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Information-Centric Networking (ICN), an active research area in Com-

puter Networking, has the goal of designing a network architecture that better

suits today’s networked world: billions of connected devices requesting access to

voluminous amounts of digital media. ICN architectures aim to facilitate con-

tent distribution by placing self-identified information items at the heart of the

networking protocol stack and building routing and transport protocols around

them.

Among other design choices, ICN emphasizes support for scalable and effi-

cient multicast delivery. However, practical implementations of ICN architectures

have found that achieving this goal is easier said than done. For instance, the
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Content-Centric Networking (CCN) architecture realizes single-source multicast

delivery through a distributed stateful forwarding scheme, which faces scalability

issues with respect to the forwarding state kept at routers. On the other hand, the

Publish-Subscribe Internet (PSI) architecture proposes a centrally-controlled fully

stateless multicast forwarding scheme with In-packet Bloom filters (IBF), which

faces scalability issues with respect to the network and/or multicast group size.

This dissertation addresses the issue of multicast forwarding scalability in

two very different ICN architectures, namely CCN and PSI. The common ground

in the proposed solutions is the use and extension of Bloom filter-based packet

forwarding mechanisms. In CCN, we relax the fully stateful nature of its forward-

ing scheme, in order to improve the architecture’s scalability with respect to the

forwarding state kept at routers. We propose a semi-stateless forwarding scheme

by incorporating Bloom filter-based forwarding, while respecting the architecture’s

distributed routing and forwarding operations. Our simulation-based study shows

that the scheme can effectively reduce forwarding state at routers by 60%-70% at

the cost of 1.5%-12% in bandwidth overhead.

In PSI, we similarly relax the fully stateless nature of its forwarding scheme,

proposing a semi-stateless alternative with IBF switching, in order to allow IBFs

to efficiently scale to any network and/or multicast group size. We integrate IBF

switching in PSI, utilizing the architecture’s centralized control-plane operations.

Our simulation-based study shows that with IBF switching, forwarding scalability

is achieved regardless of network and/or multicast group size, at the cost of placing

forwarding state at 0.5%-2.5% of forwarding nodes, which is far less than that of

competing technologies.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Clean-slate networking

The Internet architecture and the TCP/IP protocol suite are undoubtedly

technological successes. What started out as an academic experiment, has become

a global communication infrastructure with billions of connected devices delivering

voluminous amounts of digital content. This success was accompanied by a shift in

usage: the Internet was initially designed to interconnect hosts for sharing scarce

computational resources, while nowadays it is mostly used for ubiquitous content

retrieval, accessed by billions of mobile devices, with video dominating Internet

traffic [1]. During this transformation in usage and access characteristics, several

limitations and constraints arose that stemmed from the Internet architecture it-

self. To name a few: IP address depletion, lack of inherent support for mobility,

spam content and DoS attacks as a result of the network’s best effort to carry

any traffic sent by hosts. To alleviate these issues, several add-ons and patches

have been used, for example Network Address Translation (NAT) for extending

the scarce device address space, firewalls for blocking malicious traffic and DNS

redirections to serve large traffic volumes from the nearest servers. These solutions

however either created their own problems [2] which were themselves solved by yet

more ad-hoc solutions [3], or were misused [4]. Overall, this has led to a situation

1
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where network operation and management have become too complicated.

Interestingly, the reason for the persistence of these problems, is largely the

exact reason that the Internet architecture has become so successful. The hourglass

shape of the Internet architecture had allowed new technologies and protocols to

be developed and deployed both below and above the architecture’s thin waist,

the Internet Protocol. IP serves as the glue that interconnects new transport

technologies, from optical to wireless, with new applications, nowadays dominated

by HTTP. On the other hand, IP itself proved impossible to evolve. Any significant

modification to IP would require tremendous changes in hardware infrastructure

deployments all over the world. As a result, for many years, research proposals

and experimental prototypes focusing on layer-3 (e.g., [5, 6, 7, 8, 9, 10, 11]) and/or

overall architecture enhancements (e.g., [12, 13, 14]) were left untouched behind

academic boundaries, without any significant impact on the industry, hence, the

real world. Eventually, it was considered that significant innovation could only be

achieved by building new overlay networks on top of the Internet [15].

In the mid 2000’s, academia felt frustrated by the so called ossification of IP

and proposed to start re-thinking our approach to networking, rather than trying

to solve the Internet architecture’s limitations with additional patches. Researchers

aimed to design from scratch a new inter-networking architecture that would better

suit current needs [16, 17]. The movement was then named Clean-slate Network-

ing and set a research agenda for a network architecture with enhanced security,

mobility, reliability and availability, scalability, quality of service and economics

features, compared to the existing Internet architecture [16]. As a result, several

large research projects were initiated, each one proposing to revise inter-networking

from entirely different views. Among others, it is worth mentioning the Mobility-

First, XIA and NEBULA projects which started in 2010, with funding from the

National Science Foundation’s (NSF) Future Internet Architecture (FIA) program.

MobilityFirst investigated a network architecture where mobility is the norm [18].

XIA, which stands for eXpressive Internet Architecture, proposed a network archi-

tecture that has the ability to evolve [19]. NEBULA focused on an evolved version

of the current Internet architecture where inter-connected publicly-accessed Data
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Centers provide computation and storage and bandwidth resources to users [20].

1.1.2 Information-centric networking

Motivated by the observation that the Internet is mostly used for informa-

tion delivery and retrieval, researchers have been proposing from the early 2000s

modifications and enhancements to the current Internet architecture that would

make it more efficient to content delivery (e.g., [5, 7, 8, 21, 22]) or even new en-

tirely new networking architectures designed specifically for content distribution

(e.g., [23, 24, 25, 26]). Put into the context of Clean-slate networking, a number

of relevant research projects were initiated in the USA and Europe with the goal

of adopting the principles of Content Distribution applications, such as Content

Distributions Networks (CDN) and peer-to-peer file sharing [27], and use them as

the basic abstractions for a new content-oriented network architecture. To name

a few, the Content-Centric Networking (CCN) [28] and Named-Data Networking

(NDN) [29] projects in the USA, and PSIRP [30] and its successor PURSUIT [31],

and 4WARD [32] in Europe.1 Although some of the proposed solutions and ar-

chitectures that came out of these projects are completely different, these research

efforts shared common starting points and high-level ideas and eventually formed

the Information-Centric Networking (ICN) research area. ICN holds a prominent

position in Clean-slate Networking research and is the primary focus of the ICN

Research Group (ICNRG) formed in the Internet Research Task Force (IRTF) [34].

ICN architectures aim to facilitate content distribution by placing self-

identified information items at the heart of the protocol stack and building routing

and transport protocols around them. To make this more concrete, the basic idea

in ICN is that hosts and network routers exchange data packets that contain named

addressable content. This is in direct contrast to the current Internet architecture

in which the basic networking abstraction is to transmit and forward datagram

packets destined to addressable hosts. Shifting the main networking abstraction

from addressable hosts to named-content, it is argued that it will facilitate the

1This is not an exclusive list of relevant projects. More can be found on the survey of Xy-
lomenos et al. [33].
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design and implementation of a networking architecture that can better utilize all

sorts of networking resources. With name-based abstractions, apart from band-

width, network operations may directly utilize memory and storage resources (e.g.,

caching) as well as computation resources (e.g., for data placement and/or media

transcoding) in order to efficiently deliver much larger volumes of data [35]. De-

spite the fact that the main goal of ICN is the specification of an efficient content

distribution networking architecture, ICN seeks to remedy all kinds of identified

weaknesses of the Internet architecture. ICN-based architectural proposals seek to

be more mobile-friendly, reliable, error-resilient and secure compared to TCP/IP.

In the past few years, several ICN designs have been proposed with substantial

differences in the provided service models and core network functions, including

information lookup, routing, forwarding and transport [33].

After a first series of research projects, 2 ICN activities seem to have focused

in a few directions. The most prominent is Content-Centric Networking (CCN), 3

originally proposed by Van Jacobson [36]. CCN proposes to use a request-response

HTTP-like communication model as the basic layer-3 abstraction, while routers

operate in a distributed manner, adopting many ideas from the IP world. Users

transmit Interest packets and receive Data packets that contain named-content.

Content is named with hierarchical identifiers, e.g., /a/b/c.pdf, similar to paths

in a computer file-system. Routers forward Interests based on Longest Prefix

Matching that is performed against their Forwarding Information Base (FIB),

very much like how today’s IP routers forward IP packets. FIBs are pre-populated

using name-based variants of existing distributed routing algorithms and protocols

(e.g., [37, 38]). As Interests are forwarded towards content sources, intermediate

routers track each forwarded Interest in the Pending Interests Table (PIT). Once

an Interest reaches the content source, the requested Data packet is transmitted

back to the requestor in a hop-by-hop manner, consuming the respective PIT en-

tries at each router. Essentially, PIT entries are breadcrumbs used to establish

data paths on a per-packet basis. In CCN terminology, this is called stateful data

forwarding and it is claimed to allow the architecture to be more effective with re-

2A period that roughly spans from 2007 to 2012.
3The Palo Alto Research Center (PARC) runs a project with the same name [28].
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spect to caching, multicast delivery and error resilience [39]. On the other hand, it

has been identified that keeping forwarding state for each requested packet would

have consequences on the architecture’s scalability properties [40, 41]. We present

further details on the CCN architecture in Section 2.1.

An alternative to CCN, the Publish-Subscribe Internet (PSI) architecture

follows a different approach. PSI proposed to use a publish-subscribe API as the

core network abstraction and instead of a fully distributed operation, it proposed

(i) to decouple control-plane from data-plane functionalities and (ii) to logically

centralize the control-plane functionalities [35, 42]. The PSI architecture is the

outcome of the PSIRP and PURSUIT research projects and its functional model

is very much aligned with Software-Defined Networking (SDN), which, at around

the same time, proposed to decouple the control-plane from the data-plane in

switches and centralize the control-plane functionalities [43]. PSI views the net-

work operation as the synthesis of three district functionalities: (i) the Rendezvous

function, used for matching user interests for content and locating the appropri-

ate content sources, (ii) the Topology Management and Path Formation function,

which monitors network condition and selects appropriate data paths for content

delivery and (iii) the Forwarding function which undertakes the actual packet de-

livery. The first two functions comprise the control-plane whereas the data-plane

is undertaken by the third function. As discussed, PSI decoupled the control-plane

from the data-plane and proposed that the Rendezvous and Topology Management

function are realized by separate logically centralized systems, e.g., a Hierarchical

DHT for the Rendezvous [44] and a centralized Path Computation Element for the

Topology Management [45]. We present further details on the PSI architecture in

Section 2.2.

1.1.3 Multicast forwarding with In-packet Bloom filters

A key aspect to efficient content delivery is the network’s support for mul-

ticast delivery, i.e., the network’s ability to deliver data to multiple hosts simul-

taneously. This is realized by replicating data packets at branching points of the

delivery tree instead of resorting to multiple unicast transmissions, one for each
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recipient host, which induces redundant packet transmissions at the common links

of the unicast paths. Even though IP multicast had been an important research

topic for a long time, multicast technologies face significant scalability problems

with respect to the number of co-existing multicast groups. This technical con-

straint, as well as business related constraints, have confined IP multicast to closed,

centrally controlled, enterprise networks, where it facilitates a limited number of

centrally-provided applications (e.g., IPTV) [46]. Multicast scalability constraints

are imposed by the hop-by-hop distributed packet forwarding model: multicast

forwarding state is distributed among network routers which maintain Multicast

Forwarding Tables (MFT). Unlike unicast IP addresses, multicast addresses are

logical and not topological identifiers; thus routers cannot aggregate MFT entries

as in unicast IP forwarding, hence MFT sizes grow proportionally to the number

of multicast groups traversing a router.

To alleviate these scalability constraints, Bloom filters, a probabilistic rep-

resentation of sets, have been proposed as a method for single-source packet for-

warding [47]. The idea is quite simple: the links of the delivery path (or tree)

are encoded into a Bloom filter which is then placed as source-routing informa-

tion in packet headers; hence the term In-packet Bloom filter (IBF). At each hop,

the router extracts the Bloom filter, checks which of its outgoing links are en-

coded in the IBF and transmits the packet over those links. This way, routers

are fully stateless with respect to forwarding state. Not only routers do not need

to maintain multicast forwarding state, they are also stateless regarding unicast

forwarding as well. Although IBF forwarding tackles the issue of forwarding state

kept at routers, it is susceptible to false positive forwarding decisions (redundant

traffic) due to the probabilistic nature of the Bloom filter data structure [48]. The

rate of false forwarding decisions increases as more elements are added, i.e., links

in our case, which, in the case of relatively static networks, happens as a multicast

group grows. Studies have shown that once the false positive probability of an IBF

exceeds 0.5%, forwarding anomalies arise, causing a sharp decline in bandwidth

utilization [47, 49]. We present further details on Bloom filter-based forwarding in

Section 2.3.
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1.2 Contributions

ICN places the need for efficient and scalable multicast delivery high in the

goals of the network architecture. CCN realizes single-source multicast delivery in

a distributed fashion through its stateful data forwarding scheme: when multiple

Interests for the same content are transmitted at the same time (e.g., in the case

of real-time streaming applications as in [50, 51, 52]), these will be aggregated by

the first common router along the data path. When the respective Data packet

is returned, the branching router will replicate the packet towards the multiple

requestors [36]. In CCN, multicast forwarding trees are formed without the need

of a distributed group management protocol and PIT entries live for a short time:

until the requested Data packet is returned. Nevertheless, early work on CCN has

identified that the increased forwarding state cannot scale without exploding mem-

ory requirements at the routers [40]. In PSI on the other hand, group management

and data path establishment are handled by the logically centralized Rendezvous

and Topology Management and Path Formation functions. On the data plane,

PSI proposes to use IBF forwarding which has the advantage of keeping forward-

ing nodes stateless, i.e., once a multicast group is formed and the respective IBF

is constructed, there is no need to explicitly place multicast forwarding state at

routers. However, due to the probabilistic nature of IBFs, PSI forwarding faces

severe scalability constraints with respect to the network and/or multicast group

size.

This dissertation addresses the issue of forwarding scalability, particularly

with respect to multicast delivery, in the CCN and PSI architectures, using Bloom

filter-based forwarding as a common ground. The contributions of the dissertation

are twofold. First, we address the issue of forwarding state scalability in CCN and

propose to reduce the size of the PIT using a semi-stateless forwarding scheme. We

achieve that by incorporating Bloom filter-based forwarding in CCN’s distributed

forwarding scheme without affecting critical architectural aspects of the system.

In our scheme, PIT sizes are reduced by 50%-70% with manageable bandwidth

overhead costs of 1.5%-12%. Second, we address the issue of forwarding scalability

in PSI with respect to the network/multicast group size. We propose to sacrifice



8

the fully stateless nature of IBF forwarding and introduce a semi-stateless scheme

in which we install multicast forwarding state at few, centrally selected routers

that perform IBF-switching. In this scheme, the system maintains high forwarding

efficiency (redundant traffic is kept below 4%) by installing multicast forwarding

state at 0.5%-2.5% of network nodes. More specifically:

1. In Chapter 3 we present a semi-stateless packet forwarding scheme for

Content-Centric Networks (CCN) that reduces the network’s forwarding state

requirements thus improving the architecture’s scalability properties. We

achieve that by integrating Bloom filter-based stateless packet forwarding

in the CCN architecture. We introduce a distributed Bloom filter source-

route construction with which we can mitigate forwarding state requirements

without sacrificing crucial qualitative features of the network architecture

nor requiring additional control-plane signalling. We evaluate the scheme

through simulations using both synthetic and realistic ISP-level topologies.

Simulation results show that the scheme is very effective in small-to-medium

topologies in which it reduces forwarding state in routers by 60% − 70% at

the cost of 2%−16% of additional bandwidth. However, in larger topologies,

the bandwidth overheads exceeded 50% (and in some cases reached 170%),

thus indicating the limitations of this solution.

2. In Chapter 4 we further extend the CCN semi-stateless forwarding scheme

in order to effectively reduce forwarding state at routers in large topologies,

while keeping bandwidth costs at manageable levels. We introduce a dy-

namic adaptation mechanism in our semi-stateless forwarding scheme with

which the system reduces forwarding state until routers detect that exces-

sive overhead thresholds are violated. Routers then instruct hosts to act

more conservatively through - what we call - Bloom filter Congestion No-

tification (BCN) feedbacks. Our simulation-based study shows that, with

dynamic adaptation, the scheme is effective in large topologies as well and,

in addition, it further improves its efficiency in small-to-medium topologies.

Overall, our proposed solution reduces forwarding state in CCN routers by

50%− 70% with bandwidth costs of 1.5%− 12% in all tested scenarios.
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3. In Chapter 5 we address IBF forwarding scalability issues in large networks.

In addition to the distributed Bloom filter construction presented in Chap-

ters 3 and 4, we present a semi-stateless forwarding solution that utilizes

centralized management, suitable for the PSI architecture. We introduce

Bloom filter relay nodes that perform IBF switching. We present a simple

post-order tree-traversal algorithm that selects appropriate IBF switching

points. We evaluate the solution through simulations in large-scale scale-free

synthetic graphs and show that, with IBF switching, we can achieve high

levels of forwarding efficiency (redundant traffic is kept below 4%) by plac-

ing multicast forwarding state at 0.5% − 2.5% of the network nodes. We

compare the scheme’s forwarding state requirements with relevant multicast

forwarding schemes and show that IBF switching reduces stateful nodes by

42%−99.6%. Hence, even though the fully stateless operation of Bloom filter

based forwarding is sacrificed, the scheme can still get far better scalability

compared with competing approaches.

