the subvector (s, S2, 3, S4) 1s equal to (R, W, W, L).

3. If i > 5, then the subvector (s;_s3,S;_2,Si_1,5;) 1S equal to either (R,W,W,L) or
(L,W,W, L), where, in the second case, the L transmission of node i — 3 satisfies

this theorem as well.

Proof. The proof is similar to the proof of Theorem [B so we omit it. O]

5.4.3 Finding a Nash Equilibrium

We have already described Scheme 1, than can be used for finding a NE in tree
D2D networks. This scheme can still be used for linear D2D networks, as linear networks
are special types of tree networks. In Scheme 1, a node is interested in learning only
whether it has a successful transmission or not, exchanging messages with up to its two-hop
neighbours. This information is not sufficient to guarantee that a node that has a successful
transmission will not need to change its strategy at a following iteration of the algorithm.
For example, consider 3 nodes that form a linear network {1 —2—3} and the strategy vector
(s1,89,83) = (R, W, W). With Scheme 1, node 1 will choose R in the next iteration, even if
no NE with an R transmission for node 1 can arise. This has two undesirable effects for the
nodes: It is a waste of resources and delays the convergence to a NE.

We propose Scheme 2, a more sophisticated scheme where nodes have motivation to
exchange messages with up to their three-hop neighbours to alleviate the shortcomings of
Scheme 1. The core of Scheme 2 is based on Propositions [Il and 2] that are closely related
to Theorems [6] and [71

Proposition 1. Let s = (s, 82,...,Sn) be a strategy vector with s; = R. Then:

1. Ifi = N —1 and (sn-1,sn)=(R, W), the algorithm will end up at a NE where this
equality holds.

2. Ifi=N-—3and (Sn_3, SN—2,SN-1,SN) is equal to (R, W, W, L), the algorithm will end
up at a NE where this equality holds.

3. Ifi < N —4 and (s, Siz1, Sivo, Sivs)=(R,W,W,L), the algorithm will end up at a NE
where this equality holds.
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4. If i < N —4 and (s, Sit1, Siv2, Sivs)=(R, W,W,R), the algorithm will end up at a NE
where the strategy vector includes either this subvector or the subvector (R,W,W,L).

Proposition 2. Let s = (s1,59,...,5y) be a strategy vector with s; = L. Then:

1. If i = 2 and (s1,82)=(W, L), the algorithm will end up at a NE where this equality
holds.

2. If i =4 and (s, 82, 83, 84) =(R, W, W,L), the algorithm will end up at a NE where this
equality holds.

3. If i > 5 and (S;_3, Si—2,Si—1,8:))=(R, W, W, L), the algorithm will end up at a NE
where this equality holds.

4. If i > 5 and (s;_3,8;-2,8i-1,8:)=(L, W, W, L), the algorithm will end up at a NE

where the strategy vector includes either this subvector or the subvector (R,W,W,L).

Scheme 2 aims at identifying strategy subvectors that are guaranteed to be part
of the eventual NE. Nodes that belong to these subvectors do not change any more their
strategies, having completed their statuses. The rest of them go on updating their strategies
by taking into account the limitations due to successful transmissions that we discussed in
Scheme 1. Clearly, if a node has a unique strategy left as an option, then it completes its
status as well. So, when a node has a successful transmission, it transmits at the same
direction at the next transmission round only if its strategy is part of a strategy subvector
mentioned in Theorems [0l and [/l Otherwise, it flips a coin to decide upon its strategy. When
all nodes complete their statuses, a NE has arisen and the algorithm ends. We present the

pseudocode of Scheme 2 in Section [5.6]

5.4.4 Performance Evaluation for the Unicast Case

We have simulated Scheme 1 and Scheme 2 to evaluate their performances under
linear D2D networks of various sizes (from 5 nodes up to 1000 nodes). For each size of the
network, we have executed 10,000 simulations. We focus on the time taken by our schemes
to converge to a NE. The first set of simulations is used to evaluate the average number of
iterations needed so that the schemes converge to a NE versus the size of the network. We
compare Scheme 2 with two variations of Scheme 1: (i) A scheme that uses an unbiased coin
when a node needs to decide whether to transmit or not. (i) A scheme that uses a biased
coin giving higher probability to transmit. We experimented with different values of the

probability to transmit and we present the results for 2/3, which is a representative value
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for the trends that we notice. The motivation for this biased version is that, in principle, a
node would prefer to transmit than to wait.

Fig. presents the results. As expected, the number of rounds increases with the
size of the network. Scheme 2 presents the best performance, ranging on average, from 5
rounds (for 5 nodes) to 23 rounds (for 1000 nodes). However, this increase is quite slow, e.g.,
augmenting the nodes from 200 to 500 demands only 3 more rounds on the average to find
a NE. This means that even for networks that consist of many nodes, Scheme 2 converges
fast. Actually, the increase is proportional to the logarithm of the number of nodes N of
the network. Experimentally, we find that the average number of steps for the convergence
to a NE is = 7.651og,o(NN) (see Fig. [.6al). We also note that Scheme 2 converges to a NE
without exceeding the maximum number of iterations (which was set to 50) with probability
> 0.999 for all studied networks.

The unbiased version of Scheme 1 performs quite well, demanding a small number
of extra rounds with respect to Scheme 2 to find a NE. The number of rounds is again
proportional to the logarithm of the nodes of the network, however the constant multiplier
is bigger than Scheme 2. On the other hand, the performance of the biased version of Scheme
1 is worse and deteriorates as the number of nodes increases. Moreover, about 5% of the
simulations of big networks exceed the maximum number of iterations without converging
to a NE. These undesirable features of the biased version are due to the fact that favouring
nodes’ probability to choose to transmit (even though, in principle, a node would prefer to
transmit than to wait) increases also the probability for collisions and delays the convergence
to a NE. This is the reason why the unbiased version performs better.

Next, we examine in which round, on average, 80% of the nodes have completed

their statuses. We focus only on Scheme 2, since the convergence to a NE for a node that
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uses Scheme 1 is not monotonic, meaning that it may change its status from complete
to incomplete and vice versa. As Fig. [5.6al shows, for all studied networks that consist
of at least 20 nodes, 80% of nodes will have converged to their final strategies in just 8
rounds. This means that, on average, 800 out of 1000 nodes will have converged to their
final strategies by round #8 and only 200 of them will go on updating their strategies for
up to round #23.

To further explore that issue for Scheme 2, we distinguish the nodes in five categories:
(i) Node 1/node N, which have no left/right neighbour. (i7) Node 2/node N — 1 which have
one left /right neighbour. (74) Node 3/node N — 2 which have two left/right neighbours.
(iv) Node 4/node N — 3 which have three left /right neighbours. (iv) Every other node that
has at least four left/right neighbours. We use this grouping motivated by the results of
Theorems [ and [7, as the nodes that belong to the same category are expected to have
similar probabilities to participate in a strategy subvector that is guaranteed to be part
of a NE. This is due to the fact that this probability depends on the number of left/right
neighbours, so nodes that have the same number of left/right neighbours (0, 1, 2, 3, 4+
neighbours respectively) should be studied together.

