

Athens University of Economics and Business

Department of Informatics - DB-NET Research Group http://www.db-net.aueb.gr/dbglobe

DBGlobe: Simulator Prototype

Stratis Valavanis
Christopher Ververides
Christos Doulkeridis
Michalis Vazirgiannis
George C. Polyzos

DBGlobe – Current AUEB Involvement

- Workpackage: W2 (UoI, CTI)
- o Objective
 - A simulator of dynamic environments of cooperative mobile entities.
 - Model the distribution, mobility and data of mobile entities
 - o Express the interaction among the entities
 - Adhoc creation of dbs, co-ordination, data acquisition
- Month 18: Deliverable D7
 - "Simulation Environment"
 - Network Simulation (WLAN)
 - Component Interaction (PMO,CAS)
 - Context Manipulation

Specification of the Simulation Environment

- Space Model
 - Cells
 - Administrative
 - o Communication
- o PMO
- CellAdministrationServer
- DistributionNetwork

Testbed Environment

Network Simulation

- Network Simulators
 - Develop
 - Test
 - Diagnose
- network protocols/deployments
- Simulation Platform: NCTUns
- Assumptions
 - Equal number of requestors-sources
 - Service request interval 5sec
 - Files exchanged: 100KB (service description)
 - PMO population ranges between 2 and 64
 - Each source serves at most one requestor
 - Simulation duration: 800 sec

NCTUns 1.0 Network Simulator

- Uses real-life TCP/IP Protocol Stack
- Tunnel network interfaces
- Widely used in academic community
- Supports IEEE 802.11 infrastructure mode

Network - Simulation Results

	PMO #	Avg bandwidth Kbytes/sec	Transfer time (100Kbytes) seconds
Scenario 1	16	45	2.5
Scenario 2	32	27	3
Scenario 3	64	17	6

System Component Interactions I

_	Description	Туре	Components
I ₁	Service Search	P-2-C	PMO (requestor)
			Local CAS
I_2	Locate Current Cell	P-2-C	PMO (requestor)
			Local CAS
			Home CAS
			Current CAS
I_3	Find PMO IP	P-2-C	PMO (requestor)
			Current CAS
I ₄	Policy related requests	C-2-C	CAS current
			CAS Home
			Or
			CAS Home
			CAS Current

System Component Interactions II

			Components
ו כי	PMO request dissemination	C-2-C	Local CAS CAS for all adjacent cells
1 6	Retrieve Service Grounding Information	P-2-P	PMO requestor PMO source
I ₇ (Consume Service	P-2-P	PMO requestor PMO source

Case Study: Service Search

- User submits a query consisting of x keywords
- o Components:
 - PMO (requestor)
 - Local CAS
- o Modules:
 - PMO request definition tool
 - CAS request Handler
 - CAS Service Manager
 - CAS device repository
- o Input:
 - Keyword vector
- Output:
 - Service ID list, PMO ID list

Assumptions

- o Taxonomy tree is balanced
- o Taxonomy tree is full
- Nodes of taxonomy contain short category descriptions (few keywords)
- Services belong only to leaf categories
- A service may belong to multiple categories
- Polysemy is defined as number of appearances
- Services are categorized by the owner

Memory requirements

Dictionary size:

$$K*(2*s_1 + p_f *p_s)$$
 bytes

- s₁ : average string length of keywords.
- p_f : average polysemy factor of keywords.
- p_s : pointer size in bytes.
- Unicode char set

Memory requirements

o Taxonomy Size:

```
p_s*f*(N-f^{h-1}) + (leaf node pointers)

2*N*s_l*k_f + (node keywords)

KeySize_{category}*N*2 + (node keys)

S*m_f*p_s + (pointers to services)

(N-1)*p_s (pointers to parents)
```

f: tree fanout

k_f: avg keywords/node

N: Taxonomy nodes

m_s: multicategorization

Memory requirements

Service Array Size

```
(KeySizePMO+ KeySizeservice +
  NameSizeservice)*S*2
+ S* m<sub>f</sub> * p<sub>s</sub> (pointers to ontology)
```

Memory Requirements

oAssume:

• KeySize = 36 characters (UDDI), $p_s=2$, $p_f=4$, f=10, $s_l=7$, $k_f=2$, $m_f=2.5$

$$Mem = 22*K + 50*N + 226*S - 4$$
 bytes

Linear to: no of

- keywords,
- taxonomy categories,
- services

Small CAS: O(n) – Ontology size

Large CAS: O(S) – Services population

Memory Requirements

Complexity analysis

Service search consists of:

- Dictionary search
- Taxonomy search
- Service retrieval from catalog
- Duplicate service elimination
- Dictionary Search

ëlog2Kû avg. mem. access (binary)

Complexity - Taxonomy Search I

 1 keyword with 1 appearance at a hops from the leaves:

$$(f^a-1)/(f-1) + S* m_f / f^{(h-1)-a}$$

- Best Case, Leaf (a=0)
 S*m_f/f^{h-1} iterations
- Worst Case, Root (a=h-1):N + S* m_f

Complexity - Taxonomy Search II

- o 1 keyword with m appearances :
 - m times the previous cost

(we cannot optimize because we do not traverse the whole tree to find appearances: we follow dictionary pointers)

Complexity - Taxonomy Search III

```
    x keywords with several

  appearances each
\circ x: small integer (x>1).
k_1, k_2, ..., k_x
k1: {a1,...ai}, (i appearances)
k2: {b1,...bj}, (j appearances)
kx: {z1,...,zr}, (r appearances)
```

Complexity - Taxonomy Search IV

Complexity - Taxonomy Search VI

o $(x-1)*p_f$ comparisons / node traversal o 1 -> h-1node traversals / appearance o p_f*x appearances / keyword

Best Case	Worst Case
All x keywords have 1 appearance each, close to the root	All x keywords have ki appearances, ki >>1, p_f =AVG(k_i)
x (x-1)	(p _f)2 * x * (x-1) * (h-1)
comparisons	comparisons
x	p _f *x*(h-1)
node traversals	node traversals

Service retrieval from catalog

 Appearance paths usually end close to the leaves.

S*m_f/f^{h-1} services

 Worst case: All keywords describe the root node:

S*m_f services

Eliminating Duplicates

Polysemy effect

Taxonomy Size

Context awareness - simulation

A context-aware service directory facilitates the process and increase the precision of service discovery

Types of context

- requesting device (device properties, characteristics, capabilities)
- Source PMO (location, time, version, type of returned results)

Context awareness - simulation II

Conclusions

Further Work

- Service discovery enhanced with semantic proximity
- Contribution to the design of the DB-globe prototype
- Integration of network, component interaction and context-matching simulation modules

Dissemination

- E. Valavanis, C. Ververidis, M. Vazirgiannis, G.C. Polyzos, K. Nørvåg, "MobiShare: Sharing Context-Dependent Data & Services from Mobile Sources", to appear at the 2003 IEEE/WIC International Conference on Web Intelligence WI 2003 October 13-17, 2003, Halifax, Canada.
- C. Doulkeridis, E. Valavanis and M. Vazirgiannis. Towards a Context-Aware Service Directory. Submitted in the 4th VLDB Workshop on Technologies for E-Services (TES'03).

DBGlobe Simulator Web Page

http://www.db-net.aueb.gr/dbglobe

THANK YOU