1.3 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 pro-

vides background and related work regarding ICN architectures and Bloom filter-

based packet forwarding, which comprise the context in which this dissertation was

realized. In Chapter 3 we present our semi-stateless forwarding scheme for CCN.

We describe how Bloom filter-based forwarding is integrated in the architecture

and how to construct Bloom filter source-routes in a distributed manner. In Chap-

ter 4 we present the dynamic adaptation of the semi-stateless forwarding scheme

and show its overall effectiveness in all tested scenarios. In Chapter 5 we present

the centralized approach to semi-stateless Bloom filter forwarding and present our

IBF switching scheme. Finally, we conclude in Chapter 6.



Chapter 2

Information-Centric Networking

In this chapter we provide the basic background which forms the context

in which this dissertation was realized. In particular, we describe in detail the

Content-Centric Networking architecture in Section 2.1, the PSI architecture in

Section 2.2 and Bloom filter-based packet forwarding in Section 2.3.

2.1 Content-Centric Networking

The Content-Centric Networking (CCN) architecture places named content

packets at the thin waist of the protocol stack and provides users with a request-

response service model in which users pull data packets from the network [36].

Users request named Data packets via Interests. Data packets contain a name

that uniquely identifies the carried payload, whereas Interests carry the name of

the requested Data; no host addresses are used. For each Interest, a user receives at

most one Data packet, thus there is a strict one-to-one relation between Interests

and received Data packets. The structure of content names is similar to URIs:

names are hierarchical with variable-length components, e.g., /a/b/c.mp4.

Routers propagate Interests towards content sources and return Data pack-

ets along the reverse path with the help of three data structures: (i) the Forwarding

Information Base (FIB), (ii) the Pending Interests Table (PIT) and (iii) the Cache

Store (CS) (Figure 2.1). The FIB serves as a name-based routing table for forward-

ing Interests. At each arriving Interest, routers perform a Longest Prefix Match

10
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on their FIB and push the Interest towards a content source. FIBs are populated

through name-based routing protocols, either similar to the ones used in IP [36]

or new ones [37, 38, 53]. Before forwarding an Interest, routers insert the Interest

in the PIT, noting its incoming interface. If a PIT entry for the same name exists,

meaning that the router has already forwarded an Interest for the same packet,

the Interest is dropped, otherwise it is forwarded; however, the incoming interface

of the Interest is noted in the PIT, thus merging multiple Interests for the same

content into a single PIT entry. This operation continues until the Interest reaches

the content source which responds with the requested Data packet.

Data packets are delivered by reversing the path taken by the Interest. At

each hop, routers check their PIT for a matching entry, transmit the Data packet

backwards and delete the PIT entry. If a router had received Interests for the same

Data from multiple interfaces, the router duplicates the Data packet, thus realizing

multicast delivery. Finally, the CS, as it name suggests, is a cache containing Data

packets. Intermediate routers may directly serve an Interest if the requested Data

is present in the CS. Routers fill their CSes with traversing Data packets, but their

detailed operation (e.g., cache replacement policy and interaction with the routing

system) is an open research issue [54].

Apart from multicast, CCN inherently supports anycast, where the same

data is available in multiple locations, and Data multihoming, where a content

source can be reached through multiple paths. These two features are implemented

by having the FIB point to multiple next-hops for forwarding an Interest. The

Interest route (and consequently the Data route) is decided by on-path routers

through a CCN module called the strategy layer. Anycast and/or multipath is

transparent to users.

The Interest-Data mechanism essentially constitutes a request-response com-

munication model. Data transport is receiver-driven, with stateless senders (con-

tent sources), i.e., senders do not maintain any connection state, simply responding

to incoming Interests. Transport related issues are handled by the receiver. For

error control, the receiver retransmits Interests for missing Data packets. Flow

and congestion control are also applied by the receiver by pipelining Interests. For
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Figure 2.1: A sample CCN interaction. U1 issues an Interest for /a/b/c.mp4
which is located at S. Arrows show the propagation of the Interest. Data follows
the reverse path. The FIB and PIT (but not the CS) for R3 are shown.

example the amount of transmitted Interests can be controlled with a TCP-like

sliding window mechanism [55].

It is easy to see that CCN employs a stateful forwarding plane. For each

Data packet to be delivered to the requester, a PIT entry is required in each router

along the data path. Data paths are established as Interests are forwarded towards

content sources. Essentially, PIT entries act as breadcrumbs produced during In-

terest forwarding and consumed during Data forwarding. The stateful name-based

forwarding of CCN offers four key advantages. First, the network provides native

support for multicast delivery. If multiple users request the same content, their

Interests are suppressed by common on-path routers, which later duplicate the

received Data [36]. Second, hosts are address-less which, it is claimed that, will

reduce a number of address-related vulnerabilities such as address depletion as

well as governance and management costs. Third, security is enhanced by drop-

ping unwanted traffic since each router prevents the delivery of data that has not

been explicitly requested (e.g., DoS attacks and spam content) [36]. Fourth, main-

taining per-packet forwarding state enables routers to realize adaptive forwarding

functionalities, i.e., routers may actively participate in functions such as link failure
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recovery, flow control and detection of malicious user behaviour [39].

Tracking each forwarded Interest, however, raises scalability concerns [40,

56]. Indeed, the CONET project has proposed avoiding per-packet forwarding

state by adopting stateless forwarding [57]: Interests gather path information on

their way to the content source; Data are source-routed by reversing that path

information. The removal of forwarding state, however, nullifies the advantages

of CCN forwarding: (i) routers cannot aggregate Interests or duplicate Data, thus

multicast is not supported, (ii) security is downgraded since host addresses (which

were omitted on purpose) are required by some source-routing schemes and routers

cannot drop unwanted packets because forwarding state is removed, which is also

the reason why (iii) adaptive forwarding is disabled.

2.2 Publish-Subscribe Internetworking

The Publish Subscribe Internetworking (PSI) architecture [42] shares many

high-level goals with CCN, but it tries to achieve them following an entirely dif-

ferent design approach. PSI differs in two major aspects from CCN. First, the

notion of content objects in PSI is more abstract, i.e., a content object is not

strictly mapped to a single data packet. Second, the core network operation (rout-

ing requests and forwarding data) is split in three distinct functional modules,

emphasizing the decoupling of routing control from data packet forwarding.

2.2.1 Functional organisation

PSI models content objects as publications, content sources as publishers

and content consumers as subscribers. The architecture provides users with a

publish-subscribe API for announcing and requesting data. The architecture or-

ganizes the core network operation into three distinct functions, each one imple-

mented as a separate subsystem [35]: (i) the Rendezvous system (RVS), (ii) the

Topology Management and Path Formation system (TMPFS) and (iii) the For-

warding system (FS) [42].

The RVS serves as a resolution system; it tracks available publications in
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Figure 2.2: A sample PSI interaction. P announces a content object to the
network (step 1). S subscribes to it. The RVS handles the subscription (step 2),
the TMPFS selects the delivery path (step 3) and notifies P (step 4). P transmits
the requested object over the specified path (step 5).

the network and resolves user subscriptions. Nodes that implement RVS func-

tionality are called Rendezvous Nodes (RNs). The Topology Management and

Path Formation function serves a dual cause. First, it monitors network topology

and link conditions. Second, it computes optimal delivery paths for disseminating

publications from publishers to subscribers. The TMPFS functionality resides in

Topology Manager nodes (TMs), which may be co-located with RNs or placed

in separate physical hosts. The Forwarding System undertakes the actual data

transmission, i.e., packet forwarding, through Forwarding Nodes (FNs).

In terms of functional design, content delivery in PSI is a step-wise process

in which the three subsystems interact as shown in Figure 2.2. Initially, a publisher

announces the availability of a publication to the RVS (step 1). To receive a

publication, a user issues a subscription which is handled by the RVS as well (step

2). The RVS locates and selects the best publisher and requests the TMPFS to

compute the publisher-to-subscriber path (step 3). The TMPFS selects a suitable

path and instructs the FS to establish the selected path. Specifically, the TMPFS

hands a Forwarding Identifier (FID) to the publisher and instructs the publisher to

forward the requested item (step 4). Finally, the publisher transmits the requested

content object over the specified path (step 5).

PSI does not enforce a particular naming scheme. The architecture is com-

patible with both flat and hierarchical identifiers. The granularity of publications
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is not mandated by the architecture either. Publications may represent files (of

arbitrary size), chunks of files or individual network packets. Publications may

also represent live streaming flows of undefined size. It is left to the application

to decide how to represent a content object, taking into consideration the trans-

port context and that each available publication must be announced separately to

the RVS. For example, it is not advisable to represent a live stream as a series of

publications, one for each data packet, as in CCN. Doing so in PSI would require

that each stream packet is announced to the RVS and users issue subscriptions

that are handled by the RVS-TMPFS subsystems. This triangular resolution-path

formation-notification process may lead to excessive network load and large delays.

In addition, since streaming packets have relatively short lifetimes, they would need

to be unpublished (withdrawn) shortly after they are published, thus further bur-

dening the network operation. Live streams are better represented with a single

publication: stream sources announce the stream once and receivers tune in with

a single subscription. Once the subscription is resolved, the source transmits the

streaming packets to the subscriber until the latter withdraws the subscription.

Note that an explicit unsubscription message is also required.

Multicast delivery requires some network entity to keep track of users sub-

scribed to information items (e.g., RSS feeds) in order to construct and establish

the respective forwarding trees. In PSI, the task of tracking multicast receivers is

assigned to the RVS. When a user issues (withdraws) a subscription, the RVS adds

(removes) the user from the list of item receivers and requests the TMPFS to create

a source-specific forwarding tree, rooted at the publisher and with item subscribers

as the tree’s leafs. The details of how these mechanisms are implemented vary ac-

cording to the actual function implementations used.1 Once multicast forwarding

state is established, the respective FID is constructed and communicated to the

content source. PSI decouples routing control from FNs and delegates path/tree

computation to the TMPFS. This design choice has the advantage of making op-

timal routing decisions feasible, for example multicasting data over minimum-cost

Steiner trees [58, 59]. Such optimizations are too complex to implement in a fully

1In IP multicast for instance, all routers implement both the Rendezvous and Topology Man-
agement functionalities, as they participate in distributed multicast routing protocols.
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Figure 2.3: Interconnection of PSI networks: (a) neighbouring PSI networks, (b)
nested PSI networks.

distributed manner, as in IP and CCN, where routing and forwarding are strongly

coupled and routing decisions rely on distributed mechanisms. On the other hand,

centralized designs often face scalability issues, e.g., computation delays in the TM

nodes.

PSI networks interconnect with each other through border gateways for in-

ternetworking purposes. PSI networks may be connected with other PSI networks

forming neighboring relations (Figure 2.3(a)) or a network may contain nested

PSI networks (Figure 2.3(b)). Complex network organizations may use a mixed

combination of the two interconnection types.

Each PSI network runs its own domain-specific implementations of the core

functions, carefully selected for the particular networking environment it operates

in (e.g., home, enterprise, mobile, wireless ad-hoc, data-center, etc). PSI net-

works communicate with each other through inter-PSI implementations for RVS

and TMPFS, in the same spirit of the inter-domain routing protocols used in the

Internet. In inter-PSI communication, each network aggregates subscriptions is-

sued by domain-local users when these need to be resolved by other PSI networks.

Upon the arrival of the requested data packets, the network de-multiplexes them

and delivers the data to local subscribers. Apart from enhancing system scala-

bility, this inter-PSI communication abstraction allows each network to apply its

own domain-specific policies in order to optimize its internal operation, without

affecting global communication.
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2.2.2 Implementation of PSI functions

Apart from a high-level functional design, specific solutions have been pro-

posed for each one the core PSI functions. The RVS may be implemented as a

Distributed Hash Table formed by RNs [44]. The TMPFS can be realized by one

or more physical TM nodes that gather link-state information from FNs, compute

data paths upon requests from the RVS and send FIDs to publishers instructing

them to transmit data [45]. Last, but most important in the context of this disser-

tation, PSI promotes the use of IBF forwarding as the main forwarding solution.

That is, the paths that are computed by the TM nodes are then used to construct

IBFs. These IBFs, which can be unicast or multicast trees, are then handed to

publishers. Due to the stateless nature of IBF forwarding, the TMPFS does not

have to explicitly install state at FNs before handing the IBF to the publisher,

hence item resolution delays include the RVS and TMPFS delays only.

2.3 Bloom filter-based packet forwarding

Researchers have been long investigating ways to tackle the scalability issues

arising when multicast forwarding state is kept at routers [46]. An initial approach

was to reduce the amount of multicast forwarding state by placing forwarding

state in few routers only. For example, REUNITE proposed to place multicast

forwarding state only at branching points of the multicast tree and utilize unicast

forwarding between branching points [60]. This, however, is effective for sparse

trees where only a few branching points exist but not for dense ones. An alternative

approach is to completely remove multicast forwarding state from routers and

resort to source-routing techniques by placing forwarding information inside the

packet headers. This way, routers are stateless and the network can support an

arbitrary number of multicast sessions without worrying about forwarding state

explosion. In Explicit Multicast (Xcast), the addresses of the multicast group

participants are explicitly inserted into the packet header [61]. At each hop, routers

extract the list of recipient addresses from the packet header and forward packets

according to their unicast forwarding table. Due to the limited capacity of packet
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headers, however, Xcast can accommodate relatively small groups. In order to

accommodate larger groups, Xcast needs to install multicast state in some of the

multicast tree routers as well [62].

To further improve the scalability properties of multicast forwarding, Bloom

filters, a probabilistic representation of sets [63], have been proposed. The basic

idea is to reduce the forwarding state either by compressing the Multicast Forward-

ing Table (MFT) in the case of statefull multicast forwarding [64] or by compressing

the source-route header in the case of stateless multicast forwarding [47]. For ex-

ample, BUFFALO [65] and Application-oriented Multicast (AOM) [66] are Bloom

filter-based extensions of Xcast and, essentially, encode the list of the multicast

group’s host addresses into a Bloom filter. However, these techniques require uni-

cast forwarding state in order to forward packets using the encoded host addresses

and, in addition, involve, complex, resource-consuming operations at each hop.

The work of LIPSIN [47] introduced a lightweight Bloom filter-based technique in

which the source-route contains the links of the delivery path or tree. The tech-

nique is fully stateless in the sense that routers need not maintain any forwarding

information, i.e., multicast and unicast. The work of this dissertation utilizes and

extends this technique.

2.3.1 Packet forwarding

In Bloom filter-based forwarding, the links of the unicast path or multicast

delivery tree are encoded into a Bloom filter which is then placed as a source-route

in the packet header; hence the term In-packet Bloom filter (IBF). In general, the

construction of the IBF may occur at the source node [49] or it may be delegated

to a separate routing module [47, 59]. In PSI, for instance, this is delegated to

TM nodes. To encode path links into Bloom filters, links are assigned with a Link

Identifier (LID). An LID is anm-bit string with onlym bits set to 1 (k << m). The

positions of the k bits are determined using k hash functions, e.g., by applying the

k hash functions on the network adapters MAC address. LIDs are unidirectional

(a bi-directional link is assigned two LIDs, one for each direction) and do not need

to be unique.
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Figure 2.4: A simple network with assigned LIDs, m=6 and k =2. LIDs need
not be unique. Only left-to-right LIDs are shown.

A delivery path is encoded into an IBF by adding (ORing) the path LIDs.

In the example of Figure 2.4, the IBF for transmitting data from A to C is

IBFA→C = LIDAB OR LIDBC = 000101 OR 000110 = 000111

which is then placed at the packet header. Forwarding nodes extract the IBF from

packet headers, examine which of their outgoing links are part of the IBF and

transmit the packet over those links. To examine whether an LID is contained in

the IBF, the forwarding evaluates the following expression

(IBF & LIDi) == LIDi

and if it evaluates to true the node assumes that is encoded into the iBF and

transmits the packet over link i. Continuing the example of Figure 2.4, when node

B receives a packet with the IBF 000111, it will forward it to C since

IBFA→C AND LIDBC = 000111 AND 000110 = 000110 = LIDBC

IBFs inherently support multicast delivery. The method is simple: to add

(OR) the LIDs for all the tree links comprising the delivery tree. In the example

of Figure 2.4, the IBF for multicasting data from node A to nodes C and D is

IBFA→C,D = LIDAB OR LIDBC OR LIDBD = 010111

The only difference multicast brings to the forwarding node is that it must be

prepared for a packet’s IBF to match many of its LIDs, which should cause the

packet to be forwarded out of each corresponding link.
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2.3.2 Bloom filter construction

Bloom filter-based packet forwarding systems are generally classified in two

categories, depending on how the IBF is constructed. In the first category, the

data path is constructed in a distributed manner and the IBF is computed at

the source node [49, 67]. In these systems, recipient nodes send special packets

towards a designated source. As these messages are propagated, they collect reverse

path information, i.e., an ID for each traversed node. When the packet reaches its

destination, the source node extracts the reverse path, and computes the respective

IBF. A basic assumption in these systems is that nodes have sufficient topological

information to forward the data path construction messages and compute the IBFs.

In the second category, the data path (or tree) and the respective IBF

are centrally computed by a separate routing module that resides in a dedicated

server [47, 59]. The PSI architecture belongs to this category. In these systems,

path construction messages are delivered directly to the routing module which

computes the data path (or multicast tree) based on topological information (e.g.,

link delays), constructs the IBF and then sends it to the group source. In these

systems, the delay for path construction is increased, due to the need to also

communicate with the routing module.

2.3.3 Forwarding efficiency

There are two significant advantages in IBF forwarding. First, it is very

lightweight in terms of the state required at forwarding nodes: nodes only need to

store the LIDs for their outgoing links, which requires space proportional to the

node’s degree. This also applies to multicast: as forwarding information is kept at

packet headers and not at routers, the network can support an arbitrary number of

multicast sessions without worrying about MFT explosion. The second advantage

of IBF forwarding regards its capability for line-speed operation, in contrast to

other source-routing methods. The forwarding logic is based on simple bitwise

operations which can be easily implemented in hardware [47].