Fig. [B.6D presents the results after 10,000 experiments on a network that consists
of 10 nodes. The results are very similar for bigger networks as well. The horizontal
axis corresponds to the round of Scheme 2 and the vertical axis to the probability that a

node of each category will have completed its status up to that particular round. The fast
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convergence for the vast majority of the nodes is verified by these results. As we can see,
at round #8, each node has a probability of more than 0.8 to have converged to its final
strategy. Moreover, it is interesting to note that nodes have completed their status by round
#12 with probability > 0.95 and also that nodes have completed their status by round #17
with probability > 0.99. Further analysis of this plot leads to the conclusion that all nodes
have a significant probability to end up at a NE as transmitters, which is, in principle, a
desirable property.

Finally, as the convergence to a NE for a node that uses Scheme 1 is not monotonic,
the percentage of nodes that have completed their status in round k+ 1 can be smaller than

in round k. The monotonic convergence to a NE is a great advantage of Scheme 2.

5.4.5 On the Nash Equilibria under Multicast Traffic

In this section, we study the multicast transmission scheme, where each node aims
at sending, in a single broadcast transmission, its packet to all neighbours that are one hop
away from it. Clearly, each node can choose between two strategies: to transmit (7°) or to
wait (7). Concerning the payoff, for each intermediate node i, there are some differences
from the unicast case due to the fact that the transmission cost is equally divided to the
number of nodes to whom the packet is sent. Therefore, if a node waits, its payoff is again
0; if it transmits and the transmission is successful for both neighbours (we call this state
a fully-successful transmission), then its payoff is 2(1 — ¢/2) = 2 — ¢; if one transmission
is successful and the other fails (we call this state a semi-successful transmission), then its
payoff is 1 —¢/2 — ¢/2 = 1 — ¢; if both transmissions fail, then its payoff is —¢/2 —¢/2 = —c.

Analysing the conditions for a successful transmission and using similar arguments
with the unicast case, we find that a strategy subvector of the form (s;_2, $;_1, S;, Sit1, Sivo) =
(W, W, T, W, W) should exist so that node i has a fully-successful transmission. If either
(Si, Sit1, Sive) = (T, W, W) or (si_2,8i-1,8;) = (W,W,T) hold, then node ¢ has a semi-
successful transmission. Cases where a node has less than 2 left /right neighbours are treated
similarly with the unicast case. At a NE, each node should either wait, or have a fully-
successful transmission, or have a semi-successful transmission as, even in that case, it has
no motivation to change its strategy to wait, as its payoff will be decreased from 1 — ¢ to
0; note that ¢ € (0,1). Based on the above, we present the pseudocode of Scheme 2 for the
multicast case in Section [5.7]

We then focus on how to find a NE under multicast traffic. As Scheme 1 can be
applied directly without further changes, we highlight the changes that should be adopted
for Scheme 2. A strategy subvector (s;, Si11, Sit2, Si+3) OF (S;_3,Si_2,S;_1,8;) is guaranteed

to be part of a NE of the network if it is of the form (7, W, W, T'). This is true since these
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Fig. 5.7: Performance evaluation for the multicast case: Comparison of the proposed

schemes and analysis of the average convergence time of Scheme 2.

transmissions will be (at least) semi-successful and the intermediate nodes that wait cannot
have a (semi-)successful transmission.

We finally evaluate the performance of the schemes using the same metrics with the
unicast case. Again, for Scheme 1, we present both an unbiased and a biased version. As
Fig. b.7al reveals, Scheme 2 converges very fast to a NE. The convergence is proportional to
klog,,(IN), where k is a coefficient and N is the number of the nodes of the network. Our
simulations show that k = 4.81 approximates closely the results from the simulations for
various sizes of the network (Fig. B.7D]). The unbiased version of Scheme 1 works quite well
but this is not the case for the biased version. Our comments on Fig. hold for Fig. (.7al
as well. Concerning the convergence of the 80% of the nodes of the network to a NE under

Scheme 2, this is done in at most 6 transmission rounds (Fig. [(5.70).

5.5 Conclusions

We focus on D2D networks where devices decide autonomously their strategy (either
to transmit or to wait and receive data) using a graphical game model. In tree networks,
and by using two alternative payoff models, we present Scheme 1, a distributed scheme
that leads to an efficient NE and evaluate its performance by simulation. We show that
the scheme converges fast to a NE and, each NE has about the same number of successful
transmissions. In linear networks, we show that the analysis of the structure of a strategy
vector at a NE is not only useful from a theoretical perspective, but can also be the key factor

for developing a practical scheme with appealing properties. We propose Scheme 2 where
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devices communicate in a 3-hop neighbourhood. We show that Scheme 2 clearly outperforms
Scheme 1 where devices exchange information in a 2-hop neighbourhood. Devices that apply
Scheme 2 converge to a NE in a number of rounds that is proportional to the logarithm
of the network size. Moreover, when devices in the neighbourhood end up in a strategy
subvector that is a local NE, it is guaranteed that this will be part of the global NE of the
network. This both reduces the waste of resources and contributes to the faster convergence
to a NE.

Finally, although the emphasis of this work is on the theoretical foundations of the
autonomous channel access problem, on the practical side, our approaches could be consid-
ered as an alternative to (recently patented) techniques for distributed scheduling of D2D
transmissions using contention-based protocols [95], [06]. In situations where nodes always
have packets to send to all of their neighbours, our schemes could be used as reservation
protocols; in each slot, the nodes compete for medium access choosing a node to which
they want to send a packet and, if they gain access, they transmit to this particular node.
Further implementation details and discussion on signalling messages have been presented
in the previous sections. Note also that our schemes are robust with respect to changes of
the network (e.g., the positions of the nodes due to mobility), provided that these changes
are much slower than the time needed to decide on the outcome of their choice. In any case,
the nodes only need to know the number of their 1-hop neighbours (which may vary from

slot to slot) to apply these schemes.
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5.6 Appendix I: The Algorithm for the Unicast Case

Algorithm [3] presents the pseudocode of Scheme 2 that we discussed in Section [5.4.3
After the initial random choice of the strategies (lines 2-5), there are two big for-loops that
are executed in each transmission round. In the first for-loop (lines 7-31), the algorithm
examines cases 1-3 of Propositions [land 2l In the second for-loop (lines 32-43), it examines
case 4 of Propositions [Il and Pl In the last two lines, it examines whether all nodes have

completed their statuses or another transmission round should start.

Algorithm 3 Finding a NE through a distributed iterative scheme for the unicast case
1: Notation: C: Completed status, P: Pending status, N: Number of Nodes, S: Successful

Transmission
2: fori=1— N do
1.status=P
each node 7 chooses randomly its strategy.
end for
: for k =1 — MAX_NUMBER_OF_ITERATIONS do
fori=1— N do

If node ¢ has chosen R or L, node ¢ + 1 informs it whether the transmission was

successful or not. Each node 7 computes its payoff.

9: if 7.transmission===S5 A i.strategy==R then

10: if i <N —3 A (i + 3).strategy!=W then

11: i.status=C, (i + 1).status=C, (i + 2).status=C
12: if (i + 3).strategy==L then

13: (1 + 3).status=C

14: end if

15: end if

16: if i == N — 1 then

17: i.status=C, (i + 1).status=C

18: end if

19: end if

20: if 7.transmission===S5 A i.strategy==L then

21: if i > 4 A (i — 3).strategy!=W then

22: i.status=C, (i — 1).status=C, (i — 2).status=C'
23: if (i — 3).strategy==R then

24: (1 — 3).status=C
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Algorithm 3 Finding a NE through a distributed iterative scheme for the unicast case

(continued)

25: end if

26: end if

27: if i == 2 then

28: i.status=C, (i — 1).status=C

29: end if

30: end if

31 end for

32: fori=1— N do

33: if i >4 A i.status==P A i.transmission==95 A i.strategy==R A
(i — 3).status==C then

34: i.status=C'

35: else

36: t.next_strategy=1"L

37 end if

38: if i < N — 3 A istatus==P A i.transmission==S A i.strategy==L A
(i+ 3).status==C' then

39: i.status=C'

40: else

41: t.next_strategy=R

42: end if

43: end for

44: Nodes that have completed their statuses send a local broadcast message to their
neighbours along with their strategy.

45: if all nodes have completed their statuses, the algorithm ends at a NE. Else, the
nodes that have incomplete status, update randomly their strategy by taking into
account any limitations that are imposed by the strategy of the nodes that have
completed their statuses (as discussed in the text).

46: end for

As a final comment, the algorithm uses the best response concept in the following

cases: (i) When it identifies strategy subvectors that are guaranteed to be part of a NE

(i.e., cases where nodes complete their statuses). (i7) In lines 36 and 41 of the pseudocode.

In both cases, no oscillations may arise and the adoption of the best response scheme will

definitely lead to strategies that will be part of a NE.
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5.7 Appendix II: The Algorithm for the Multicast Case

Algorithm 4 Finding a NE through a distributed iterative scheme for the multicast case

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

26:

Notation: C': Completed status, P: Pending status, N: Number of Nodes, S: Successful
Transmission
fori=1— N do
i.status=P
each node i chooses randomly its strategy.
end for
for k =1 - MAX_ NUMBER_OF_ITERATIONS do
fori=1— N do
If node 7 has chosen T, nodes 7 + 1 inform it whether the transmission was
successful or not. Each node ¢ computes its payoftf.
if ¢.transmission===S5 then
if i <N —3 A (i + 3).strategy!=W then
i.status=C, (i + 1).status=C, (i + 2).status=C, (i + 3).status=C

end if

if i == N — 1 then
i.status=C, (i + 1).status=C

end if

if i > 4 N (i — 3).strategy!=W then
i.status=C, (i — 1).status=C, (i — 2).status=C, (i — 3).status=C
end if
if == 2 then
i.status=C, (i — 1).status=C
end if
end if
end for
Nodes that have completed their statuses send a local broadcast message to their
neighbours along with their strategy.
if all nodes have completed their statuses, the algorithm ends and this strategy
vector is a NE for the network. Else, the nodes that have incomplete status, update
randomly their strategy by taking into account any limitations that are imposed by the
strategy of the nodes that have completed their statuses.

end for
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Algorithm M presents the distributed iterative scheme that we discuss in Section [5.4.51
The only difference from the unicast case is that the part of the Algorithm [Blin lines 32-43
is not needed any more, as node ¢ & 3 should not need to examine further its strategy and
(probably) adopt a best response scheme in the next round. Corner cases with less than 3

left /right neighbours are treated similarly with the unicast case.



Chapter 6

Power Control and Bargaining under

Licensed Spectrum Sharing

6.1 Introduction and Motivatio

As we have discussed in Chapter[I] both the number of mobile devices and the volume
of mobile data traffic are growing rapidly and, consequently, new communications paradigms
have arisen to meet this demand. We analysed in Chapter [l how small cells could contribute
towards this direction. As Fig. shows, in 2012, the number of small cell base stations
was expected to reach almost 100 million by 2016 and the first LTE small cell had just been
launched [98]; the deployment of small cells would be very beneficial for the widespread
adoption of 4G (and then 5G) services, provided that adequate spectrum would be available
for them. Noticing this trend, the operators started actively looking for opportunities to
gain more licensed spectrum. However, licensing new spectrum to cellular operators through
auctions [99] is no longer straightforward due to the scarcity of available spectrum and the
time-consuming procedure of clearing such spectrum from its legacy usage [I00]. A short
term solution should be adopted to avoid delays in the global deployment of small cells.

In December 2012, the Federal Communications Commission (FCC), the responsible
regulatory body in the USA, published a ground-breaking proposition [101]: It identified the
3.5 GHz band that was currently used by the U.S. Navy radar operations (but characterized
by light usage) as a shared-access small cell band. In other words, the operators could
jointly use this band, without having exclusive access. FCC also encouraged operators to
identify how they could apply interference mitigation techniques including power control so
that both small cell base stations that belong to the different operators and radars could
coexist efficiently. Fighteen months after the publication of this proposition, in July 2014,

!This chapter is based on [97].

89
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(a) Small cell deployment forecasts. (b) Small cell industry firsts.

Fig. 6.1: Small cell networks facts (based on [98]).

three major operators (Verizon, Ericsson, and Qualcomm) announced the first trials in the
3.5 GHz band@
efforts are planned in the 2.3 GHz band in Europe [102].

, focusing on scenarios for complementary LTE-Advanced services. Similar

This idea, recently termed licensed spectrum sharing constitutes a complementary
way to optimize spectrum usage other than the traditional approaches of either licensing
spectrum or making it freely available. Licensed spectrum sharing is expected to be a key

concept of 5G networks [13].

However, a great challenge to the widespread adoption of the licensed spectrum
sharing paradigm is how the operators should interact with each other to satisfy their non-
aligned interests [103]. In this chapter, we model this setup as a non-cooperative game
among the wireless operators who aim at maximizing their revenues by using a simple

charging scheme based on the Quality-of-Service (QoS) they offer [104].

Our contributions are the following: For the general case of N operators competing
for downlink spectrum access, each one with one Base Station (BS) that transmits to one
Mobile Node (MN), we propose a joint power control and bargaining scheme and discuss
under which conditions it leads to operating points with higher payoffs for all operators
than the traditional non-cooperating approach that leads to a Nash Equilibrium (NE).
Furthermore, for the special case with 2 operators: (i) We show that this scheme will
always lead to more preferable points than the NE for both operators. (i) We prove that,
through our scheme, the operating point that maximizes the social welfare (sum of payoffs)
can always be reached. (ii) We compare its performance with a scheme based on linear
pricing of the power, showing through simulations that we achieve better payoffs for most

scenarios.