On the other hand, IBF multicast faces severe scalability issues with respect

to multicast group size as a result of the Bloom filters’ probabilistic nature. When
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a Bloom filter is queried whether an item is contained in the set, it may return a

false positive. In a packet forwarding context, the IBF may falsely answer that an

LID is present in the path, thus the packet will be falsely forwarded over that link.

Continuing the example of Figure 2.4, the IBF for multicasting data from node A

to nodes C and D was IBFA→C,D = 010111. When the multicast packet arrives at

node B, the query against LIDBE returns a false positive since

IBFA→C,D & LIDBE = 010111 AND 010001 = 010001 = LIDBE

Thus, node B falsely assumes that the packet is meant to be transmitted over link

B → E. To make matters worse, at node E the IBF also matches LIDEF , so

the packet is also falsely forwarded from node E to node F. In this example, a

multicast delivery intended for 3 links resulted in 5 transmissions. The amount of

redundant traffic generated depends on the false positive probability (fpp) of the

Bloom filter as given by [48]

fpp = (1− e−kn/m)k (2.1)

where m is the size of the Bloom filter, k is the number of hash functions used and

n is the number of inserted items. The fpp increases as (i) the size of the Bloom

filter decreases or (ii) the number of inserted items increases. In IBF multicast, as

group size increases, more links are added, thus the fpp also increases. Previous

research in IBF multicast forwarding reported that once the fpp exceeds 0.5% there

is a sharp rise in the amount of redundant traffic caused by false positives [47, 49].

To better illustrate the performance degradation of IBF multicast when

the group size grows, Figure 2.5 presents simulation results for a synthetic scale-

free graph with 500 nodes. The plot shows the forwarding efficiency of multicast

delivery for various IBF sizes, defined as

forwarding efficiency =
#multicast tree links

#total packets transmitted
(2.2)

If we target a forwarding efficiency of 90% (i.e., 10% of redundant traffic), we see

that multicasting with a 256-bit IBF can scale up to roughly 6-7 nodes. A 1024-

bit IBF scales up to 60 recipient nodes. These results are consistent with previous

research [47, 49, 59].
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Figure 2.5: IBF forwarding efficiency in a network with 500 nodes.

Several research studies have focused on mitigating IBF forwarding anoma-

lies such as redundant transmissions and, even, routing loops. LIPSIN proposed

to install short-lived packet caches in routers in order to eliminate forwarding

loops [47]. When a looped packet arrives at a router, the router compares it

against this cache and discards it, thus eliminating the loop. This approach, how-

ever, introduces extra state at routers and increases per-packet processing over-

head. Särelä et al. proposed a varying-k method for computing the LIDs and

a bit-permutation scheme during IBF construction and forwarding [49]. These

schemes mitigate forwarding anomalies but do not provide significant scalability

benefits. Going one step further, Särelä et al. proposed BloomCast, a protocol for

inter-domain IBF multicast [49]. In BloomCast, the IBF is computed based on the

inter-domain graph and separate IBFs are used at each individual Autonomous

System (AS). When packets enter ASes, ingress routers encapsulate packets with

a domain-specific IBF and tunnel them towards AS exit points. Although Bloom-

Cast shrinks the topology graph by applying the abstraction of inter-domain and

intra-domain graphs, it does not solve the scalability problems on a single graph.

For instance, according to CAIDA traces, the Internet inter-domain graph is cur-

rently reported to contain more than 35000 ASes [68]. Using a single IBF for

multicast delivery over the inter-AS graph, BloomCast scales up to 20 AS nodes
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with a 1024-bit IBF. In the Efficient and Scalable data center routing scheme

(ESM), which focused on IBF multicast for data center topologies, the technique

was used only for small (manageable) multicast groups, resorting to hop-by-hop

multicast forwarding for bigger group sizes [59]. In Hierarchical Tree Splitting

(HST), the multicast tree is split in several sub-trees, all rooted at the source, so

that the IBF for each sub-tree has a low fpp [67]. The source node maintains sev-

eral IBFs (one per sub-tree) and transmits packets over all trees. HST preserves

the stateless operation of routers, at the expense of additional multicast state at

the source node and redundant traffic: the sub-trees may have overlapping links,

thus causing replicas of data packets to traverse the overlapping links more than

once. Overall, HST still suffers from excessive redundant traffic in very large trees.

Other studies focus on increasing IBF capacity in order to fit more tree

links without significant performance penalties. In general, the approaches for

increasing the capacity of a IBFs are (i) to vary the size m of the Bloom filter or

(ii) to compute the optimal value for k so that fpp remains low [48]. Varying m

can be realized in two ways. First, by using a Bloom filter that grows dynamically

as items are inserted [69, 70]. Second, by computing a value for m that minimizes

the fpp, provided that we know n beforehand, i.e., we must first determine the

multicast tree size and then compute the size of the IBF. In both cases, varying

m means using different IBF sizes on a per tree size basis, which is not practical

in the context of packet forwarding. First, m cannot grow without bound: there

are limits to the size of the IBF imposed by Maximum Transfer Unit (MTU)

packet sizes; in addition, IBFs should be a relatively small part of packets as they

represent control overhead. Second, using variable length identifiers is unfriendly

to line-speed hardware-level implementations of IBF forwarding.

The second approach for increasing the capacity of a Bloom filter is to keep

m fixed and vary k [67]. This approach requires first determining the number of

multicast tree links and then computing k. The value for k that minimizes fpp

is [2]

kopt =
9m

13n
(2.3)

Varying k is impractical because it does not guarantee that the fpp will remain
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Figure 2.6: Multi-stage Bloom filters.

below a desired threshold. For example, if m = 256 bits and n = 200 tree links,

then kopt = 0.88. In practice, however, k cannot be less than 1; at least one bit

needs to be set in LIDs, otherwise packet forwarding will fail. In this case, if we set

k = 1 and apply Equation (2.1) we get fpp ≈ 0.55, which is far too big compared

to the suggested 0.5% [49]. Moreover, varying k is also impractical as it would

require computing and setting LIDs in nodes on a per multicast tree size basis. In

contrast, having a unique, predefined value for k allows LIDs to be computed and

installed once, during network bootstrap.

Multi-stage Bloom filters (MSBF) apply a combination of the techniques

described above in order to provide a false positive-free Bloom filter [71]. The basic

idea in MSBF is to use multiple IBFs in the packet header, one for each stage for the

delivery path/tree (see Figure 2.6), where stagei is the set of links that are i hops

away from the source node. For example, stage0 includes all delivery links that are

attached to the source node and stage1 includes all links that are 1 hop away from

the source node. At each hop of the forwarding phase, routers inspect a TTL in the

packet to identify the stage at which the packet is and then forward the packet by

inspecting the respective IBF inside the MSBF header. The MSBF is constructed

by a centralized routing module. For each stage, the module computes the optimal

IBF, i.e., an IBF that produces as few false positives as possible when matched

against all LIDs of the specific stage. To achieve that, MSBFs are variable-length:

the routing module computes the optimal IBF size in the attempt to produce a

false-free IBF for a particular part of the network topology. Overall, MSBF is

a forwarding mechanism that breaks the delivery path/tree in multiple variable-

length IBFs. MSBF can eliminate redundant traffic to a large extend, however it
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requires the presence of a centralized routing module (suitable in the context of

PSI but not CCN) and, in addition, the variable-length nature of IBFs nullifies

the line-speed forwarding properties of plain fixed-size IBFs.



Chapter 3

Reducing Forwarding State in

Content-Centric Networks

3.1 Stateful data forwarding

As discussed in Section 2.1, CCN employs a stateful forwarding logic in

which routers maintain forwarding state for each forwarded Interest in their Pend-

ing Interests Table (PIT). These entries are consumed as Data packets are propa-

gated from content sources to content requesters in a hop-by-hop manner, following

the Interest’s reverse path. CCN advocates stateful data forwarding due to four

key advantages:

1. It natively supports multicast delivery. The first common router towards

a content source will aggregate Interests for the same name and duplicate

the Data packets returned. This is particularly useful in real-time streaming

applications [50, 51, 72] where users consume the same content in a synchro-

nized manner, i.e., they transmit Interests for the same Data simultaneously.

2. Host addresses are omitted. This may reduce (or, even, eliminate) a num-

ber of address-related problems, such as address space depletion, address

assignment and governance [36].

3. The network delivers only data that has been requested; routers drop Data

26
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packets that do not have a matching Interest in their PIT, thus unwanted

traffic (e.g., spam) is discarded near the source and not at the recipient [36].

4. Maintaining per-packet forwarding state is an enabling factor for adaptive

forwarding [39], in which routers may exploit forwarding state to assist func-

tions such as fast recovery from link failures, congestion avoidance and early

detection of malicious users.

The amount of forwarding state kept in routers, however, raises scalability

concerns related to the PIT size. The number of Interests that must be stored

in the PIT in order to fully utilize the network depends on the link capacity, the

size of Data packets and the average Round-Trip Time (RTT) which defines the

lifetime of Interests inside the PIT. A rough estimate for the required number

of PIT entries per link is bandwidth × RTT/data packet size. For example, to

fully utilize a 40 Gbps link with 1000-byte Data packets and an average RTT

of 80 ms, the PIT must contain 400K entries; this must be multiplied by the

number of links hosted by the router. Furthermore, real-time applications such

as multimedia streaming [50, 51, 52, 72] and publish-subscribe applications [73],

request Data before they are generated. This leads to an increased effective RTT,

as Interests remain longer in the PIT. The work in [74] mapped realistic IP traffic

onto CCN and estimated that a 20 Gbps access router would require 1.5M of

PIT entries.1 Furthermore, work in [75] estimates that, in an extreme worst case

scenario, the PIT may reach 30M-60M entries. Taking into account that CCN

names are variable-length and, in general, much longer than host addresses, the

total memory requirements for the PIT grow significantly.

A very large PIT has grave implications for network throughput. Since the

PIT is examined for every arriving packet, it should ideally reside in a line-card’s

on-chip memory, which is very fast but has very limited capacity [40, 56]. Initial

investigations reported that a hash table-based implementation is too big to fit

inside today’s on-chip memories [40, 75]. The fallback option is to place the PIT

1In that study, the authors assumed that an Interest can correspond to multiple Data pack-
ets. This radically changes the basic CCN behavior of one Interest per Data and may heavily
underestimate the amount of PIT entries.
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in the router’s main memory which is much slower, thus causing a performance

degradation. Two proposed PIT implementations, DiPIT [76] and Encode Name

Prefix Trie (ENPT) [74], can, under certain assumptions on the traffic mix and

average content-name length, substantially reduce the memory-footprint of the

PIT, but not enough to fit it into a line-card’s on-chip memory. In addition, DiPIT

encodes multiple Interests in Bloom filters, thus losing the information of which

particular Interests are stored, which is crucial for dropping stale Interests [75] and

adaptive forwarding. ENPT, on the other hand, organizes the PIT in a trie-like

structure with a linear (O(N)) complexity for insert and lookup operations (where

N is the number of components in a CCN name), compared to the constant (O(1))

complexity of hash tables, which severely jeopardizes the ability of CCN to perform

packet forwarding at line speed.

Figure 3.1: The CONET variation of CCN.

The CONET architecture addressed the issue of forwarding state by mov-

ing the forwarding information from the routers to the packet headers [57]. In

essence, CONET is a fully stateless forwarding variant of CCN. In CONET, all

packets carry a path header listing a sequence of node identifiers. During Interest

propagation, routers append their identifier in the packet’s path header. When

the Interest reaches the content source, the header is reversed and placed as a

source-route in the Data header (see Figure 3.1). By removing the PIT entirely

however, this stateless forwarding approach loses the advantages of CCN’s state-

ful forwarding. First, support for multicast is nullified, as a router no longer has

the required information to suppress Interests and duplicate Data. Interests for

the same content are individually forwarded to the content source, which then

unicasts the corresponding Data to each requester. Second, forwarding relies on
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node identifiers (e.g., IP host addresses) that were originally omitted on purpose.

Bringing node identifiers back to the network architecture will eventually lead us

to the problems that CCN meant to avoid in the first place. Third, nodes cannot

drop unwanted traffic since they no longer track which Data have been requested.

And fourth, the complete removal of forwarding state from routers does not allow

offering adaptive forwarding functionality.

3.2 Persistent Interests

An alternative way to maintain the stateful nature of CCN’s forwarding

while relaxing the PIT state requirements is through Persistent Interests (PIs) [77].

With PIs, users send Interests in order to receive channels of streaming Data

packets which are grouped by a prefix of the content-name. That is, instead

of requesting each packet individually, a user may issue a Persistent Interest for

receiving all Data packets under a certain content-name prefix. In contrast to

plain Interests, CCN routers store PIs in their PIT for a period of time. Since

a PI matches a number of Data packets, PIs are not deleted after a matching

Data packet is forwarded; instead, they remain in the PIT until users explicitly

unsubscribe from the channel or the PI’s lifetime expires. Users may issue PIs

periodically so that state in routers is refreshed, otherwise PIs are discarded as

stale.

In the data plane, each Data packet in a channel still has its own name,

in order to distinguish Data packets, but they all share a common prefix which

serves as the the channel name. For example, if a channel is named “SportsTV”,

its Data packets could be called “SportsTV/Packet1”, “SportsTV/Packet2” and

so on. Channel Data packets must be specially marked, so that forwarding can be

performed on the channel name, in order to also match PIs. When CCN routers

receive Data packets belonging to channels, they extract the channel name from

the packet name and search their PIT for a matching PI. Once a match is found,

the Data packet is forwarded and the PI is kept in place.

PIs can be particularly helpful in real-time streaming content. An appli-
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cation can choose a name for the channel and advertise it to users which issue

the respective PIs. In practice, the name must be carefully selected so that CCN

routers will propagate the PI to the right content provider. If multiple users send

PIs for the same channel, CCN can implicitly group all users into a single multicast

tree and forward the same data packets simultaneously to the subscribed users.

With PIs, the amount of Interests transmitted may be significantly reduced.

However the lifetime of a PI inside the PIT is much longer than that of a plain

Interest, thus it is unclear whether the PIT size is effectively reduced. The amount

of PIT state required for PIs is proportional to the number of active channel

sessions (regardless of unicast or multicast delivery). Essentially, the channel-based

model of PIs is the same as in IP multicast data forwarding, therefore scalability

constraints with respect to active sessions are still present [46].

3.3 Semi-stateless packet forwarding

In this chapter we present a forwarding scheme for CCN that combines

stateful and stateless forwarding, so as to reduce the resource requirements of

routers, without losing its advantages, i.e., multicast delivery, address-less hosts,

detection of unwanted traffic and support for adaptive forwarding. Instead of

storing forwarding state per Interest in either all or none of the routers, as in

plain CCN and CONET, respectively, we propose tracking Interests at some of

the on-path routers and using a mix of stateful (in-router) and Bloom filter-based

stateless (in-packet) forwarding.

During Interest propagation, instead of updating the PIT at each router, the

Interest is tracked at every d hops, where d is a predefined system parameter, e.g.,

d = 3 or d = 4. We call d the Forwarding State Reduction Factor. Intermediate

routers add reverse path information inside Interests. When a router tracks an

Interest, instead of storing the Interest’s incoming interface, the router stores the

reverse path (or tree) gathered by the Interest. During Data forwarding, routers

that tracked a particular Interest place the source-route for the downstream path

(tree) in the Data packet and push it towards the next stateful router(s). Between
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stateful points, packets are forwarded according to the in-packet source-route.

Our solution reduces forwarding state requirements, while preserving the

desired properties of CCN’s forwarding. Specifically, native multicast and host

anonymity are preserved due to the adoption of Bloom filter-based forwarding

for source-routing, while dismissal of unwanted traffic and adaptive forwarding is

still supported for the fraction of Interests that each router is tracking. Though

the latter two are supported in a more coarse manner, our approach compares

favourably to either fully stateless forwarding solutions [57] or Interest compression

schemes that drop fine-grained forwarding information [76]. Our forwarding scheme

consists of two logical parts: (i) updating the PIT upon the arrival of an Interest

and (ii) tracking reverse path information in Interests in order to construct Bloom

filter source routes which are then used in Data forwarding. We elaborate on these

below.

3.3.1 Interest tracking

The main idea in our approach is to track an Interest at every d hops. We

describe three Interest tracking policies that can achieve this.

Probabilistic tracking

In this policy, a router decides to track every incoming Interest with prob-

ability 1/d. For example, when d = 4, an Interest is tracked with probability

1
4

= 0.25, thus routers track on average 25% of the received Interests. The prob-

abilistic decision alone is not sufficient for two reasons. First, it obstructs the ag-

gregation of Interests at common on-path routers in multicast applications. When

an Interest reaches a router, the probability of not storing the Interest is
(
d−1
d

)
.

Considering that d ≥ 2, when a new Interest reaches a router where an Interest

for the same content has already been stored, it is more probable that the new

Interest will not be stored there, therefore it will not be suppressed. To avoid

this, upon receiving an Interest, routers first check their PIT and proceed with the

probabilistic decision only if no match is found; if a match is found, the Interest

is merged into the PIT and suppressed. The second inefficiency regards the prob-
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Algorithm 1 Probabilistic Interest tracking policy.