2Verizon, Qualcomm and Ericsson partner on field trials of 3.5 GHz spectrum sharing, last accessed:
December 2014.


http://www.fiercewireless.com/tech/story/verizon-qualcomm-and-ericsson-partner-field-trials-35-ghz-spectrum-sharing/2014-07-13
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6.2 Related Work

Note that the problem of finding a more efficient point than the NE has already been
studied in the broader context of wireless networks; in this section we briefly review some

related approaches.

One direction is to consider a coalitional game [68]: Players that form the coalition
act as a single entity, receive a common payoff, and then split it in a fair way using, e.g.,
the notion of the Shapley value. Then, the coalition is stable iff all players receive at least
as much payoff as they would have received if they were on their own [68]. In our work, we

do not assume coalitions among the operators, as this reflects reality more accurately.

Another direction is the application of the Nash Bargaining Solution (NBS) with a
disagreement point, which is typically the NE [68]. In [105], Leshem and Zehavi compute the
NBS in the context of the interference channel when there are two players and show through
simulations that it significantly outpeforms the NE. In [106], Alyfantis, Hadjiefthymiades,
and Merakos apply power control in the uplink using the utility function that has been
proposed in [52]. They find the NBS where all players achieve equal Signal-to-Interference
plus Noise Ratio (SINR) and discuss how the the powers of the MNs can be driven to
this operating point, which is the socially optimal solution. In our work, we assume that
the operators are not willing to reveal their utility functions (i.e., their powers and all
their associated gains). This is necessary for the computation of the NBS. Moreover, in
the general case where there are N operators, the complexity of computing the NBS is
significant. We believe that it is more realistic to consider an approach such as ours, where
the level of information that is needed for finding a more efficient operating point than the

NE is smaller.

Finally, pricing has been used as a way to find a more efficient NE. In [33], Alpcan et al.
use as a utility function the throughput minus a linear function of the power. They show
that, when the number of players IV is lower than L — 1, where L is the spread factor of
the system, then the game admits a unique NE and their scheme converges to it. We will
compare our approach with this scheme, showing that we can derive better results in terms
of both payoff per operator and sum of payoffs. Moreover, a qualitative advantage of our
approach is that it can be used for any spread factor L > 1. Note also that, with this
scheme, it is impossible for all operators to achieve higher payoff than the NE payoff; even
for the case of 2 operators, one of them will always be lower than the NE payoff. This is
not the case for our scheme, since, by definition, all players will get at least as much as the

NE payoft.
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Fig. 6.2: Each operator i owns one Base Station, BS;, and serves one Mobile Node, MN;.
We denote the path gain between BS; and MN; as G;.

In [107], pricing is used as a way to maximize the sum of payoffs. The authors show
that the utility function we have used belongs to a family of utility functions named Type 11
utilities. They then prove, by using properties of supermodular games, that their approach
maximizes the social welfare when the number of players N=2. Our scheme achieves the
maximum sum of payoffs as well, provided that the maximum possible power reduction is
asked for in the bargaining phase. The advantage of our approach is that the required level
of cooperation is lower. Indeed, with our scheme, a node ¢ should only know the exact level
of the interference that it receives from node j to decide upon the level of its offer. This
information (which, for the case of 2 operators, can be easily computed by the uplink) is
also needed in [I07]. Moreover, in [107], each node should also know the pricing profile of
the other node (i.e., how much that node charges for the interference it receives) in order
to update its transmission power. In the general case with /N operators, with our scheme,
node 7 still only needs to know the same information as with the case of 2 operators. On the
other hand, in [I07], the level of the information increases significantly: node ¢ should know
the exact level of interference experienced by all other N-1 nodes, as well as their pricing

profiles.

6.3 System Model

We consider N operators sharing a channel of bandwidth B at a common physical
area. We focus on the downlink, as the traffic in this direction is typically heavier; however,
our approach can be applied to the uplink as well. As Fig. shows, operator i owns one
Base Station (BS), BS;, and serves one Mobile Node (MN), MN,. We consider only one MN
per operator, assuming that each operator still has its own exclusive band, where it serves

the rest of its MNs. Note that our approach is also directly applicable to the case of multiple



93

Table 6.1: Game formulation.

Set of players Set of nodes N ={1,2,..., N}
Strategy of player i P, € [0, Ppax]
Utility function for player i Ui=c;Blog(1 + SIR;)

BS/MN pairs per operator provided that there is network planning so that BSs of the same
operator do not interfere with each other. Dealing with co-interference (i.e., interference
from BSs of the same operator) in the shared spectrum band is left as future work.

Each operator i controls the discrete power P; € {Pyin, - - -, Pmax } 0f BS; and charges
MN; proportionally to the throughput that it receives. The throughput of MN; is defined
as T; = Blog(1 + SIR;), where SIR; is the Signal-to-Interference Ratio and G; € (0,1) is
the path gain between BS; and MN;:

> GiP
i

Since we assume an interference-dominated environment, we ignore the thermal noise power.

In Table [6.1] we model this setup as a non-cooperative game with the players being
the N operators. The strategy of each player i is the selection of the transmission power
P;; the payoff that it receives is U; = ¢;T;, where ¢; is a positive constant. We assume that
MN; is interested in downloading files, meaning that it is willing to pay more for a better
download rate. For simplicity and ease of exposition, we assume that each MN has neither
a minimum nor a maximum data rate requirement.

Each player aims at maximizing its payoff. It is easy to check that this game has a
unique Nash Equilibrium (NE), at which all BSs transmit at Py [L08]. Let U be the NE
payoff for player ¢ and U/ be its payoff at another operating point. The questions that we

address are the following:

1. Is there another operating point where for each player i its payoff U] > U;* and, for at

least one of them, the strict inequality holds?

2. If so, how can we find it?

6.4 Analysis

We assume that the operators, though still selfish, decide to cooperate by applying
a joint power control and bargaining scheme, in particular by using in part of the revenue

accumulated from the services they have offered to their associated MN in the past. In this
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case, one operator, say OP, makes a “take it or leave it” offer to another one, say OP,, of
the form: “I offer you e; 5 units if you reduce your power by a factor of M”.

Defining how OP5 is chosen is not critical, and goes beyond the scope of this work: A
simple idea is that OP; chooses randomly OP,. Alternatively, if OP; has some information
on the exact level of interference that MN; receives from each other BS, it can make a more
targeted offer, e.g., to the OP, that causes the greatest amount of interference.

Clearly, for the bargain to be beneficial for both operators, the following two condi-

tions must hold:

U{ — €12 > Ul* ~ (61)

G Pmax G Pmax
c1Blog | 1+ L ~ 1 —e12>cBlog | 1+ LNH— . (6.2)

Y Gj1Puax + G P”]\‘/[a" > Gj1Puax
1,2 A
Ué + €1,2 > U2* ~ (63)
G Pmax G Pmax
cBlog | 1+ LM | e1y>eBlog [ 1+ L2 | (6.4)
Z GjZPmax Z Gj2Pmax
72 72

From (6.2]) and (6.4]), when the corresponding equalities hold, we can compute the
maximum offer, e ., that OP; is willing to make, as well as the minimum offer, eg min,
that OP, is willing to accept.