1: procedure Prob Tracking(interest, incoming port)

2: pit entry := PIT lookup(interest)

3: if pit entry not null then

4: store in PIT (interest, incoming port)

5: return . Interest suppressed

6: end if

7: rand := random()

8: if rand ≤ (1/d) then

9: store in PIT (interest, incoming port)

10: end if

11: out port := FIB lookup(name)

12: forward(interest, out port)

13: end procedure

ability of not tracking an Interest at all. In a N -hop path, the probability of not

storing an Interest at any intermediate hop2 is
(
d−1
d

)N
. When d = 4 and N = 8,

the probability of not storing an Interest at any router is 0.758 ≈ 0.1, i.e., 10%

of the Interests issued by that particular application are source-routed on an end-

to-end basis. As we will discuss later in Section 3.3.2, this has a negative impact

on the stateless forwarding part of our protocol due to false positives in Bloom

filters: when the amount of source-routing information exceeds a limit, the Bloom

filter-based degenerates and causes excessive redundant traffic [47]. Algorithm 1

shows the detailed algorithm for the Probabilistic tracking policy.

Hash-based tracking

This policy tackles the rendezvous inefficiency of Probabilistic tracking, i.e.,

aggregating Interests for the same Data in common on-path routers, with the use

of a hash function. When router i receives an Interest, it performs the following

2We assume a unicast path, i.e., the same Interest has not previously crossed part (or all) of
the path.
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computation

ν = hash(content name+ suffixi) mod d (3.1)

If ν = 0, we say that the Interest made a rendezvous at this node and the router

stores it in the PIT. Note that we hash the content name appended with a router-

specific suffixi, in order to produce a different ν for the same Interest at each

hop. If we did not use the suffix, hashing the content name alone would produce

the same result at all routers, thus the Interest would either be stored in all routers

(if ν = 0) or in none (if ν 6= 0). If the selected hash function has good uniformity

properties, ν is uniformly distributed in [0, d− 1] and Interests are stored at each

router with probability 1/d, as desired. If all routers use the same hash function

(e.g., MD5) and each router uses a fixed suffixi (e.g., a uuid initialized during

node bootstrap), then multiple Interests for the same Data will deterministically

rendezvous at the exact same routers.3 Hence, routers will be able to suppress

Interests without performing a PIT lookup. The cost of this policy is the hash

computation at each router. In addition, there is a chance that an Interest may

not be stored at any router, as in the Probabilistic tracking policy. Algorithm 2

shows the detailed algorithm for the Probabilistic tracking policy.

Hop Counter-based tracking

In this policy, routers track Interests based on the value of a Hop Counter

(HC) inside the Interest header. The HC is incremented at each hop and when

HC = d, routers store the Interest in their PIT. Routers always perform an initial

PIT lookup in order to suppress multicast Interests regardless of the HC value, as

in Probabilistic tracking. The initial value for the HC is set by the issuing host but

instead of setting it to 0, the initial HC is randomly selected in the range [0, d− 1]

so as to distribute forwarding state to all routers. If the initial HC was always

set to 0, routers with distance d − 1 from hosts would be kept stateless. In the

example of Figure 2.1, if d = 3, all Interests issued by hosts would be tracked by

R4, while R1 to R3 would have an empty PIT. PIT state would thus be unevenly

distributed: R4 would be a bottleneck point and R1 to R3 would not participate

3Note that the suffix is not communicated, thus host anonymity is preserved.
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Algorithm 2 Hash-based Interest tracking policy.

1: procedure Hash Tracking(interest, incoming port)

2: suppress interest := false

3: ν = hash(content name+ suffixi) mod d

4: if ν = 0 then

5: suppress interest := (PIT lookup(interest) 6= null)

6: store in PIT (interest, incoming port)

7: end if

8: if not suppress interest then

9: out port := FIB lookup(name)

10: forward(interest, out port)

11: end if

12: end procedure

in (say) adaptive forwarding at all. In contrast, with a randomly selected HC,

there is a 1/d probability for each on-path router to track the Interest. This

policy guarantees that an Interest will always be stored at most after d routers,

thus avoiding the inflation of false positives due to overflowing iBFs, which may

occur in the Probabilistic and Hash-Based policies. Algorithm 3 shows the detailed

algorithm for the Hop Counter-based tracking policy.

3.3.2 Semi-stateless data forwarding

We now describe how semi-stateless packet forwarding can be incorporated

into CCN, without sacrificing the native multicast and node anonymity of CCN.

In our scheme, the network supports multicast efficiently, even though the for-

warding state may be stored in non-branching points of the multicast tree. That

is, the source-routing scheme duplicates data only at branching points, even when

the source-route is maintained elsewhere, without resorting to multiple unicast

transmissions and without re-introducing host addresses to CCN.

To integrate Bloom filter-based forwarding in CCN, we extend Interest and

Data packets to carry an IBF in their headers. Interest packets accumulate the IBF
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Algorithm 3 Hop Counter-based Interest tracking policy.

1: procedure Hop Counter Tracking(interest, incoming port)

2: pit entry := PIT lookup(interest)

3: if pit entry not null then

4: store in PIT (interest, incoming port)

5: return . Interest suppressed

6: end if

7: hc := increment hop counter(interest)

8: if hc = d then

9: store in PIT (interest, incoming port)

10: reset hop counter(interest)

11: end if

12: out port := FIB lookup(name)

13: forward(interest, out port)

14: end procedure

for the traversed (reverse) path and Data packets carry the IBF for the delivery

path (or tree). Specifically, upon receiving an Interest, routers update the Interest’s

traversed path by adding (ORing) the outgoing LID of the packet’s incoming link.

If a router decides to store an Interest in its PIT, it also stores the IBF and then

resets the IBF in the Interest before further forwarding it. When the respective

Data packet arrives, the router acts as a relay point by inserting the stored IBF in

the Data packet and then forwarding it based on the IBF.

Figure 3.2(a) shows an example where d = 2, U1 and U2 are two multicast

users and the network uses Hop Counter-based tracking. At some point, U1 re-

quests the packet /vid/packet/3 with initial HC = 0. U1 creates the Interest

with an empty IBF (i.e., all bits are set to 0) and transmits the packet. R1 re-

ceives the Interest, increases the HC and adds the LID for the reverse direction,

i.e., LIDR1→U1 , to the Interest IBF (step 1). R1 forwards the Interest to R2. Node

R2 increases the HC to 2 and adds LIDR2→R1 to the Interest IBF (now containing

the path R2 → R1 → U1). Since HC = 2 (= d), R2 stores the Interest along with

the IBF in its PIT (step 2). R2 then resets the Interest’s HC and IBF and forwards
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(a) Interest from U1: R1 updates the Interest iBF. R2 tracks the Interest in its PIT

with the iBF for R2 → R1 → U1. R2 resets the Interest iBF to 0 and further forwards

the Interest.

(b) Interest from U2: R1 updates the Interest iBF. R2 adds the iBF to its existing

PIT entry and suppresses the Interest. The stored iBF contains the multicast tree

to U1 and U2.

Figure 3.2: Interest propagation using IBFs to track reverse paths. Only right-
to-left LIDs are shown.

the Interest (step 3). This continues until the Interest reaches the data source.

During Interest forwarding, if a router finds a matching PIT entry, it adds

(OR) the Interest’s IBF to the IBF already stored in the PIT. The resulting IBF

is the union of the already stored and the additional path links, which form a

multicast tree. This is shown in Figure 3.2(b). U2 transmits an Interest for the

same content as U1 did, with initial HC = 0. The request arrives at R1 which

updates the Interest’s HC and IBF (step 1) and forwards the Interest to R2. At

that point, R2 updates the Interest’s IBF, adds it to the IBF already stored in the

PIT and suppresses the Interest (step 2). The PIT entry at R2 now contains the
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Algorithm 4 Semi-stateless forwarding.

1: procedure Semi Stateless Forwarding(data packet, incoming port)

2: pit entry := PIT lookup(data packet.name)

3: if pit entry not null then

4: data packet.IBF := pit entry.IBF

5: end if

6: IBF FORWARD(data packet, incoming port)

7: end procedure

8: procedure IBF FORWARD(data packet, incoming port)

9: for port in (ports− incoming port) do

10: lidport := link id(port)

11: if data packet.IBF AND lidport = lidport then

12: transmit(data packet, port)

13: end if

14: end for

15: end procedure

IBF for the multicast tree R2 → R1 → {U1, U2}.
Upon the arrival of a Data packet, a router checks its PIT and if a matching

entry exists, it replaces the Data IBF with the stored IBF and further forwards

the packet. If no PIT entry exists, the router forwards the Data packet according

to its IBF. If no LID matches the Data packet’s IBF, the router drops the packet.

Finishing the example of Figure 3.2, when the Data packet /vid/packet/3 arrives

at R2 , the router replaces the Data IBF with the one stored in the PIT. The

IBF now contains LIDR2→R1 , LIDR1→U1 and LIDR1→U2 , therefore the packet is

delivered to R1 which then duplicates the Data packet to U1 and U2. It is impor-

tant to note that even though the IBF is stored at a non-branching router (R2),

Bloom filter-based forwarding ensures that the Data packets are only duplicated

at branching nodes (R1). Algorithm 4 shows the router’s data plane logic upon

the reception of a Data packet.
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3.3.3 Architectural considerations

Our semi-stateless forwarding scheme requires slight changes in the CCN

architecture. Apart from the modified Interest and Data handling operations, the

incorporation of Bloom filter-based forwarding does not affect the architecture’s

control plane. That is, there is no need for any additional routing information

exchange. Routers only need to know their own outgoing LIDs, which can be

autonomously computed, e.g., by Double Hashing [48] the MAC address of each

network interface during node bootstrap. There is no need to coordinate LID

assignment, as LIDs do not need to be globally unique. In addition, source-routes

are constructed in a distributed manner and no separate centralized module is

required to construct the Bloom filters [78]. Nodes also remain anonymous, as in

CCN. Security is not downgraded, as due to the Bloom filter-based and source-

specific representation of the source-routes, it is very difficult to perform targeted

attacks to nodes. Hosts are unaware of router LIDs and it is highly improbable

that a host can guess a valid IBF to attack a particular node [47]. Content sources

obtain valid IBFs only when Interests arrive at them, but they have no idea where

these IBFs lead and they rarely obtain an IBFs for an entire end-to-end path.4

3.3.4 Performance trade-offs

The reduction of forwarding state achieved by our semi-stateless approach

introduces some performance overheads, thus there are performance trade-offs to

be made, which are analyzed in this section.

The first overhead is a possible increase in the Interests transmitted when

multicast trees are created. This happens because Interests are not necessarily

aggregated at the first common router of the multicast tree. For example, assume

that U1 and U2 in Figure 3.2 consume the same content. If d = 3, their Interests

will be aggregated at either R1, R2 or R3, although R1 is the nearest common

point. When Interests are aggregated at R2, an additional Interest is transmitted,

compared to CCN. For Interests that rendezvous at R3, two additional Interests are

4The path has to be smaller than d hops (minus the initial value of HC in Hop Counter-based
tracking).
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(a) Basic CCN PIT

(b) CCN PIT with IBFs

Figure 3.3: In semi-stateless forwarding, the PIT contains fewer entries but each
entry occupies more memory due to the IBF size.

transmitted. This is a penalty our scheme pays in order to reduce forwarding state

in routers. The amount of additional Interests depends on the Forwarding State

Reduction Factor d. For larger values of d, forwarding state is further reduced, but

Interests may be suppressed further away than the first common on-path router.

The overhead caused by additional Interests is also subject to the group size and

the density of the multicast tree. When the multicast tree is sparse, Interests

are rarely aggregated anyway, thus few additional Interests can be transmitted.

Note that this penalty affects multicast delivery only; with unicast, there is no

Interest aggregation anyway. We further discuss the impact of increased Interest

transmissions in Section 3.4.

The second overhead is that all packets (both Interests and Data) must

carry IBFs, therefore bandwidth consumption is increased due to the extra field

in packet headers. The third overhead is that the PIT now stores IBFs instead

of interface ports, as shown in Figure 3.3. While IBFs are typically 128-256 bits

long [47], up to x ports can be encoded with an x-bit mask, e.g., 32-bits for 32

ports.5 Hence, the actual memory reduction of the PIT is not equivalent to the

reduction of PIT entries, e.g., a 50% reduction of the PIT entries does not lead to a

5Note that a full port mask, rather than a port number, is needed at the PIT in order to
support multicasting.
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50% reduction in the actual memory footprint. Finally, the fourth overhead is due

to the fact that IBF-based forwarding is susceptible to false forwarding decisions

which cause redundant traffic, especially as more LIDs are added to the IBF. The

scale of this overhead depends on the size of the multicast group and the value of

d.6 We elaborate on these trade-offs in Section 3.4.

3.4 Evaluation

3.4.1 Simulation setup

We evaluated the effectiveness of our approach through simulations, using

synthetic scale-free graphs generated with the Barabási-Albert algorithm [79] and

ISP topologies obtained from Rocketfuel [80] and the Internet Topology Zoo [81].

Table 3.1 shows the graph characteristics of the tested topologies.

Table 3.1: Graph characteristics of topologies used in experiments.

Topology Nodes Access Nodes Links Diameter Avg (Max) degree

AS-20965 40 8 61 8 3 (10)
AS-224 74 15 101 9 2.7 (8)
AS-3967 79 7 147 10 3.7 (12)
AS-1755 87 10 161 11 3.7 (11)
AS-1221 104 51 151 8 2.9 (18)
AS-6461 138 9 372 8 5.4 (20)
scale-free-50 50 24 62 6 2.5 (18)
scale-free-100 100 46 133 7 2.6 (33)

For each tested topology, we considered the graph to represent the core

backbone network of a Content-Delivery Network (CDN) provider. Nodes with a

single link (degree = 1) are considered to be access routers/gateways providing

access to local ISPs. We attached 5 additional graph nodes in each access router,

each one representing the aggregate demand generated by the ISP. In our exper-

iments, IBFs are 16 bytes long (m = 128). LIDs are computed autonomously by

6With unicast paths, the probability of false forwarding decisions is negligible for the values
of d considered.
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each router: a router i sets ki = dlog2(degi − 1)e as in [49], where degi is the

degree of node i and then uses Double Hashing [48] for generating the ki hash

functions. In all tests, routing information in routers (FIBs) was pre-populated,

allowing Interests to reach content sources over the shortest paths, with hop count

as the routing metric.

We tested our scheme with both unicast and multicast deliveries using the

same application set-up: an HTTP-like live streaming application [82]. A stream-

ing server generates data chunks at a constant rate and clients request Data packets

in a Stop-and-Wait fashion. For unicast scenarios, a single client downloads the

content, while for multicast delivery multiple clients download the live stream at

the same time. Both server and client(s) are located at the edges of the graph,

i.e., inside regional ISPs, and they are randomly selected in each experiment. Ex-

periments last until 1000 Data packets are delivered, which may represent a live

video streaming session with duration ranging from 2000 seconds (≈30 minutes) if

each chunk has a 2-second duration as in Microsoft Smooth Streaming, to 15000

seconds (≈4 hours) if each chunk has a 15-seconds duration as in Apple HTTP

Streaming [83].

For each tested topology t, we ran our application from 1 and up to Ct

stream receivers, where Ct is the number of edge nodes (the regional ISPs) that

are attached to the core network’s access nodes. Each experiment was repeated

20 times, changing the random generator’s seed, thus selecting different server and

client(s).

3.4.2 Evaluation metrics

Our evaluation focused on the reduction of forwarding state in routers in

terms of (a) the number of PIT entries and (b) the actual memory consumed by the

PIT. For the memory footprint, we considered a hash table-based implementation

which is reported to be the most suitable data structure for the PIT [75]. We

assumed that memory pointers are 32 bits and that the interface ports in basic

CCN were encoded with 32-bit masks. For the size of content names, we adopted

the real-world measurements of [74] which reported two sizes: small content names
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Figure 3.4: Performance results for unicast traffic in topology AS-20965 as a
function of d for all Interest tracking policies: (i) Probabilistic (PROB), (ii) Hash-
based (HASH) and Hop Counter-based (HC).

that are on average 20 bytes and large content names which are on average 56 bytes.

Apart from the reduction of forwarding state, we also measured the bandwidth

overhead due to (a) additional Interests caused by not storing PIT entries at the

first common router on the multicast tree and (b) redundant Data caused by false

positives in the Bloom filters. Note that additional Interests apply in the case of

multicast delivery only; there is no Interest aggregation in unicast delivery. On the

other hand, redundant Data transmissions are caused by false positives in Bloom

filters, which may occur in both unicast and multicast deliveries.

In all results presented in the following sections, results are normalized

against the basic CCN behaviour which serves as the performance baseline.

3.4.3 Unicast

Figure 3.4 shows the performance for unicast flows in topology AS-20965

for the three Interest tracking policies. Figure 3.4(a) shows the average PIT state

in each router normalized against baseline CCN as a function of d. PIT state

is reduced to 1
d

as expected, with slight differences between the three policies.

That is, for d = 3, the PIT now stores approximately 1/d = 33% of the entries

compared to basic CCN. Figure 3.4(b) shows the amount of additional Data packets

transmitted, caused by false positives in the Bloom filters with respect to d. While
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Figure 3.5: Probabilistic-based Interest tracking in topology AS-20965 for various
values of d with respect to the multicast group size.

some differences can be observed between the three Interest tracking policies, the

amount of Data overhead remains very low, below 1.75% in the worst case. Figures

A.1 to A.7 in Appendix A show unicast results for PIT entries and Data overhead

for all tested topologies.

3.4.4 Multicast

We now examine the behaviour of the system in multicast scenarios. We

first present the performance of the system with respect to the multicast group size

for various values of the Forwarding State Reduction Factor d and then examine

the system behaviour under uniform and Zipf distributions of the multicast group

sizes.

Performance with respect to multicast group size

Figure 3.5 shows system performance with Probabilistic Interest (PROB)

tracking in topology AS-20965 with respect to the multicast group size. Fig-
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ure 3.5(a) shows that PROB works best with smaller groups; as group size grows,

the PIT state grows as well, thus reducing the effectiveness of the scheme. On

the other hand, the fraction of additional Interests grows with group size up to

a certain threshold, after which it remains stable, as shown in Figure 3.5(b). As

described in Section 3.3.4, Interests may not be suppressed at the first common

router. This is a minor problem for very small groups where the multicast trees

are relatively sparse and there exist only a few aggregation points. As groups grow

and the multicast tree becomes denser, the possibility of not storing state at ag-

gregation points increases, and so do the additional Interests. As more users issue

Interests for the same Data, the probability of aggregating an Interest closer to

the first branching router increases, therefore, once the group size passes a thresh-

old (around 20 receivers in AS-20965), the amount of additional Interests stops

increasing. A similar pattern is observed for the redundant Data, as shown in

Figure 3.5(c). For very small group sizes, the multicast trees have very few aggre-

gation points that could lead to redundant Data. As the group size grows, larger

trees are encoded in IBFs since Interests are not suppressed at the first branching

router, increasing the number of false positives. Beyond a group size threshold,

the system shows a steady behaviour, as in the Interests case.

Figures 3.6 and 3.7 show the results for Hash-based (HASH) and Hop

Counter-based (HC) Interest tracking in topology AS-20965 respectively. The

behaviour of these policies is similar, but different than the behaviour of PROB.

They both manage to obtain a steady reduction of the PIT size regardless of the

group size but show an increasing number of additional Interests and Data packets

as the group size grows. HASH and HC offered better PIT reduction compared to

PROB, at the cost of increasing the Interests and Data overhead.

Overall, there is a common performance pattern for all Interest tracking

polices: semi-stateless forwarding is more effective for small groups. It causes less

bandwidth overhead in terms of redundant Interests and Data packets compared

to baseline CCN and, in addition, PROB reduces the PIT more effectively for

small groups. On the other hand, HASH and HC perform better than PROB,

with HC producing less overheads compared to HASH. In the following sections
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Figure 3.6: Hash-based Interest tracking in topology AS-20965 for various values
of d with respect to the multicast group size.

we examine how the distribution of the multicast group sizes affects the overall

system performance.

Uniform distribution of group size

In this section we present results for our scheme’s performance when mul-

ticast group size follows a uniform distribution. In this case, we computed the

system’s average behaviour for all multicast groups as described in Section 3.4.1:

For each topology t, we took into account all experiments of multicast groups with

[3, Ct] participants,7 where Ct is the number of edge nodes (the regional ISPs) that

are attached to the core network’s access nodes. Recall that, for each group size,

each experiment was repeated 20 times changing our random generator’s seed, thus

each time choosing different sender and receivers. Overall, for each topology t, we

take into account the average system behaviour of 20 ∗ (Ct − 2) experiments and

the group size is uniformly distributed in [3, Ct].

7The smallest multicast group consists of 1 sender and 2 receivers while the largest multicast
group consists of 1 sender and Ct − 1 receivers.
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Figure 3.7: Hop Counter-based Interest tracking in topology AS-20965 for various
values of d with respect to the multicast group size.

Figure 3.8 shows the performance results for topology AS-20965 for all Inter-

est tracking policies with respect to d normalized against basic CCN. Figure 3.8(a)

shows that, on average, the PIT state is reduced as d grows. For HASH and HC,

the average PIT state is reduced nearly to 1/d, although PROB did not manage

to achieve this. In terms of PIT reduction, HC performs better. For d = 3, HC

reduces the average PIT state to 27% compared to basic CCN, at the cost of 60%

additional Interests transmitted and 9% additional Data packets. For d = 4, the

average is reduced to 19% compared to the basic CCN PIT at the high cost of

89% of additional Interests and 22% of additional Data. Our results show that

HC is the most effective policy. Together with HASH, it reduces the PIT far more

effectively than PROB, but it also produces slightly lower overheads than HASH.

Results for all topologies are presented in Figures A.8 to A.14 in Ap-

pendix A. Figure 3.9 shows the results for HC, the best performing policy, in

all tested topologies for d = 3 and d = 4 and Table 3.2 summarizes all the numer-

ical data. In order to effectively reduce the PIT size (setting d ≥ 3), it is clear
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Figure 3.8: Multicast performance results for uniform distribution of group size
in topology AS-20965 for all Interest tracking policies with respect to d: (i) Prob-
abilistic (PROB), (ii) Hash-based (HASH) and (iii) Hop Counter-based (HC).

that the scheme induces a performance penalty in terms of bandwidth overhead.

When the group size follows a uniform distribution, the costs can be very high.

Especially in topologies AS-1221, scale-free-50 and scale-free-100, which are the

largest topologies tested, particularly regarding the number of access nodes, these

costs are prohibitive.
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Figure 3.9: PIT entries, Interests overhead and Data overhead for all topologies,
uniform distribution of group sizes, with Hop Counter-based Interest tracking.

Table 3.2: PIT entries, Interests overhead and Data overhead for all topologies,
uniform distribution of group sizes, with Hop Counter-based Interest tracking.

(a) d = 3

Topology PIT entries (%) Interests overhead (%) Data overhead (%)

AS-20965 27.4 59.7 9.4
AS-224 28.2 65.8 11.8
AS-3967 28.5 60.2 8.5
AS-1755 29.8 60.5 9.2
AS-1221 16.9 46.2 82.3
AS-6461 20.6 64.1 27.5
scale-free-50 16.9 46.2 82.3
scale-free-100 16.6 58.2 161.7

(b) d = 4

Topology PIT entries (%) Interests overhead (%) Data overhead (%)

AS-20965 19 87.8 21.5
AS-224 15.7 95.5 51.4
AS-3967 20.3 81.9 24.9
AS-1755 19.7 86.3 27.3
AS-1221 10.8 78 408.1
AS-6461 13.8 84.5 65.4
scale-free-50 10.8 78.0 408.1
scale-free-100 6 78.8 609.2
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Figure 3.10: Multicast performance results for Zipf distribution of group size in
topology AS-20965 for all Interest tracking policies with respect to d: (i) Proba-
bilistic (PROB), (ii) Hash-based (HASH) and (iii) Hop Counter-based (HC).

Zipf distribution of group size

In this section we present performance results when the multicast group size

follows a Zipf-like distribution, which is a more realistic scenario [84]. We expect

the Zipf distribution to benefit our scheme’s performance as the majority of groups

will be small-sized. For the Zipf distribution, we follow the methodology of [85]: for

each tested topology t, the size of the ith group is group size(t, i) = bi−αt ∗Ct+0.5c
where Ct is the maximum group size in topology t which depends on the network’s

number of edge nodes (ISPs), and αt is selected in each topology so that the smaller

multicast group size is 3 (one server and two receivers). As in the previous sections,

all results are normalized against baseline CCN.

Figure 3.10 shows the performance results for topology AS-20965 for all

Interest tracking policies with respect to d normalized against basic CCN. The

performance shows the same pattern as in the uniform distribution (shown in

Fig. 3.8) however the results are much more encouraging. Again, HC and HASH
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Figure 3.11: Multicast performance results HC policy in AS-20965 for uniform
and Zipf group size distributions.

are more effective with regards to PIT state reduction compared to PROB, with

HC performing slightly better. Furthermore, HC introduces fewer costs compared

to HASH (Interests and Data overhead) specifically when d = 3 and d = 4, in

which overall costs seem manageable.

As in the uniform distribution case, HC is the overall best-performing Inter-

est tracking policy. Apart from its performance, it is the most simple to implement:

it only requires a counter in each Interest. With HC we can avoid the expensive

hash computations of HASH and reduce the PIT more effectively compared to

PROB. We, therefore, choose to focus on HC for remainder of the dissertation.

With HC, when d = 3, PIT entries are on average reduced to 29% at the cost

of 20% additional Interests and 4% additional Data transmitted. For d = 4, the

PIT is on average reduced to 20% at the cost of 32% additional Interests and 6%

additional Data transmitted.

To better understand the effect of group size distribution, Figure 3.11 com-

pares the scheme’s performance in the HC policy in the uniform and Zipf distribu-
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Figure 3.12: PIT entries, Interests overhead and Data overhead for all topologies,
Zipf distribution of group sizes, with Hop Counter-based Interest tracking.

tions. Although the PIT is reduced equally in both distributions, it is clear that

there are significant performance differences with respect to Interests and Data

overheads. The semi-stateless forwarding scheme provides significant PIT reduc-

tion gains when multicast group sizes follow a Zipf distribution with relatively

manageable bandwidth overheads. If the group size distribution is not skewed, the

costs are too expensive for the returned gains.

Results for all topologies are presented in Figures A.15 to A.21 in Ap-

pendix A. Figure 3.12 shows the results for the HC policy for all tested topologies

for d = 3 and d = 4 and Table 3.3 summarizes all the numerical data. In order

to effectively reduce the PIT size (setting d ≥ 3), in most topologies the Data

overhead is below 10% but the Interests overhead is around 30%. However, the

costs in AS-1221, scale-free-50 and scale-free-100 are still too high.
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Table 3.3: PIT entries, Interests overhead and Data overhead for all topologies,
Zipf distribution of group sizes, with Hop Counter-based Interest tracking.

(a) d = 3

Topology PIT entries (%) Interests overhead (%) Data overhead (%)

AS-20965 28.6 20.4 4
AS-224 30 20 3.6
AS-3967 29.5 23.6 3.2
AS-1755 31 18.9 2.3
AS-1221 25.8 24.8 24.2
AS-6461 24 25.1 7.5
scale-free-50 24.7 19.8 15.3
scale-free-100 24.7 24 46

(b) d = 4

Topology PIT entries (%) Interests overhead (%) Data overhead (%)

AS-20965 20.2 31.5 6.2
AS-224 18.9 30.3 9.8
AS-3967 19.7 30.9 4.7
AS-1755 20.6 27.9 7.9
AS-1221 16.9 43.6 90.9
AS-6461 17.5 40.7 12
scale-free-50 15.3 26.8 28.4
scale-free-100 24.7 24 46
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Figure 3.13: Estimated PIT size (in bytes) for small (20-bytes) and large (56-
bytes) content names in topology AS-20965, Zipf distribution of group sizes using
the Hop Counter-based policy.

PIT memory reduction

We now turn our focus on the actual memory size reduction of the PIT.

Recall from Section 3.3.4 that our new PIT may contain fewer rows but each row

occupies more memory due to the Bloom filter size. Figure 3.13 shows the size

reduction of a hash table-based PIT for the HC policy as a function of d. For d = 3,

the actual memory footprint for the PIT is reduced to 39% for small content names

and 37% for large content names. For d = 4, the memory footprint for the PIT is

reduced to 28% for small content names and 24% for large content names.

Figure A.22 in Appendix A presents the PIT memory reduction for all

tested topologies. Figure 3.14 shows a summary for all topologies for d = 3 and

d = 4 and Table 3.4 contains the respective the numerical data.
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Figure 3.14: Estimated PIT size (in bytes) for small (20-bytes) and large (56-
bytes) content names for all topologies, Zipf distribution of group sizes using the
Hop Counter-based policy.

Table 3.4: Estimated PIT size (in bytes) for small (20-bytes) and large (56-bytes)
content names for all topologies, Zipf distribution of group sizes using the Hop
Counter-based policy.

(a) d = 3

Topology Small content-names (%) Large content-names (%)

AS-20965 39.3 33.6
AS-224 41.3 35.3
AS-3967 40.6 34.7
AS-1755 42.6 36.5
AS-1221 35.5 30.4
AS-6461 33 28.3
scale-free-50 34 29.1
scale-free-100 34 29.1

(b) d = 4

Topology Small content-names (%) Large content-names (%)

AS-20965 27.7 23.7
AS-224 26.0 22.3
AS-3967 27.1 23.2
AS-1755 28.3 24.2
AS-1221 23.2 19.9
AS-6461 24.1 20.6
scale-free-50 21.1 18.0
scale-free-100 17.6 15.1
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Figure 3.15: Multicast bandwidth overhead with a Zipf distribution of group sizes
in the HC policy for topology AS-20965. Small content-names (36-byte Interests)
and large-content names (70-byte Interests), small (1500 bytes) or large (jumbo)
frames (7500 bytes) Data packets.

Bandwidth overhead

As already discussed, PIT state reductions come at the cost of additional

Interest and Data transmissions. When the Forwarding State Reduction Factor d

is increased in order to reduce the PIT size, these overheads also increase. Among

these additional transmissions, most are Interests that are not ideally aggregated

at the first on-path branching routers of the multicast tree, as opposed to baseline

CCN. In terms of actual bandwidth, however, the more numerous Interests are

much smaller than Data packets, thus the overall bandwidth overhead depends on

the size of Interests relative to Data.

In Figure 3.15 we present the overall bandwidth overhead of the HC policy

in topology AS-20965 in terms of the fraction of additional bytes transmitted

compared to basic CCN. We assume small (20 bytes) and large (56 bytes) content

names, so with the additional CCN meta-data, Interests are on average 36 and

70 bytes long respectively. We then consider two types of Data packets: a small

Data packet that carries 1500 bytes of payload, targeting a CCN deployment over

Ethernet, and a large Data packet that carries 7500 bytes of payload, targeting a

CCN deployment over either Ethernet with jumbo frames or a UDP-based overlay.

We also take into account the extra fields required by our scheme in the Interest

and Data packet headers (IBF and HC). When d = 3, the additional bandwidth is
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Figure 3.16: Multicast bandwidth overhead with a Zipf distribution of group
sizes in the HC policy for all topologies. Small content-names (36-byte Interests)
and large-content names (70-byte Interests), small (1500 bytes) or large (jumbo)
frames (7500 bytes) Data packets.

between 4.6%− 7% and for d = 4 the additional bandwidth is between 7%− 9.5%.

To summarize the results for topology AS-20965, for d = 3, on average the

PIT contains 29% of the baseline entries and occupies 40% of the initial memory

footprint (i.e., a reduction of 60%) at the cost of 4.6%−7% of additional bandwidth

transmitted. When d = 4, the PIT entries are reduced to 20% of baseline CCN,

reducing the actual memory footprint at 28% (i.e., a reduction of over 70%) at the

cost of at most 7%− 9.5%.

Figure A.23 in Appendix A shows the estimated bandwidth overheads for

all tested topologies and Figure 3.16 summarizes these results for d = 3 and d = 4

and Table 3.5 contains the respective numerical data. For d = 3, in most of the

tested topologies the bandwidth overhead is below 10%. However, the results in

AS-1221 and scale-free-100 remain problematic.
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Table 3.5: Multicast bandwidth overhead with a Zipf distribution of group sizes
in the HC policy for all topologies: (i) S-S: small content-names and small Data
packets, (ii) S-L: small content-names and large Data packets, (iii) large content-
names and small Data packets and (iv) L-L: large content-names and large Data
packets.

(a) d = 3

Topology S-S (%) S-L (%) L-S (%) L-L (%)

AS-20965 6.9 5.1 7.2 4.6
AS-224 3.2 1.5 3.3 1.1
AS-3967 6.3 4.4 6.7 3.9
AS-1755 5.2 3.4 5.5 2.9
AS-1221 27.1 25.4 27 24.8
AS-6461 10.6 8.7 11 8.2
scale-free-50 18.1 16.4 18.1 15.9
scale-free-100 48.6 47.1 48 46.4

(b) d = 4

Topology S-S (%) S-L (%) L-S (%) L-L (%)

AS-20965 9.5 7.4 10 7
AS-224 13.1 11.1 13.5 10.6
AS-3967 8 5.9 8.5 5.4
AS-1755 11.1 9.1 11.5 8.6
AS-1221 93.6 92.1 92.4 91.2
AS-6461 15.6 13.4 16.2 12.8
scale-free-50 31.3 29.6 31.2 29
scale-free-100 172.8 172.5 169.5 171.2
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Figure 3.17: PIT size (in bytes) with respect to unicast-multicast proportion of
PIT entries, with Hop Counter-based Interest tracking in topology AS-20965.

3.4.5 Unicast - Multicast traffic mix

In Section 3.4.3 we presented results for unicast traffic, observing significant

gains in PIT state reduction at a minimal cost of redundant Data transmissions

caused by false positives in the Bloom filters. In Section 3.4.4 we presented results

for multicast applications and observed the PIT state reduction gains come at the

cost of additional bandwidth overheads caused by redundant Interest and Data

packets. In order to evaluate the overall benefits and costs of semi-stateless for-

warding, we need to consider a mix of unicast and multicast traffic. In this section,

we present some numerical calculations based on our previous results with respect

to the proportion of unicast vs. multicast load.

Figure 3.17 shows the overall PIT size reduction for small and large names

in topology AS-20965. The x-axis in Figure 3.17 represents the proportion of PIT

entries created by Interests belonging to multicast applications. More specifically, a

value of 0.0 in the x-axis means that 0% of PIT entries in each router are generated

by multicast applications (100% of Interests are for unicast) while a value of 1.0

means that 100% of PIT entries correspond to Interests transmitted by multicast

applications. Although our method reduces the PIT more effectively for unicast

applications, there are not significant differences between the two extreme cases of

network usage, i.e., (i) all PIT entries are created by unicast applications and (ii)

all PIT entries are created by multicast applications.



59

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

B
a
n
d
w

id
th

 o
v
e
rh

e
a
d
 (

%
)

Proportion of multicast requests

S-S
S-L
L-S
L-L

(a) d = 3

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

B
a
n
d
w

id
th

 o
v
e
rh

e
a
d
 (

%
)

Proportion of multicast requests

S-S
S-L
L-S
L-L

(b) d = 4

Figure 3.18: Overall bandwidth overhead with respect to proportion of unicast-
multicast traffic mix in topology AS-20965.