If €1 max = €2min, then OP; can find an offer that OP, will accept. If a successful

negotiation takes place, then BS; transmits at P,y and BS, transmits at £ max . In this case,
each operator that does not take part in the negotiation increases its payoff as well. This is
due to the fact that the throughput of their associated MN is increasing, as they receive less
interference from BS,. Otherwise, no successful bargaining can take place, and all nodes
continue to transmit at P,.y, as this is the NE operating point.

This joint power control and bargaining scheme could be used instead of the default
power control scheme that the devices normally follow. A description of the modifications
that are needed (at a high level) follows: (i) BS; sends a signal to BSs, i.e., the BS to which
BS; wants to make an offer. BS; specifies its offer and the power reduction it requests. (i)
BS, evaluates the offer as described above and sends a signal to BS; with its decision. (74i) If
BSs accepts the offer, it reduces its power to the requested level. Otherwise, it automatically

applies the standard power control scheme that it adopts. Note that BS; does not need to

modify its power control scheme in response to the decision of BSs.
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Steps (i)-(iii) are repeated in each transmission round. A complementary protocol
should define whether a BS (and its associated operator) will make or receive an offer in each
round. We will present a simple scheme where BS; makes successive offers to BS,. When
BS; is not interested in making offers any more to BS,, a different pair should be selected
(and BS; may then receive an offer). Other models can be considered as well. For example,
in Chapter [3 we have adopted a different model where, in each round, nodes independently
decide whether they are interested in making or receiving an offer and then broadcast their
status to the rest of the nodes. Finally, at a different time-scale, bank transactions among
the operators should take place to exchange the agreed amount of money for each successful

negotiation.

An operator is interested in knowing: (i) Given a power reduction M, can it make a
successful offer? (i) If so, which is the minimum offer that it should make (clearly, this one
will maximize its payoff)?

Note that if the operator knew all the path gains and other parameters, then it
could easily compute whether it could make an offer or not and, if so, which would be the
optimal offer (i.e., the one that will maximize its payoff). However, in the general case, the
operator cannot “guess” whether its offer for a requested power reduction will be accepted.
A distributed strategy is to start by making its maximum offer to the other operator. All
quantities for the computation of ej may from (6.2) can be computed by OP;. Note that
this means that the interference that BSy creates to MN; should be estimated. Since each
operator knows that all other operators transmit at Py.., the only element that should be
estimated is the path gain G9;. This is already known for the case of two operators. In the
general case, it can be estimated using pilot transmissions. Note also that in case that the
path gains are varying with time (due to mobility, fading, etc.), our approach continues to
hold provided that the changes in the topology are much slower than the time needed for

the operators to make a decision using our scheme.

If the offer is rejected, then the operator has no motivation to make another offer for
this requested power reduction, and it should choose a different operator to negotiate with.
Otherwise, in subsequent rounds of negotiations, it can reduce its offer by small amounts,
to see if it can further improve its payoff. If this is the case, the operator that accepted the
offer will have its payoff reduced; however, its payoff will be still higher than the NE payoft
without bargaining (otherwise, it would have rejected the offer). In any case, the player that
receives an offer is in a more privileged position than the player that makes the offer in the
sense that, as its payoff is reduced, it could decide to take the risk of rejecting the offer, so
that the operator that makes the offer starts to increase its offer again. This is due to the

fact that an operator cannot estimate the minimum offer that it should make.
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A different strategy for the node making the offer would be to start with a (random)
offer, e.g., with a fraction of the maximum offer that it could make, and then increase it
by small amounts. Then, the operator should stop offering the first time that its offer gets
accepted. However, the disadvantage of this strategy is that some rounds may be wasted
with the BSs transmitting at the NE without bargaining, since some offers (in the worst

case, all offers) may be lower than the minimum offer that the other operator could accept.

6.5 Analysis for N =2 Operators

We now investigate under which circumstances a successful bargain may arise, for
the special case where there are N = 2 operators, denoted by OP; and OP,, with a common
charging parameter c;=co=c. This case provides intuition about what happens in the general
case. Furthermore, since in many markets there are indeed only 2 operators, it also is of

practical interest.

Theorem 8. Let ¢ = g—; and r = % be the ratios of the path gain coefficient of the

associated BS to the path gain coefficient of the interfering BS.

1. If M > max{1, g}, then €1 max > €2 min-

2. If M > max{1, 2}, then €3 max > €1,min-

Proof. We sketch the proof focusing on case 1 (case 2 is treated similarly). Starting from

([€2) and (64)), the inequality €1 max > €2,min becomes:

M2—<1+f)M+520@(M—1) (M—f> > 0.
q q

This holds for M > max{1, 7}. O

Note that as M expresses how many times the power will be reduced, it is by definition
greater than 1. Therefore, if r < g, then, for any requested reduction of the power from OP1,
there will be an interval [€2min, €1max] Where an offer will be accepted. If r > ¢, then this
interval exists for M > g, therefore for some power reductions an offer will never be accepted.

A direct conclusion from Theorem [§ is presented in Proposition [l
Proposition 3. For any requested power reduction M :
o [fr < q then OPy can make a successful offer.
o Ifr > q, then OPy can make a successful offer.

e if r = q, then both operators can make a successful offer.
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In other words, through this joint power control and bargaining scheme, operators
can always end up at a point that is more preferable for both of them than the NE where
both transmit with maximum power P, ..

A different approach would be the case where both operators make concurrent offers.
We have not adopted it for two reasons. Firstly, in this case bargaining would be an (at
least) a two-step procedure, which adds complexity and requires more coordination. In the
first step, operators should announce the power reduction that they request. In the second
step, they should announce their offers based on the requested power reductions. Note that
with this two-step procedure, either both offers should be accepted, or none. Merging these
steps to one may lead to payoffs that are lower than the NE without bargaining. This is due
to the fact that the operators should know the requested power reduction before deciding
upon the level of their offers.

Secondly, we can state and prove Theorem [ that shows that our 1-direction bar-
gaining is equivalent to a 2-direction bargaining scheme as described above. Therefore, due

to its simplicity, it is preferable to adopt it.

Theorem 9. Consider 2 operators, OPy and OPs, that negotiate with each other using a
2-direction bargaining. OPy asks OPy to reduce its power | times and offers e;. OPs asks
OP; to reduce its power m times and offers es. Clearly, | # m, otherwise there is no point

in bargaining since the final state will be equivalent to the original one. The following holds:

1. Ifl < m, then there is another 1-direction bargaining where only OPy makes an offer.
It asks OPy to reduce its power 7 times and offers 6/2 =eq-e1. This 1-direction bargain-
ing 18 equivalent with the 2-direction bargaining, i.e., the operating point that OPy and

OPy will end after the application of any of them will be the same.