In a similar manner, we computed the bandwidth overheads as a function

of the traffic mix, shown in Figure 3.18. The x-axis in Figure 3.18 shows the pro-

portion of requests (therefore Interest and Data packets ) generated by multicast

applications. A value of 0.0 in the x-axis represents the case of 0% packets being

generated by multicast applications (100% of traffic belongs to unicast applica-

tions) while a value of 1.0 in the x-axis represents the case where 100% of traffic

is generated by multicast applications. In contrast to the PIT state reduction,

the traffic mix plays a more important role with respect to bandwidth overheads.

As shown in Figure 3.18, the overheads introduced by multicast applications are

approximately twice the amount of overheads caused by unicast applications.

The results presented in Figures 3.17 and 3.18 give us insight on the mini-

mum and maximum gains and overheads considering the network usage. For d = 3,

the PIT size in AS-20965 is reduced to 33%−40% compared to CCN (i.e., a reduc-

tion of 60%− 67%) at a cost of 2%− 7% additional bandwidth (Fig. 3.18(a)) ac-

cording to the unicast-multicast traffic mix. For d = 4, the PIT requires 24%−28%

of the memory compared to a basic CCN PIT (i.e., a reduction of 72%− 76%) at

the bandwidth cost of 2%− 10% (Fig. 3.18(b)).

Table 3.6 presents the numerical data for minimum and maximum PIT size

and bandwidth overheads for all tested topology with Hop Counter-based Interest
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tracking for d = 3 and d = 4.

Table 3.6: Minimum and maximum PIT memory sizes and bandwidth overheads
for all topologies.

(a) d = 3

Topology PIT size % [min, max] Bandwidth overhead % [min, max]

AS-20965 [32.2, 39.3] [2, 7.2]
AS-224 [35.3, 42.5] [3, 6.8]
AS-3967 [32, 40.6] [0.4, 6.7]
AS-1755 [36.1, 42.6] [0.4, 5.5]
AS-1221 [30.4, 38.8] [1.2, 27.1]
AS-6461 [28.3, 34.8] [0.4, 11.0]
scale-free-50 [29.1, 38.8] [1.2, 18.1]
scale-free-100 [28.2, 34] [3, 48.6]

(b) d = 4

Topology PIT size % [min, max] Bandwidth overhead % [min, max]

AS-20965 [23.6, 27.6] [2, 10]
AS-224 [24.1, 28.2] [3, 13.5]
AS-3967 [23, 27] [0.4, 8.5]
AS-1755 [24.6, 28.8] [0.4, 11.5]
AS-1221 [21.5, 25.4] [1.2, 92.4]
AS-6461 [23.1, 27] [0.4, 16.2]
scale-free-50 [21.1, 25] [1.2, 31.2]
scale-free-100 [24.5, 28.6] [3.9, 172.5]

3.5 Conclusion

In this chapter we presented a semi-stateless forwarding scheme that miti-

gates the PIT state requirements of CCN routers by integrating Bloom filter-based

packet forwarding. Our scheme maintains the desired qualitative features of CCN’s

stateful forwarding and requires minimal changes to CCN’s basic operation.

The semi-stateless forwarding scheme depends on the Forwarding State Re-

duction Factor d, a crucial parameter for system performance. The factor basically

dictates how many stateless hops an Interest should perform before being tracked

by a CCN router and therefore affects the amount of PIT state reduction and

bandwidth overheads. In this chapter we assumed a static value for d and eval-
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uated the scheme’s performance with respect to various values of d in order to

understand the system’s behaviour.

With the exceptions of the under-performing topologies AS-1221, scale-

free-50 and scale-free-100, setting d = 3 resulted in a PIT that is approximately

30%−40% of the baseline CCN PIT at the cost of 2%−11% bandwidth overhead.

For d = 4, the PIT is approximately reduced to 22%− 28% compared to baseline

CCN PIT the cost of 2% − 16% of additional bandwidth (see Table 3.6). These

results could be a good indicator for choosing an appropriate network-wide static

value for d, for example during the dimensioning phase of the network design. Yet,

the scheme performed poorly in 3 of our tested topologies, which were the largest

ones with respect to the number of access nodes. This suggests that we either need

to set a smaller value for d, e.g., no less than d = 2 in order to have any effect on

PIT state reduction, or consider other alternatives, such as choosing a correct d

on finer granularity.

In the next chapter we present a scheme that dynamically adapts the For-

warding State Reduction Factor on a per-group basis, in order to reduce the amount

of false positive Data transmissions. We will show how this effectively adjusts the

value of d so that bandwidth overhead is kept low while preserving the benefits of

PIT state reduction.



Chapter 4

Adaptive Semi-stateless

Forwarding in Content-Centric

Networks

4.1 Introduction

In Chapter 3 we presented a semi-stateless forwarding scheme for CCN with

the goal of mitigating PIT state requirements in CCN routers, thus improving the

architecture’s forwarding scalability properties. The basic idea of the semi-stateless

forwarding scheme is to track Interests at every d hops and use Bloom filter-

based stateless forwarding between routers that stored a particular Interest. We

investigated system performance with respect to d, the Forwarding State Reduction

Factor, and saw that by setting a global value for d, e.g., d = 3 or d = 4, we

obtained significant PIT memory savings at the order of ≈ 70%. These gains

came at the cost of additional bandwidth that varied between 2%− 16% in small-

to-medium topologies. However, in the largest topologies (with respect to the

number of access nodes) these costs were significantly higher and raised doubts

regarding the scheme’s efficiency.

We discussed in Section 3.4.4, and showed in the results of Figure 3.5, that

the performance and overhead trade-offs of the semi-stateless scheme depend on

62
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the multicast-group size and the value of d. Our scheme performs better for small

multicast groups; as the multicast group grows, redundant Data packet (primarily)

and Interest packet (secondarily) transmissions lead to bandwidth overheads com-

pared to basic CCN stateful forwarding. A relatively large value of d, for example

d = 3 or d = 4, favours small groups; there is significant reduction of the PITs

with almost negligible costs in bandwidth overhead. For larger groups, a smaller

d is more suitable in order to avoid excessive bandwidth overheads, for example

d = 2. Setting a low value for d, however, means that we obtain fewer gains with

respect to PIT reduction.

Ideally, instead of setting network-wide fixed value for d, we should set

d on a per-group basis, i.e., decide a suitable value for d based on the size of

the multicast group. Our goal is to preserve the desired PIT reduction gains in

small-to-medium multicast groups with d = 3 or d = 4 and set d ≤ 2 in larger

groups in order to keep redundant packet transmissions low. Unfortunately, such

an approach is difficult within the architectural context of CCN. Hosts and routers

are address-less; routers see only incoming Interest and Data packets that carry

content-names. Unless an addressing scheme is used and Interests/Data packets

carry these addresses, a CCN router cannot determine the number of downstream

receivers for a requested content item. Hence, a suitable d cannot be determined

based on the number of receivers without sacrificing crucial aspects of the CCN

architecture.

An alternative approach is to constrain the amount of redundant traffic

by limiting the number of links inserted into the IBFs. Previous studies have

shown that in order to maintain a high forwarding efficiency in Bloom filter-based

forwarding (defined in Eq. 2.2), the false positive probability (fpp) of IBFs must be

kept below 0.5% [49]. Recall from Section 2.3.3 that the false positive probability

is defined in Equation 2.1 as

fpp = (1− e−kn/m)k

where m is the Bloom filter size (bits), k is the number of hash functions and n

is the number of items inserted (LIDs). Though m and k can be known to each

router, n is not since Interests carry the accumulated IBF for the reverse path
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and routers store the entire IBF in the PIT. In order for a CCN router to be able

to obtain n, Interests would need to carry each traversed LID separately, thus

increasing the Interest header size. In addition, routers would need to track each

downstream LID separately instead of an accumulated IBF, thus requiring more

memory per PIT row.

The fpp, on the other hand, can also by calculated by examining its fill

factor which is the portion of bits set in the Bloom filter

fill factor =
# bits set

m
(4.1)

The fpp can be then calculated as [48]

fpp = (fill factor)k = (
# bits set

m
)k (4.2)

With Equation 4.2, a router can estimate an IBF’s fpp just by counting the number

of bits that are set to 1.1 Therefore, a router can infer when an IBF is congested,

e.g., the IBF’s fill factor is greater than 0.4,2 caused by adding too many links

to it. A congested IBF is likely to lead to excessive false forwarding decisions.

We utilize this information and extend our forwarding scheme with the ability to

dynamically adapt d based on the IBFs constructed inside the network.

4.2 Adapting the Forwarding State Reduction

Factor

At a high level, our idea is the following: the system tries to effectively

reduce the PIT size, until it detects that certain redundant traffic thresholds may

be violated. These violations are detected by routers who inspect the fill factor

of downstream IBFs. Once such a violation is detected, routers inform hosts with

– what we call – Bloom filter Congestion Notifications (BCN). More specifically,

the system dynamically adapts the value of d in order to keep redundant Data

packet transmissions low, at the expense of less-effective PIT reduction as follows:

1And having a global agreed value for k.
2Assuming k = 5 or k = 6.
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Instead of having a network-wide fixed value for d, d is set on a per-Interest basis,

selected by the issuing host. During Data forwarding, routers that perform IBF

switching inspect the stored downstream IBFs. If the fill factor of an IBF is

above a predefined threshold, e.g., fill factor ≥ 0.4, the router assumes that this

IBF is congested and inserts a BCN feedback inside the Data packet. The BCN is

carried downstream to all receivers and instructs them to lower their d. If a host

receives no BCN for a number of consecutive Data packets, it attempts to increase

its d in order to achieve better PIT reduction. Hosts decide when to increase their

d based on an exponential back-off scheme.

4.2.1 Interest tracking

Each time a host issues an Interest, the host selects a desired d for this

Interest and places it in the Interest header.3 During Interest forwarding, routers

perform the same operations as before, except that, for each received Interest,

d is obtained from the Interest’s header, rather than being a fixed system-wide

value. In addition, for each stored Interest in the PIT, routers store the minimum

d among the different d values that have been received from different Interests

requesting the same Data packet. For example, a user may request ”/a/b/c.mp4 ”

with d = 3 while another user may request the same Data with d = 4. If the two

Interests are merged on the same router, the router will store dmin = min(3, 4) = 3

for ”/a/b/c.mp4 ”. Algorithm 5 shows the modified Hop Counter-based Interest

tracking policy with d carried in the Interest header.

4.2.2 Data forwarding

In the data plane, routers forward Data packets as before, with the addition

of the fill factor check each time a router inserts an IBF to a Data packet; this

takes place only at the routers where the corresponding Interest is tracked. More

specifically, upon the reception of a Data packet, a router must check whether there

is a correspondent PIT entry for the Data packet’s name. If a PIT entry exists, the

3Note that d is stored in the packet in addition to the hop counter.



66

Algorithm 5 Hop Counter-based Interest tracking policy with adaptive d.

1: procedure Hop Counter Tracking Adaptive(interest, incoming port)

2: d := extract d(interest)

3: pit entry := PIT lookup(interest)

4: if pit entry not null then

5: dmin := min(d, pit entry.d)

6: store in PIT (interest, dmin, incoming port)

7: return . Interest suppressed

8: end if

9: hc := increment hop counter(interest)

10: if hc = d then

11: store in PIT (interest, d, incoming port)

12: reset hop counter(interest)

13: end if

14: out port := FIB lookup(name)

15: forward(interest, out port)

16: end procedure

router checks the new IBF’s fill factor and if it exceeds the maximum fill factor

threshold, the router sets the BCN feedback field inside the Data packet. The BCN

feedback is an integer number set to dBCN = max(1, dmin − 1); it is added to the

Data packet header. The BCN feedback will instruct all downstream receivers to

lower their individual d to dBCN . When the BCN feedback is set in the header

of a Data packet, it is transmitted all the way to the receivers. If a Data packet

contains BCN feedback, indicated by a non-zero value in the BCN field, and along

the data path another router needs to also set the BCN feedback, this is set to the

minimum dBCN . For example, if a Data packet has a BCN with dBCN = 3 and

along the path another router must set BCN to dmin = 2, then the latter router

will update feedback to dBCN = min(dBCN , dmin) = 2. Algorithm 6 shows the

algorithm for semi-stateless forwarding with adaptive d.
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Algorithm 6 Semi-Stateless Forwarding with Adaptive d.

1: procedure Semi Stateless Forwarding(data packet, incoming port)

2: pit entry := PIT lookup(data packet.name)

3: if pit entry not null then

4: data packet.IBF := pit entry.IBF

5: if fill factor(data packet.IBF ) >= fill factormax then

6: dBCN := max(1, pit entry.dmin − 1)

7: if BCN is set(data packet) then

8: dBCN = min(dBCN , data packet.dBCN)

9: end if

10: data packet.dBCN = dBCN

11: end if

12: end if

13: IBF FORWARD(data packet, incoming port)

14: end procedure

15: procedure IBF FORWARD(data packet, incoming port)

16: for port in ports do

17: if port = incoming port then

18: continue

19: end if

20: lidport := link id(port)

21: if data packet.IBF AND lidport = lidport then

22: transmit(data packet, port)

23: end if

24: end for

25: end procedure

4.3 Receiver-side adaptation

Hosts not only update d according to the feedback received by the network,

they also try to increase their d during the application session. This is required for

two reasons. First, without prior knowledge of the network conditions and/or ap-
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(a) Multicast tree. (b) Adaptation of d.

Figure 4.1: Adaptation of d on sub-tree granularity.

plication participants (unicast or multicast), hosts start with a moderate value for

d, ddefault = 2 in our experiments, in order to avoid excessive bandwidth overheads

in case they join a large multicast group. However, a low value for d is less effective

for unicast and small multicast groups, in which cases d can be increased without

significant bandwidth penalties. Second, when a router sets the BCN feedback,

this affects all of its downstream receivers, even though the decision is made based

only on the locally stored IBF. This is a relatively coarse-grained action; selecting

a suitable d does not only depend on the total number of multicast receivers but

also on the shape of the multicast tree. Consider, for example, the multicast tree of

Figure 4.1. The tree is quite imbalanced; the subtree that is formed from receivers

0-6 is more dense compared to the subtree formed by receivers 7-9. Assume that

router A sets the BCN feedback to dBCN = 2. This will cause all receivers to set

their d to 2, as the feedback is propagated all the way to the receivers, but this

decision is mostly caused because of the dense subtree’s shape. Assigning d = 2 to

receivers 7-9 will miss the opportunities for further PIT state reduction in routers

C and F. For example, in this region of the delivery tree, a d = 4 might produce

better PIT state reduction results will little overhead. Therefore, after A sends its

BCN feedback, causing all receivers to lower their d, there is reasonable interest

for receivers 7, 8 and 9 to increase their own particular d.

Hosts attempt to increase their d, but, in order to avoid situations where
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all hosts act simultaneously, the time when such a decision is made is chosen

individually, based on an exponential back-off scheme. At a high-level, the goal

is to avoid a kind of collision happening when all hosts increase their d together,

e.g., every 10 Interests, as such synchronization might generate congested Bloom

filters. In contrast, we want each host to act autonomously and not in coordination

with other hosts so that the system adapts gradually to a steady state. We achieve

this as follows: When hosts receive Data packets with BCN feedback, they update

their d so that subsequent Interests will carry the updated d. Hosts mark when

the last BCN-enabled Data packet arrived and after a number of consecutive non-

BCN Data packets arrive, they assume that the network is in a steady state with

respect to non-congested IBFs. In this case, hosts will increase their own d by 1

in an attempt to achieve better PIT state reductions. The number of consecutive

non-BCN Data packets that will trigger an increase in d is calculated as

exp backoff = random(1, slot size ∗ 21+dBCN ) (4.3)

where the slot size is selected by the application and may depend on the applica-

tion packet transmission rate. In more detail, once a host receives a BCN feedback

Data packet, it will set its own d to dBCN and then select a random number in

[1, slot size ∗ 21+dBCN ], which dictates the number of consecutive non-BCN Data

packets required to arrive before attempting to increase its d. If, in the meantime,

another BCN-marked Data packet arrives, the whole process is restarted: d is up-

dated and the exponential back-off is reset taking into account the new d. After

increasing its d, the entire process restarts. That is, the host will attempt to fur-

ther increase its d, this time waiting for statistically more time, unless of course a

BCN feedback arrives. As a result, receivers of the same multicasted BCN-marked

Data packet will not act in a synchronized manner, due to the randomization of

the backoff interval; in addition, the backoff interval will be doubled for each con-

secutive increase to d. Algorithm 7 shows a host’s operation when a Data packet is

received and Algorithm 8 shows the host’s operation when transmitting an Interest.

Note that we chose to set an upper bound on d in order to avoid excessive

redundant Interests. As we will later show in Section 4.4, the adaptive scheme

is able to keep additional Data packets low. However, the amount of additional
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Algorithm 7 Data packet reception on the receiver side.

1: procedure Data Received(data packet)

2: if BCN is set(data packet) then

3: dBCN = data packet.dBCN

4: SET STATELESS FACTOR(data packet.name, dBCN)

5: end if

6: pass data to app(data packet)

7: end procedure

8: procedure SET STATELESS FACTOR(content name, d)

9: stateless factor[content name] := d

10: exp backoff = random(1, slot size ∗ 2d+1)

11: increase thres[content name] := exp backoff

12: end procedure

Algorithm 8 Interest transmission on the receiver side.

1: procedure Send Interest(content name)

2: if has feedback(content name) then

3: d := stateless factor[content name]

4: increase thres[content name] := increase thres[content name]− 1

5: if increase thres[content name] == 0 AND d < dmax then

6: d := d+ 1

7: SET STATELESS FACTOR(content name, d)

8: end if

9: else

10: d := ddefault

11: SET STATELESS FACTOR(content name, d)

12: end if

13: hc := random(0, d− 1)

14: transmit interest(content name, hc, d)

15: end procedure
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Interests (compared to basic CCN forwarding) is hard to detect in a distributed

manner. Based on our experimental results presented in Section 3.4, we decided

to set an upper bound on d to dmax = 4, beyond which we considered that the

amount of additional Interests will not be acceptable.

4.4 Evaluation

We repeated the same set of experiments described in Section 3.4 using the

dynamic adaptation scheme. Hosts start with ddefault = 2 and the upper bound of

d is dmax = 4. For the HTTP-like streaming application, we set the slot size to

20 Interests. Our focus remains on PIT state reduction and bandwidth overhead

caused by additional Interest and Data transmissions compared with baseline CCN.

Again, all presented results are normalized against the basic CCN scheme.

4.4.1 Performance results

Figures 4.2 to 4.4 show the behaviour of the adaptive scheme over time for

a multicast group of 5, 10 and 30 receivers, respectively, in topology AS-20965.

In each figure, we show the PIT entries, additional Interests and Data packets

(sub-figures (a)) accompanied with the distribution of d among receivers of the

same multicast group (sub-figures (b)). There is a common pattern in all figures:

hosts start with ddefault and adjust d according to received BCNs. Eventually, the

system converges to a steady state. In all figures, Data overhead remains low: less

than 5% in Figures 4.2(a) and 4.4(a) (5 and 30 receivers) and approximately 10%

in Figure 4.3(a) (10 receivers). Data overhead is kept low at the cost of varying

gains in PIT state reduction. For the small group of Figure 4.2, the PIT is reduced

to less than 30% of basic CCN, since all hosts were able to increase their d to 4

(Fig. 4.2(b)) without receiving BCN feedbacks from the network. For the group

of 10 receivers (Fig. 4.3(a)), the PIT for each router was on average reduced to a

little above 30% and 8 out of the 10 receivers gradually set their d to 4 whereas

the remaining 2 set their d to 1 (Fig. 4.3(b)). On the large multicast group of

Figure 4.4, the PIT was reduced to 75% compared to baseline CCN (Fig. 4.4(a));



72

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800  900  1000

P
e

rc
e
n
ta

g
e
 (

%
)

# interest

PIT entries
Additional Interests

Additional Data

(a) Performance.

 0

 1

 2

 3

 4

 5

 6

 7

 8

R
e
c
e
iv

e
rs

# interest

d=1

d=2

d=3

d=4

(b) Distribution of d among receivers.

Figure 4.2: Performance results for a multicast group of 5 receivers in AS-20956.
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Figure 4.3: Performance results for a multicast group of 10 receivers in AS-20956.

due to the group’s size and shape of the multicast tree, almost half of the receivers

were instructed to set their d to 1 (Fig. 4.4(b)), i.e., the system resorted to stateful

forwarding for a part of the delivery tree in order to avoid redundant Data packets.

The Interests overhead also varies: ≈ 20% for the small multicast group, ≈ 40% for

the group of 10 receivers and ≈ 30% in the large multicast group. Recall, however,

that Interests, due to their small size, affect the overall bandwidth overhead much

less than Data packets.

In Figure 4.5 we present the scheme’s performance depending on group

size in topology AS-20956. With the dynamic adaptation of the Forwarding State

Reduction Factor, the Data overhead is kept below 10% for all group sizes at the
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Figure 4.4: Performance results for a multicast group of 30 receivers in AS-20956.
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Figure 4.5: Performance results in topology AS-20965 with dynamic adaptation
of d with respect to group size.

cost of a less effective reduction in the PIT compared to the fixed d schemes.

Interests overhead remains high, but as we showed in the previous section, we

consider their impact on the overall bandwidth overhead to be manageable. The

results for all topologies with respect to group size are presented in Figure A.24

in Appendix A. To better understand the improvements achieved with dynamic

d compared to fixed d, we provide detailed comparisons for the three measured

metrics in Figure 4.6.

Figure 4.7 shows the overall performance results for 1000 multicast groups,

with the group size following a Zipf distribution in all topologies, while Table 4.1

contains the respective numerical data. In topology AS-20965, the PIT is reduced



74

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

P
e

rc
e

n
ta

g
e
 (

%
)

Group size

HC d=3
HC d=4

Adaptive d

(a) PIT entries

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0  5  10  15  20  25  30  35  40

P
e

rc
e

n
ta

g
e
 (

%
)

Group size

HC d=3
HC d=4

Adaptive d

(b) Interests overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

P
e
rc

e
n
ta

g
e
 (

%
)

Group size

HC d=3
HC d=4

Adaptive d

(c) Data overhead

Figure 4.6: Comparison of fixed-d with adaptive d with respect to the group size
in topology AS-20965.
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Table 4.1: PIT entries, Interests overhead and Data overhead for all topologies
with dynamic D, Zipf distribution of group sizes.

Topology PIT entries (%) Interests overhead (%) Data overhead (%)

AS-20965 25.3 19.5 1.5
AS-224 24.3 21.6 4.6
AS-3967 24.5 25.3 3.1
AS-1755 26.6 22.9 3.9
AS-1221 40.1 16 4.6
AS-6461 23.2 34.6 7.1
scale-free-50 35.3 13.5 7.6
scale-free-100 45.9 9.7 9.6

to 25% compared to basic CCN, at the cost of ≈ 20% additional Interests and less

than 2% of additional Data packets. Notice the improvement in topologies AS-

1221, scale-free-50 and scale-free-100 in which we had observed severe overheads

with the fixed d semi-stateless scheme. In all topologies, the PIT was reduced

to 24% − 45% compared to the basic CCN PIT with additional Data packets of

1.5%− 9.6%.

Finally, we compare the overall adaptive scheme’s performance when group

sizes follow a Zipf distribution against the fixed-d scheme. Figure 4.8 shows the

basic performance metrics, i.e., PIT entries, additional Interests and Data packets

in topology AS-20965 with d = 3, d = 4 and adaptive d. With adaptive d, the

PIT entries are reduced to ≈ 25%, which is between what we achieved with d = 3

and d = 4. With adaptive d, the Interests overhead is ≈ 20%, close to what d = 3

achieves. The Data overhead is lower compared to both fixed-d schemes.

For illustration purposes, Figure 4.9 compares the performance results for

all tested topologies. In the topologies that performed well with fixed d, the PIT

reduction has a similar behaviour: the adaptive scheme reduces the PIT between

d = 3 and d = 4. In the three under-performing topologies, PIT size was re-

duced less: 40% for AS-1221, 35% for scale-free-50 and 45% for scale-free-100.

Notice, however, the tremendous improvements on Data overheads (Fig. 4.9(c)) in

the under-performing topologies AS-1221, scale-free-50 and scale-free-100 : Data

overhead has dropped below 10% in all cases.
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Figure 4.9: Comparison of fixed-d with adaptive d for all topologies.

4.4.2 PIT memory reduction

We now present the PIT memory reductions achieved with the adaptive

scheme. As we described in Section 3.4.4, we consider a hash table-based im-
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Figure 4.10: Estimated PIT size (in bytes) for small (20-bytes) and large (56-
bytes) content names for topology AS-20965.
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(a) Small (20 bytes) content-names
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Figure 4.11: Estimated PIT size (in bytes) for small (20-bytes) and large (56-
bytes) content names for all topologies.

plementation of the PIT and two classes of content-names: small content-names

which are on average 20 bytes and large content-names which are on average 56

bytes. Figure 4.10 shows the PIT memory size for the adaptive scheme in topology

AS-20965 compared to fixed d = 3 and d = 4. The adaptive scheme reduces the

PIT memory size to 35% for small names and to 30% for large names against the

basic CCN PIT, i.e., we achieved a memory reduction of 65% − 70%. Compared

to the fixed d schemes, the performance of the adaptive scheme is between d = 3

and d = 4. Figure 4.11 shows the PIT memory reduction in all tested topologies.
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Figure 4.12: Multicast bandwidth overhead for topology AS-20965. Small
content-names (36-byte Interests) and large-content names (70-byte Interests),
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are normalized against basic CCN.

4.4.3 Bandwidth overhead

In this section we quantify the Interests and Data overheads in terms of

bandwidth. We follow the same approach as in Section 3.4.4: we consider two

classes of content-name lengths, small (36 byte Interests) and large (70 byte In-

terests) and two types of Data packets, small (1500 byte Data) targeting a CCN

deployment directly over Ethernet, and large (7500 byte Data) targeting a deploy-

ment with Jumbo Ethernet frames.

Figure 4.12 presents the multicast bandwidth overhead in topology AS-

20965 and compares the adaptive scheme with fixed d = 3 and d = 4. The

bandwidth overhead is between 1.6% for large packets carrying large content names

and 4.5% for small packets carrying small content names. Figure 4.13 shows the

bandwidth overhead results for all tested topologies and Tables 4.2 and 4.3 contain

the numerical data.

4.4.4 Overall performance

Table 4.4 summarizes the overall performance results of the adaptive semi-

stateless forwarding scheme. With the exception of topologies AS-1221, scale-free-

50 and scale-free-100, the adaptive scheme reduced the PIT to ≈ 30%, i.e., a
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(a) Small content-names, small Data packets
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(b) Small content-names, large Data packets
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Figure 4.13: Multicast bandwidth overhead for all topologies.

reduction of ≈ 70%, compared to the basic CCN forwarding scheme, with band-

width overheads between 1.5%− 10%. For the three aforementioned topologies, in

which the fixed d approach was producing unbearable traffic overheads, the PIT

was reduced to 47%−63%, i.e., a reduction of 37%−53%, at the cost of 4%−12%

additional bandwidth.

4.5 Conclusions

In this section, we presented an extension to the semi-stateless forwarding

scheme for CCN that dynamically adapts the Forwarding State Reduction Factor

d in order to limit the amount of redundant Data packets caused by IBF false

positives. The scheme relies on Bloom filter Congestion Notifications (BCN) set
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Table 4.2: Multicast bandwidth overhead for all topologies with small content-
names.

(a) Small content-names, small Data packets

Topology Fixed d = 3 (%) Fixed d = 4 (%) Adaptive d (%)

AS-20965 6.9 9.5 4.5
AS-224 3.2 13.1 7.6
AS-3967 6.3 8 6.2
AS-1755 5.2 11.1 6.9
AS-1221 27.1 93.6 7.4
AS-6461 10.6 15.6 10.5
scale-free-50 18.1 31.3 10.3
scale-free-100 48.6 172.8 12.1

(b) Small content-names, large Data packets

Topology Fixed d = 3 (%) Fixed d = 4 (%) Adaptive d (%)
AS-20965 5.1 7.4 2.1
AS-224 1.5 11.1 5.2
AS-3967 4.4 5.9 3.7
AS-1755 3.4 9.1 4.5
AS-1221 25.4 92.1 5.1
AS-6461 8.7 13.4 7.8
scale-free-50 16.4 29.6 8.1
scale-free-100 47.1 172.5 10.1

by CCN routers inside Data packets when too many links are added in IBFs.

Hosts set d on a per-Interest basis and adapt their d based on received BCNs.

The adaptive scheme allowed not only the automated selection of a suitable d per

multicast group, but also the variation of d among receivers of the same multicast

group. As a result, bandwidth overheads were kept low, while PIT state reductions

were between what fixed d = 3 and d = 4 achieved. Overall, we have been able

to reduce the PIT to 50% to 70% of baseline CCN, with bandwidth overheads of

1.5%− 12%.
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Table 4.3: Multicast bandwidth overhead for all topologies with large content-
names.

(a) Large content-names, small Data packets

Topology Fixed d = 3 (%) Fixed d = 4 (%) Adaptive d (%)
AS-20965 7.2 10 2.1
AS-224 3.3 13.5 5.2
AS-3967 6.7 8.5 3.8
AS-1755 5.5 11.5 4.6
AS-1221 27 92.4 5
AS-6461 11 16.2 8.1
scale-free-50 18.1 31.2 7.8
scale-free-100 48 169.5 9.6

(b) Large content-names, large Data packets

Topology Fixed d = 3 (%) Fixed d = 4 (%) Adaptive d (%)
AS-20965 4.6 7 1.6
AS-224 1.1 10.6 4.8
AS-3967 3.9 5.4 3.2
AS-1755 2.9 8.6 4
AS-1221 24.8 91.2 4.7
AS-6461 8.2 12.8 7.3
scale-free-50 15.9 29 7.7
scale-free-100 46.4 171.2 9.6

Table 4.4: Multicast bandwidth overhead for all topologies with large content-
names.

Topology PIT size % [min, max] Bandwidth overhead % [min, max]
AS-20965 [29.7, 34.8] [1.6, 4.5]
AS-224 [28.5, 33.4] [4.8, 7.6]
AS-3967 [28.8, 33.7] [3.2, 6.2]
AS-1755 [31.3, 36.6] [4, 6.9]
AS-1221 [47.2, 55.2] [4.7, 7.4]
AS-6461 [27.3, 31.9] [7.3, 10.5]
scale-free-50 [41.6, 48.6] [7.7, 10.3]
scale-free-100 [54.0, 63.2] [9.6, 12.1]



Chapter 5

Bloom filter Switching for

Publish-Subscribe Internet

5.1 Introduction

In Chapters 3 and 4 we addressed the issue of forwarding scalability, par-

ticularly for multicast distribution, with respect to the memory requirements for

routers in the Content-Centric Networking architecture. We proposed a semi-

stateless forwarding scheme by integrating Bloom filter-based forwarding in the

architecture. Our scheme respected the distributed operation of the basic CCN

architecture, i.e., IBF source-route construction and forwarding state placement

were performed in a distributed manner.

In this Chapter, we address the issue of IBF scalability with respect to

the network/multicast group size when a centralized approach is used, as in the

context of the Publish-Subscribe Internet (PSI) architecture. The problem we

need to address is the increasing number of redundant transmissions due to false

positive matches as an IBF is filled up to represent larger trees, which can be due

to larger networks, larger groups, or both. We propose to partially sacrifice the

fully stateless operation of IBF forwarding and, therefore, its ability to support

unlimited numbers of groups. Specifically, we propose to split a multicast delivery

tree in a few sub-trees, install multicast forwarding state at few, centrally selected,

82
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sub-tree root-nodes and apply an IBF-switching forwarding logic. By doing so, we

aim to minimize redundant traffic regardless of the group size.

The contribution of IBF switching for multicast is twofold. First, we present

a simple algorithm for the placement of IBF multicast state at network routers and

evaluate the scheme through simulations over large, synthetic scale-free graphs.

Evaluation results show that IBF switching can scale to any group size while keep-

ing redundant traffic below 1%− 4%, at the cost of placing state at no more than

0.5%− 2.5% of network nodes. Second, we compare the forwarding state require-

ments of IBF switching with IP multicast and other multicast schemes proposed to

reduce multicast forwarding state. The results show that IBF switching achieves

a tremendous reduction of multicast state in the range of 87%− 99.6%, i.e., nearly

two levels of magnitude less. Hence, even though we sacrificed the fully state-

less operation of IBF multicast forwarding, we still get far better scalability with

respect to the number of groups that can be supported.

5.2 Overview

The basic idea in IBF switching is to break the initial delivery tree into sev-

eral sub-trees, compute the IBF for each sub-tree and place the respective IBFs as

multicast forwarding state at sub-tree roots. At the data plane, multicast packets

are forwarded using the same IBF forwarding logic with one differentiation: upon

reaching a stateful node, the node switches the packet’s IBF with the stored IBF

and further relays the packet using the new IBF. Sub-trees are selected so that

the resulting IBFs will have a very low false positive probability (fpp). Figure 5.1

shows an example of a multicast tree with two stateful nodes. The source node

uses an IBF to multicast data to the next immediate stateful nodes, i.e., B and C,

which apply IBF switching and further push packets down to receivers.
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Figure 5.1: An example delivery tree with 10 receivers. Dashed-line nodes are
stateless. Solid-line nodes contains sub-tree IBFs.

5.3 Selection of IBF-switching points

To reduce redundant traffic we need to maintain the Bloom filter’s fpp

below a certain threshold. According to Equation 2.1, fpp depends on m, k and n.

The first two parameters are fixed in practice, hence the only tunable parameter

is n, i.e., the number of sub-tree links. We define a desired fppmax threshold and

use Equation 2.1 to obtain the maximum number of sub-tree links

nmax = −ln(1− fppmax−
1
k )(

m

k
) (5.1)

In order to split a multicast tree into subtrees that can fit the constraint of having

no more than nmax links each, we traverse the multicast tree in a bottom-up post-

order fashion, breaking it into sub-trees containing ni links, so that ni → nmax as

shown in Algorithm 9. In the algorithm we denote ni as the number of links of

the sub-tree rooted at node i, Ci as the set of i’s children in the delivery tree and

IBFi as the IBF for the sub-tree rooted at node i. For example, consider the tree

of Figure 5.1 and assume nmax = 6. When we visit nodes D and E we have nD = 4

and nE = 1, so we move to node B where nB = 6 = nmax. B becomes an IBF-

switching point. We compute IBFB, install it at B, prune the sub-trees rooted at

B and reset nB to 0. Similarly, node C is selected as an intermediate IBF-switching

point. Finally, at the source node we compute the IBF for multicasting data to



85

Algorithm 9 Sub-tree selection.

1: function tree traverse(t: multicast tree, s: tree source, fppthres: maximum

fpp)

2: nmax := −ln(1− fppthres
−1
k )(m

k
)

3: nsource := sub tree traverse(t, s, nmax)

4: IBFs := compute IBF (t, s)

5: return IBFs

6: end function

7: function sub tree traverse(t: multicast tree, i: current root node, n: maxi-

mum number of links)

8: ni := 0

9: for j in Ci do

10: ni = ni + 1 + sub tree traverse(t, j, n)

11: end for

12: if (ni ≥ nmax) then

13: IBF := compute IBF (t, i)

14: install state(IBFi, i)

15: remove sub tree(t, Ci)

16: ni = 0

17: end if

18: end function

nodes B and C.