2. If | > m, then there is another 1-direction bargaining where only OP, makes an of-
fer. It asks OPy to reduce its power % times and offers ell =eq1-e9. This 1-direction

bargaining is equivalent with the 2-direction bargaining.

Proof. At the NE, OP; and OP5 receive correspondingly:

U, = ¢ Blog <1 + @> , (6.5)
G

Uy = coBlog <1 + @> : (6.6)
G2

After the announcement of the offers, OP; should transmit at P;=2 max and OPy at P, =

%. Let M = ﬁ:%. Then, we can compute the revenue that they will receive if they
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accept the offers:

, MG
U, = Blog (1 + 11) — ey + e, (6.7)
G
U, = cyBlog [ 1+ L e — €. (6.8)
2 GiaM

For a successful negotiation, (6.7) > (€.0) and (6.8) > (6.0).

Consider case 1, where | < m < M < 1. Clearly, e; should be bigger than e,
otherwise OP; will never accept the offer. If OPy would have offered 6/2262 — e asking for
a power reduction of 2 = < times, then we end up with (6.7) and (G.8). Case 2 is treated

similarly and we omit the proof. O]

Having settled that 1-way negotiations are optimal, we return to the point of the
efficiency of the resulting point after a successful negotiation. We state Theorem [I0 that

specifies the socially optimal operating point, i.e., the one that maximizes the revenue sum.

Theorem 10. The maximum sum of revenues of the operators corresponds to one of the

following operating points: Ay =(Py, Py) =(Prax, Pmin) 07 As=(P1, P2)=(Puin, Pmax)-
Proof. Let V = %. We look for the global maximum of the function

F(V) = cBlog(1 + qLV) + cBlog (1 n L%) , (6.9)

where V € [me £ f;mi“, o = %] and ¢, r, are defined in Theorem [8. Taking the first

derivative of f and setting it equal to zero, we show that:

e When Vi, <\/§ £ t, f is strictly decreasing in [Viun,t] and strictly increasing in
[t, Vinax)- Therefore, its global maximum is either at Vi, i.e., at Ag, or at Viay, i-€.,

at Al-

e When Vi, > t, f is strictly increasing in [Viin, Vinax), having its global maximum at

Vrnax .

e When Vi, < t, f is strictly decreasing in [Viin, Vinax], having its global maximum

at Vmin .
0

We now state Theorem [[1] that clarifies when our bargaining scheme can lead to the

socially optimal operating point.

Theorem 11. Let Ay (resp. Ay) be the point that mazimizes the social welfare of the system.

Then, if OP1 (resp. OPy) applies the bargaining scheme with M = Lmax it will reach A,

Ppin ?
(resp. As).
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Proof. Let A; be the global maximum of the function f, as defined in Theorem [0 By

definition:

f(A) > f(A) & (6.10)

L L
log(1 + qLVinax) + log (1 + v A ) > log <1 + v d ) +log(1 4+ LrVipax)- (6.11)

max max

After some algebra, (G.I1) becomes (q —r)V2, > q —r, which holds when ¢ > r, since
Vinax > 1. From Proposition Bl when ¢ > r, OP; can make a successful offer that leads to

Aj. The proof for OP5 is omitted. ]

6.6 Performance Evaluation

We illustrate our bargaining scheme for N=2 operators, and when each operator
asks for the maximum possible power reduction M=32 [109]. We present two variations:
BargainingA, where OP; makes successive offers starting from a e; 1,ax offer and progressively
reducing its offer each time by 15%, and BargainingB (similarly, but OP, makes offers). We
compare them with the NE, the NE that arises after the application of pricing [33] with a
linear pricing factor z (denoted as Pricing), and finally with a scheme that maximizes the
sum of revenues (denoted as MaxSum) [107].

All schemes are compared in terms of the revenue they achieve for the 2 operators.
The notation Schemes refers to the payoff of OP; with this scheme (e.g., BargainingA1 means
that we compute the payoff of OP; with the scheme BargainingA); Scheme refers to the sum
of payoffs (e.g., BargainingA means that we compute the sum of payoffs with this scheme).

In Fig. [6.3al, we present the operating points arrived at by BargainingA (the param-
eters for this particular topology are shown in the legend) for the topology of Fig. [6.3d
At each point, the revenues of both operators are larger than the NE revenues. At the
first three points, they are larger than the Pricing scheme as well. Similar trends appear in
Fig. [6.3D with BargainingB. In Fig. [6.3d, we show that both schemes outperform strictly
both NE and Pricing. Actually, BargainingB also maximizes the social welfare.

In Fig. 6.3dH6.31, we present the same set of diagrams for the topology of Fig. [6.31]
where both MNs are closer to BS, than to BS;. Note that, as shown in Fig. [6.3d], for
BargainingA, we cannot find an operating point where both operators achieve higher payoff
than Pricing. Still, all operating points are more preferable than the NE without pricing.
For BargainingB, there are 3 such points that correspond to the last 3 scenarios as depicted
in Fig. [6.3el Again, both BargainingA and BargainingB achieve higher social welfare than

Pricing.
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(e) Revenue evolution when OP3 makes offers.
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Fig. 6.3: Revenue under NE, Pricing, BargainingA, BargainingB, and MaxSum. Com-
mon parameters: L=4, B=2, ¢c=1, 2=1.5. In Fig. £.3al6.3d, G1,=0.5, G21=0.2, G1,=0.05,
G92=0.2. The topology is shown in Fig. [6.3d In Fig. [6.3d6.3f, G1,=0.2, G3;=0.5, G1,=0.5,
G92,=0.95. The topology is shown in Fig. [6.31l
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Table 6.2: Scenarios of Fig. [6.4f Comparison of sum of payoffs for MaxBargaining, Min-

Bargaining, and Pricing.

Figure || % MaxBargaining > Pricing | % MaxBargaining=Pricing | % MinBargaining > Pricing
6.4(a) 75 25 75
6.4(b) 75 25 62.5
6.4(c) 75 25 62.5
6.4(d) 100 0 60
6.4(e) 75 25 75
6.4(f) 75 25 68.75
1000 ; & £l
. g o
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(b) Sum of revenues as a function of z. Path gains

Gi; €{0.01,0.06,0.11, ...,0.96}, L=4.

(a) Sum of revenues as a function of L. Path gains
Gij € {0.01,0.06,0.11, ...,0.96}, z=1.5.

Fig. 6.5: Sum of revenues under NE, Pricing, BargainingA, BargainingB, and MaxSum.
B=2, c=1.

In Fig. 6.4l we present 6 diagrams that show the evolution of the sum of revenues. In
each diagram, the ratio of the path gains for MN; is constant and we modify the ratio of the
path gains for MN, as depicted in the corresponding legend. As specified by Theorem [I1],
in all scenarios, MaxBargaining=max{BargainingA, BargainingB} achieves the maximum
sum of revenues.

In Table[6.2] we present, for each diagram, the percentage of scenarios that MaxBar-
gaining and MinBargaining=min{BargainingA, BargainingB} outperforms Pricing, as well
as the cases where MaxBargaining equals Pricing. In all diagrams, for the vast majority of
scenarios at least MaxBargaining performs better than Pricing and, in many scenarios, this
is the case for MinBargaining.

In Fig. [6.5al out of the 160000 possible combinations of the path gains GG;; that belong
to the set {0.01,0.06,0.11, ...,0.96}, we have excluded the artificial scenarios where both
MN; is closer to BSs than to BS; and MN, is closer to BS; than to BS;. We have simulated
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the remaining 124000 scenarios. Simulations verify that in all cases MaxBargaining coincides
with the MaxSum. Moreover, the sum of revenues with MaxBargaining strictly outperforms
Pricing in 80% to 95% of the scenarios for small spread factors (L < 64) and 100% of
scenarios for large spread factors. Furthermore, in the majority of scenarios (70% to 85%),
even MinBargaining strictly outperforms Pricing.

In Fig. [6.50, we present the sum of revenues as a function of the pricing factor z.
Our experimental study reveals that the best pricing factor is 1.5. We have noticed the
same trend for other spread factors as well. This is the reason that we have used this value
of z for Pricing in Fig. [6.5al For other values of z, the sum of revenues with Pricing is

significantly lower.

6.7 Conlusions

The goal of this chapter was to study the emerging concept of licensed spectrum
sharing, where no exclusive rights are given to any single operator, under the prism of game
theory. Assuming that the operators charge their customers based on the throughput that
they offer to them, we define a non-cooperative game that has a unique Nash Equilibrium,
where all operators transmit at P,... Our work starts with the observation that the opera-
tors, though still selfish, have motivation to cooperate to end up at more efficient operating
points that increase their revenues. We develop an incentive-based mechanism that enables
this cooperation, by combining traditional power control with bargaining, using “take it or
leave it” offers. Then, we show that, even in the general case, where N operators share
the same portion of the licensed spectrum, there are conditions that guarantee that a more
efficient operating point may arise. We then deepen our results for the special case of two
operators. (i) We show that for any level of requested power reduction, at least one of the
two operators can make an offer than can be accepted and leads to a more efficient operating
point than the NE. (i7) We derive a set of bargaining strategies that lead to the operating
point that maximizes the social welfare of the system, demanding less exchange of messages
than the state-of-the art. (i) We show that our scheme outperforms the standard idea of
linear pricing of the transmission power as a way of finding more efficient operating points

in terms of both revenues per operator and sum of revenues.



Chapter 7

Conclusions and Extensions

7.1 Conclusions

In this thesis, we study heterogeneous wireless networks that consist of autonomous
nodes with possibly different QoS targets. These networks will be the norm in the forthcom-
ing 5G era, and the efficient distributed management of the interference that arises due to
the coexistence of these nodes is a prerequisite for their successful deployment. To combat
this challenge, we combine powerful radio resource management techniques (power control
and channel access) with game-theoretic concepts and tools. In this overall setting, we anal-
yse such wireless networks aiming at two points: (i) We seek Nash Equilibria points. (i7) We
use bargaining as a way to create incentives for nodes to find more efficient operating points
than the Nash Equilibria; we propose schemes where nodes with various degrees of coopera-
tion end up at these points and we study their properties and efficiency with mathematical
analysis and simulations.

Besides our conclusions per chapter, we discuss here some general lessons learnt from

this research:

e Our study in Chapters confirms that nodes can coexist efficiently by simply decid-
ing on their own whether to transmit or not and the level of their transmission power.
In other words, even though modern wireless networks are complex and consist of
nodes that may belong to different operators or have different targets, simple classical
radio resource management methods such as power control and channel access that
need minimal cooperation are enough for a significant reduction of the interference

that arises in these challenging scenarios.

e In some cases, the performance of the nodes at a Nash Equilibrium (NE) point, which

is the naturally resulting operating point, is acceptable and there is no need to seek a

104
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more efficient operating point. We observed this in Chapters [ and Bl In Chapter @l
where we study a challenging environment with small cell nodes and macrocell nodes
having different utility functions, extensive simulations that are based on realistic
assumptions and topologies show that, in most scenarios, smooth coexistence of all
nodes is feasible. In Chapter B where we study the channel access competition in linear
and tree device-to-device networks, we show that any NE is Pareto optimal. Moreover,
we find that each NE has about the same number of successful transmissions, meaning

that, from a network operator’s perspective, each NE is almost equally preferable.

On the other hand, in some other cases, nodes achieve poor performance at a NE and
a better operating point would be welcome. We notice this outcome in Chapters [l
and [6], where simple but well-adopted power control schemes lead to Nash Equilibria
where players are unhappy with their performance; in Chapter [3 many players cannot
achieve their SINR targets, whereas in Chapter [(] their revenues are small. To combat
this problem, we introduce bargaining among unsatisfied players as a way to create
incentives to further update their transmission power. Using “take it or leave it” of-
fers, players negotiate pairwise in order to find more efficient operating points. As a
result, in Chapter [3, more players achieve their targets, whereas in Chapter [0 the op-
erators increase their revenues. We show that these joint power control and bargaining
distributed schemes, besides being superior than the NE, perform significantly better
than the well-adopted idea of applying pricing of the transmission power as a way to
find better operating points. Finally, our bargaining scheme in Chapter [6] admits an
appealing incentive-compatible feature: No player receives lower utility function than

its utility at the NE. This is not the case for the pricing schemes.

The level of cooperation among the nodes in modern wireless networks may influence
their performance. In this thesis, we study non-cooperative game theory with nodes
being selfish. This, of course, does not forbid a node to exchange information with
other nodes. Indeed, increasing by even a small amount the number of nodes with
which a node exchanges messages can have a significant impact to its performance.
This is the case in Chapter B, where we compare approaches with nodes exchanging
messages in a 2-hop neighbourhood versus a 3-hop neighbourhood. For the latter case,
we show that the nodes converge faster to a NE and their convergence is monotonic,
meaning that the percentage of nodes that finalize their strategy is increasing per

round.

In such wireless networks, theoretical results can be directly transformed into dis-

tributed schemes of practical interest. We observed this feature in Chapters [l and [6l
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In Chapter Bl motivated by our study for the structure of the resulting Nash Equilibria,
we propose the powerful scheme described in Section [5.4.3] where nodes exchange mes-
sages in a 3-hop neighbourhood. In Chapter [6] by deriving conditions for a successful
bargaining, we propose schemes that are guaranteed to end up at more efficient points
than the NE; we can even derive simple strategies, with lower communication overhead

than pricing schemes, that maximize the social welfare of the network.

7.2 Directions for Future Work

In this section, we discuss some ideas for further research in the areas that we studied

in this thesis.