5.4 Integration with PSI

The selection of the IBF switching points is performed in a centralized

fashion, since the algorithm requires full knowledge of the topology graph and

multicast tree. This is fully compatible with the PSI architecture, in which multi-

cast group management and data path establishment are handled by the logically

centralized Rendezvous (RVS) and Topology Management and Path Formation

(TMPFS) subsystems. Whenever a user subscribes to a publication, the RVS adds
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the user to the set of subscribed users and requests the TMPFS to install the

respective data paths and construct IBFs. With IBF-switching, the TMPFS will

select the IBF-switching points and explicitly instruct them to install multicast

forwarding state for the specific publication. After the operation is completed, the

TMPFS will send the root IBF to the publisher, thus notifying the publisher to

start transmitting data to the formed multicast group.

Note, however, that this operation occurs whenever a user subscribes to a

publication, as well as when it unsubscribes from it. In both cases, the multicast

group is affected and a new multicast tree needs to be computed. Since IBF switch-

ing requires centralized computation and installation of multicast forwarding state

at routers, this solution is susceptible to some delays and is therefore most suitable

for applications with low group dynamics, for example orchestrated data delivery

and data backups. In contrast, IBF switching is not suitable for applications with

highly dynamic multicast groups (e.g., IPTV); in such cases, a distributed IBF con-

struction and state installation scheme would probably introduce smaller delays.

We investigated such distributed IBF construction and installation mechanisms in

Chapters 3 and 4.

5.5 Evaluation

We evaluated the scalability properties of IBF switching via extensive simu-

lation tests on a custom-made simulator. We used synthetic scale-free graphs gen-

erated with the Barabási-Albert algorithm [79] ranging from 1000 to 5000 nodes.

LIDs for links were constructed using Double Hashing [48] with SHA-1 and MD5.

For each tested graph of size s we generated s different multicast groups, e.g.,

for a network of 5000 nodes we generated 5000 multicast groups. The size of each

multicast group is uniformly distributed in [10, s−10], i.e., groups have at least 10

and at most s−10 nodes. For each multicast group, group members are randomly

selected among all nodes. For multicasting we used the shortest-path trees, i.e.,

the union of the shortest paths between the source and each receiver.



87

 86

 88

 90

 92

 94

 96

 98

 100

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000
F

o
rw

a
rd

in
g
 e

ff
ic

ie
n
c
y
 (

%
)

Group size

fpp=0.1%
fpp=0.2%
fpp=0.5%

fpp=0.75%
fpp=1%

Figure 5.2: Forwarding efficiency of IBF switching. Network size 5000, m = 256
bits, k = 4, variable fppmax.

5.5.1 Forwarding efficiency and state requirements

Figure 5.2 shows the forwarding efficiency defined in Equation 2.2 as a

function of group size in a graph of 5000 nodes with m = 256 and k = 4. Recall

that forwarding efficiency is defined as

forwarding efficiency =
#multicast tree links

#total packets transmitted

When fppmax = 0.1%, forwarding efficiency is kept above 99%, i.e., false

positives account for less than 1% of overall traffic, regardless of group size. For-

warding efficiency is not constant: it starts from a lower value and increases quickly.

In small groups several false positives occur, but as group size grows and more links

are added, fewer links count as false positive. Overall, the forwarding efficiency

of IBF switching increases as the group size increases, i.e., IBF switching behaves

better in larger multicast groups.

Figure 5.3 shows the state requirements of IBF switching as a function of

group size, with the same parameters as above. The Y-axis shows the percentage of

nodes where state must be installed. The fraction of stateful nodes grows linearly

with multicast group size. As fpp increases, the size of sub-trees also increases;

hence the number of stateful nodes decreases. In spite of the linear growth of state

requirements, notice that state requirements are overall quite low. For instance,

multicasting to a group of 2500 nodes with fpp = 0.5% (forwarding efficiency at

98%) requires installing multicast state at only 1%, i.e., 5000× 1% = 50 nodes.
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In the remainder of this chapter, we present results for fpp = 0.5% as it

provides a good trade-off between forwarding efficiency (quickly passes 96% and

converges to 98%) and state requirements (requires half the nodes compared to

fpp = 0.1%). In Figure 5.4, we show the state requirements for various values of

m and k with fppmax = 0.05% in a 5000 node graph. As m increases, the fraction

of stateful nodes decreases as expected: as IBF size grows, more tree links can

be added to the iBF without the fpp passing the selected threshold. Notice that

with m = 1024 bits, IBF switching for multicast requires state at around 0.4% of

the nodes, i.e., we can almost broadcast (e.g., transmit a firmware update to all

routers) with multicast forwarding state at only 5000× 0.4% = 20 nodes.
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5.5.2 Comparison with IP multicast forwarding schemes

We now compare the multicast forwarding state requirements of IBF switch-

ing and various schemes proposed for reducing IP multicast forwarding state.

Specifically, we compare IBF switching for multicast against REUNITE [60], the

semi-stateful Xcast [62] and plain IP Multicast. REUNITE reduces the amount of

multicast forwarding state by installing forwarding entires only at branching points

of the multicast tree; non-branching points forward packets using the existing uni-

cast information [60]. This significantly reduces multicast forwarding state for

sparse trees, but its benefits are minor in dense trees. Explicit Multicast (Xcast)

adds the addresses of multicast receivers in packet headers [61], with routers for-

warding multicast packets based on that information only. Xcast is a stateless

scheme and therefore scales with respect to the number of multicast groups. How-

ever, due to the limited capacity of the packet header, it is only suitable for small

groups. Yang and Liao proposed a semi-stateful version of Xcast [62] where mul-

ticast forwarding state is installed in few, carefully selected routers, and packets

are forwarded among these routers via Xcast. Finally, plain IP multicast places

multicast forwarding state at each node of the multicast tree.

Figure 5.5 presents the fraction of stateful nodes as a function of multicast

group size in a 5000-node graph. We chose m = 1024 bits and fppmax = 0.5%

for IBF switching for multicast. For semi-stateful Xcast we considered a header of

the same size, i.e., 1024 bits, and then considered two variants: (i) in XCAST-8

the header may contain up to 8×128-bit host addresses and (ii) in XCAST-32 the

header may contain up to 32× 32-bit host addresses. XCAST-8 targets a possible

deployment of Xcast in IPv6 networks while XCAST-32 targets a hypothetical

deployment in IPv4 networks. XCAST-32 is impossible to realize of course, as

IPv4 headers cannot exceed 40 bytes, but we present the results for completeness.

The simulation setup is the same as in the previous section. Due to wide difference

between the various schemes, the Y-axis in Figure 5.5 is in log scale. In all schemes,

multicast forwarding state grows linearly with respect to group size. However, IBF

switching achieves a large state reduction compared to the other schemes. For

instance, for a 2000 node group, IBF switching reduces the number of stateful
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nodes by 99.6% compared to IP multicast, 98% compared to REUNITE, 87%

compared to XCAST-8 and 42% compared to XCAST-32.

Figure 5.6 presents the same data but only for semi-stateful Xcast and IBF

switching, with the Y axis in linear scale. Although IBF switching and semi-

stateful Xcast both use a combination of source-routing and stateful nodes, IBF

switching requires far less state due to the efficient encoding of the Bloom filter,

even though we restrict the number of tree links so that fppmax = 0.5%. Even

XCAST-32 requires double the state of IBF switching. Taking into account that

REUNITE and Xcast also require unicast forwarding state, it is clear that an IBF-

based forwarding node requires far less overall state. Hence, although we sacrificed

the fully stateless nature of IBF multicast, it both scales with respect to multicast

group size and remains a far more scalable solution in terms of the number of

multicast groups supported.

5.6 Conclusion

We addressed the scalability issues of IBF multicast with respect to multi-

cast group size. We examined the option of sacrificing the fully stateless operation

of Bloom filter-based forwarding in order to minimize the redundant traffic caused

by false positives in large multicast groups. We presented a IBF switching scheme

and an algorithm for the selection of IBF switching points. Our evaluation through
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simulation showed that our solution scales to groups of arbitrary size with a (min-

imal) cost of placing multicast forwarding state at no more than 0.5% − 2.5% of

network nodes. Moreover, compared with other multicast schemes that reduce for-

warding state, IBF switching for multicast achieves state reductions varying from

87% to 99.6%. Hence, even though IBF switching places state inside the network,

it provides far better scalability properties with respect to the number of groups

supported, compared to alternative solutions.



Chapter 6

Conclusions and future work

This dissertation addresses the issue of multicast forwarding scalability in

two widely different Future Information-Centric Network architectures, namely

Content-Centric Networking (CCN) and Publish-Subscribe Internet (PSI). The

common ground in the proposed solutions is the use and extension of Bloom filter-

based packet forwarding mechanisms.

In CCN, we proposed a semi-stateless forwarding scheme that integrates

Bloom filter-based forwarding in the architecture, with the aim of mitigating for-

warding state requirements at routers. Our proposed scheme, presented in Chap-

ters 3 and 4, can achieve a reduction of the forwarding state at the levels of 50%-

70% at the cost of bandwidth overheads of 1.5%-12%. The semi-stateless forward-

ing scheme respects the core CCN architecture, and maintains its fully distributed

operation in routing and forwarding, even though we integrate a source-routing

technique for Data forwarding.

In PSI, we proposed an IBF switching scheme in order to address the

poor scalability properties of Bloom filter-based forwarding with respect to net-

work/multicast group size. We utilized the centralized operation of control-plane

functionalities in PSI, i.e., the Rendezvous and Topology Management and Path

Formation functions, and proposed a centralized algorithm for selecting IBF switch-

ing points. We described this solution in Chapter 5 and showed that, although

we sacrificed the full stateless nature of Bloom filter-based forwarding, the amount

of redundant traffic is effectively reduced while the required forwarding state in
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routers is by far less than that of similar multicast forwarding technologies.

Ultimately, there is an underlying pattern in the solutions proposed by

this dissertation: the use of semi-stateless Bloom filter-based forwarding. Fully

stateful forwarding, as in CCN, scales greatly with respect to network and/or

mutlicast group size but has scalability constraints with regards to the multicast

forwarding state kept at routers. On the other hand, fully stateless forwarding,

as in PSI with IBFs, scales greatly with respect to the number of data paths and

active multicast groups but scales poorly with respect to the network/multicast

group size. In both cases, our approach was to improve each system’s scalability

constraints by relaxing the forwarding schemes; introducing stateless-ness in a fully

stateful forwarding architecture and introducing stateful-ness in a fully stateless

forwarding architecture. In the context of CCN, that required the contrivance of

a distributed mechanisms for IBF construction and state placement, whereas in

the context of PSI we approached the same ideas in a centralized manner. In

both cases, we achieved significant gains towards our target, the improvement of

forwarding scalability, at the expense of unavoidable, but low, costs. In the case

of CCN, and generally fully distributed multicast forwarding schemes, we paid the

penalty of bandwidth overhead for two reasons. First, since we relaxed the model,

multicast requests (i.e., Interests) travel more hops compared to the optimal case.

In addition, the probabilistic nature of IBFs adds Data overhead. In the case of

PSI, we sacrificed the fully stateless nature of multicast forwarding, meaning that

now there is an upper bound of the supported active multicast sessions in contrast

to the unbounded one before, with the exact amount depending on the capacity of

the deployed hardware. Yet, that is the penalty we need to pay in order to scale

to large networks/multicast groups without the fear of collapsing from storms of

false traffic.

A general question, that possibly sets a possible research agenda, is whether

the gains (and their respective trade-offs) offered by the presented solutions are

adequate enough for the envisaged Future Information-Centric Internet. For ex-

ample, is a 70% reduction of the PIT enough? Would placing multicast forwarding

state at 0.5% of PSI routers suffice for a Internet-wide multicast distribution? Is
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that enough or do we need further improvements? A clear and honest answer to

these questions is we don’t really know yet. Although the proposed solutions do

improve the forwarding operation in CCN and PSI, it is not clear whether the

remaining 30% of the PIT would actually fit inside a router’s memory, or, if the

delays for installing IBFs at 0.5% of a network with tens of thousands of nodes

would not affect user experience. Although ICN is near its 10th birthday,1 the

research community has still not made concrete conclusions for several critical

questions: what are the actual requirements for ICN, how would the applications

perform and how would the users behave. The ICNRG has identified the need to

concretely define “metrics that make it possible to evaluate ICN implementations

in a consistent manner” [34]. After completing this dissertation, our opinion is

that before investigating further improvements in ICN architectures, these metrics

(and accompanied requirements) must be defined, to allow evaluating whether any

proposed solution suffices, and if not, how far is it from achieving its goal. Without

these metrics, any proposed solution lacks the answer to an obvious question: is it

good enough? We therefore believe, that top priority for any future work, would

be a in-depth investigation and definition of the required evaluation metrics and

acceptable thresholds.

1Indeed, seminal research that led to ICN is older than a decade, for example [5, 7, 8, 23].
The survey paper of Xylomenos et al. provides a thorough review [33].
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Evaluation Results
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Figure A.1: Performance results for unicast traffic in topology AS-224.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2  3  4  5  6

P
IT

 e
n
tr

ie
s
 (

%
)

d

PROB
HASH

HC

(a) PIT entries

 0

 1

 2

 3

 4

 5

 2  3  4  5  6

D
a
ta

 o
v
e
rh

e
a
d
 (

%
)

d

PROB
HASH

HC

(b) Data overhead

Figure A.2: Performance results for unicast traffic in topology AS-3967.
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Figure A.3: Performance results for unicast traffic in topology AS-1755.
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Figure A.4: Performance results for unicast traffic in topology AS-1221.
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Figure A.5: Performance results for unicast traffic in topology AS-6461.
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Figure A.6: Performance results for unicast traffic in topology scale-free-50.
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Figure A.7: Performance results for unicast traffic in topology scale-free-100.
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Figure A.8: Multicast performance results for uniform distribution of group size
in topology AS-224.
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Figure A.9: Multicast performance results for uniform distribution of group size
in topology AS-3967.
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Figure A.10: Multicast performance results for uniform distribution of group size
in topology AS-1755.
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Figure A.11: Multicast performance results for uniform distribution of group size
in topology AS-1221.
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Figure A.12: Multicast performance results for uniform distribution of group size
in topology AS-6461.
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Figure A.13: Multicast performance results for uniform distribution of group size
in topology scale-free-50.
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Figure A.14: Multicast performance results for uniform distribution of group size
in topology scale-free-100.

 0

 20

 40

 60

 80

 100

 2  3  4  5  6

P
IT

 e
n
tr

ie
s
 (

%
)

d

PROB
HASH

HC

(a) PIT entries

 0

 10

 20

 30

 40

 50

 60

 2  3  4  5  6

In
te

re
s
ts

 o
v
e
rh

e
a
d
 (

%
)

d

PROB
HASH

HC

(b) Interests overhead

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2  3  4  5  6

D
a
ta

 o
v
e
rh

e
a
d
 (

%
)

d

PROB
HASH

HC

(c) Data overhead

Figure A.15: Multicast performance results for Zipf distribution of group size in
topology AS-224.
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Figure A.16: Multicast performance results for Zipf distribution of group size in
topology AS-3967.
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Figure A.17: Multicast performance results for Zipf distribution of group size in
topology AS-1755.
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Figure A.18: Multicast performance results for Zipf distribution of group size in
topology AS-1221.
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Figure A.19: Multicast performance results for Zipf distribution of group size in
topology AS-6461.



104

 0

 20

 40

 60

 80

 100

 2  3  4  5  6

P
IT

 e
n
tr

ie
s
 (

%
)

d

PROB
HASH

HC

(a) PIT entries

 0

 10

 20

 30

 40

 50

 60

 70

 2  3  4  5  6

In
te

re
s
ts

 o
v
e
rh

e
a
d
 (

%
)

d

PROB
HASH

HC

(b) Interests overhead

 0

 10

 20

 30

 40

 50

 60

 70

 2  3  4  5  6

D
a
ta

 o
v
e
rh

e
a
d
 (

%
)

d

PROB
HASH

HC

(c) Data overhead

Figure A.20: Multicast performance results for Zipf distribution of group size in
topology scale-free-50.
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Figure A.21: Multicast performance results for Zipf distribution of group size in
topology scale-free-100.
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Figure A.22: Estimated PIT size (in bytes) for small (20-bytes) and large (56-
bytes), Zipf distribution of group sizes using the Hop Counter-based policy.
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Figure A.23: Multicast bandwidth overhead with a Zipf distribution of group
sizes in the HC policy. Small content-names (36-byte Interests) and large-content
names (70-byte Interests), small (1500 bytes) or large (jumbo) frames (7500 bytes)
Data packets.
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Figure A.24: Performance results with dynamic adaptation of d with respect to
group size.



Appendix B

Acronyms

AS Autonomous System

CCN Content Centric Networking

CDN Content Distribution Networking

CONET Content Network

CS Content Store

DHT Distributed Hash Table

FIA Future Internet Architecture

FIB Forwarding Information Base

FID Forwarding Identifier

FN Forwarding Nodes

FS Forwarding System

IBF In-packet Bloom Filter

ICN Information Centric Network

ICNRG Information Centric Network Research Group

IRTF Internet Research Task Force

LID Link Identifier

MFT Multicast Forwarding Table

MTU Maximum Transfer Unit

NAT Network Address Translation

NDN Named Data Networking
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NSF National Science Foundation

PCE Path Computation Element

PI Persistent Interest

PSI Publish Subscribe Internet

RN Rendezvous Node

RVP Rendezvous Point

RVS Rendezvous System

RTT Round Trip Time

SDN Software Defined Networking

TM Topology Manager

TMPFS Topology Manager and Path Formation System

XIA eXpressive Internet Architecture
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