One general direction is to study our approaches in the context of repeated non-
cooperative games [68], where a given non-cooperative game is played multiple times by the
same set of players. In this context, the game that is repeated is called the stage game.
Note that the notion of repetition is different from the iterations that are needed so that a
stage game converges to a NE. In a repeated game, there is an outer loop that corresponds
to a different repetition of the stage game and, possibly, an inner loop that corresponds to
the rounds of each repetition of the stage game, where nodes update their strategies aiming

at arriving to a NE.

We present next a brief example of a repeated game formulation in the context of
Chapter Bl Consider a linear D2D topology that consists of 4 nodes: {A — B — C — D}.
(W, T, T,WW) is a strategy vector that corresponds to a NE for the multicast case of this
stage game under payoff model 1 (as defined in Table B1I). However, if there were two
repetitions of the game, nodes B and C' could make an agreement to transmit in different
rounds. For example, in round 1, the strategy vector would be (W, T, W, W), whereas in
round 2 the strategy vector would be (W, W, T, W). Clearly, in both rounds, neither node
A nor node D have motivation to change their strategy from W. Therefore, the payoff
vector u = (uy, ug, uc, up) with elements the sum of payoffs from these two rounds will be
equal to {0,2 — ¢,2 — ¢,0}. This is due to the fact that when a node waits (W), it receives
a zero payoff. On the other hand, when a node transmits (77), it has a fully-successful
transmission and its payoff is 2 — ¢. On the other hand, if the nodes choose the strategy
vector (W, T, T,W) in both rounds, they will receive {0,2 — 2¢,2 — 2¢,0}, since, in each
round, nodes B and C' will have a semi-successful transmission that corresponds to a payoff
of 1 — ¢. Clearly, a more efficient point arises when nodes B and C' exploit the fact that the
game is repeated. Examining systematically these cases for both multicast transmissions

and unicast transmissions is an interesting topic.
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Another general direction is to consider coalitional game theory, a topic that we
briefly discussed in Chapter [6l Instead of a non-cooperative formulation with bargaining,
in the settings of Chapters [3l and [6] players could either seek the Nash Bargaining Solution
or form coalitions. Towards this direction, the decision of which player is going to make
or receive an offer to update its power can be based on a model of alternating offers [110],
where players rotate their roles. Moreover, typical questions of coalitional game theory
should arise and be exploited [68]: Is the grand coalition, i.e., a coalition that includes all
players, stable or players have motivation to form different coalitions? Do the players have
incentives to compute the Shapley value that leads to a fair sharing of their revenues? If

not, how should the players share their revenues?

From a practical perspective, it is interesting to compare the communication overhead
of a scheme that leads to any of these solution concepts with the schemes that we propose
in this thesis. It is worth mentioning that designing distributed schemes with acceptable
convergence time is a prerequisite in modern heterogeneous networks irrespective of the level

of cooperation among the nodes.

Besides the above general directions, we also point out some specific issues per chapter

that could be explored further.
In Chapter M, we made the typical assumption that the pricing coefficient ¢; of the

cost function in the game formulation (as defined in Table 1)) is constant. It is interesting
to examine the effect of ¢; on the efficiency of the resulting NE. Towards that direction,
an interesting application would be to model this two-tier small cell network as a Stack-
elberg game [IT1], where there is a hierarchy among the players and one or more players
(the leaders) announce their strategies before the other players (the followers) choose their
strategies. In the context of small cell networks, the leaders would be the operators that
announce their pricing policy aiming at maximizing their revenues, whereas the followers
would be the (small cell) mobile nodes aiming at maximizing their utility functions as defined

in our setup.

In Chapter Bl a natural extension is to study the channel access competition problem
in general D2D networks, where the underlying graph is neither a tree nor a line. It is an
open issue whether the proposed schemes end up at a NE under these general setups or
some modifications should be made by taking into consideration the existence of cycles in
the graphs. Moreover, it would be interesting to derive bounds on the Price of Anarchy [112],
i.€., the ratio between the NE with the minimum sum of payoffs and a centralized solution
that maximizes the sum of payoffs, for various topologies. We could use this metric of the
efficiency of the NE to explore whether there are NE that are significantly more preferable

than others.
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In Chapter 3] it is interesting to explore different mechanisms that define the level of
an offer and the conditions that should be fulfilled so that an offer gets accepted. Towards
this direction, a straightforward alternative mechanism that could be adopted is the one
proposed in Chapter @ Moreover, when a Buyer ¢ chooses a Seller j, ¢ should know the
receiving power from j to decide upon the level of its offer. This piece of information can
be passed by a unicast message. If we had assumed that each Seller broadcasts this element
to the set of Buyers, then i could choose j more efficiently (e.g., by making an offer to the
one that creates more interference to it). Another approach for ¢ would be to make parallel
offers to multiple Sellers to reduce their powers so as to achieve its target.

In Chapter [0, it is an ongoing work to simulate scenarios with N > 2 operators
that apply our bargaining mechanism as described in Section [6.4l Moreover, we plan to
evaluate our mechanism in terms of social welfare, examining whether a theorem similar
to Theorem [I1] can be proved for N operators. Finally, a natural extension is to include
the more realistic case where a customer has made an agreement with his operator that
he will not be charged when his throughput is lower than some minimum value. In this
case, each operator should firstly compute the minimum possible power (i.e., the maximum
possible power reduction M) that it can transmit at to guarantee the predefined minimum
throughput 7T,,;,. For example, for the case of N = 2 operators, the following condition
should be satisfied for Operator 1:

G
Bl 1 > Thin-
og( + MG21) =

After some algebra, this is equivalent to:

Gll 1
M < . .
- G21 2Tmin/B _ 1

Therefore, independently of the level of the received offer, there is an upper bound on the
maximum power reduction M that an operator can negotiate. If the above condition holds,
then the operator will take part in the bargaining using the formulas that we have presented

in Section[6.Bl A thorough performance evaluation of this scenario would be very interesting.



Appendix A

Abbreviations and Acronyms

2G 274 Generation
3G 3'4 Generation
4G 4*h Generation
5G 5" Generation
BS Base Station
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
D2D Device-to-Device
DBFM Distributed Bargaining Foschini-Miljanic
FCC Federal Communications Commission
FDMA Frequency Division Multiple Access
FM Foschini-Miljanic
FPRP Five-Phase Reservation Protocol
HD High Definition
KKT Karush-Kuhn-Taker
LTE Long Term Evolution
MN Mobile Node
NBS Nash Bargaining Solution
NE Nash Equilibrium
op Operator
QoS Quality-of-Service
Rx Receiver
SaS Soft and Safe
SCBS Small Cell Base Station
SCMN Small Cell Mobile Node
SINR Signal-to-Interference plus Noise Ratio
SIR Signal-to-Interference Ratio
TDMA Time Division Multiple Access
Tx Transmitter
UBPC Utility-Based Power Control
VANETSs Vehicular Ad hoc NETworks
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