

Wireless Communications + Internet: Architecture & Protocols

George Xylomenos

xgeorge@aueb.gr Mobile Multimedia Laboratory Department of Informatics Athens University of Economics and Business

Outline

- Convergence of two technologies
 - Explosive Internet popularity
 - Rapid adoption of wireless networks
- Internet performance over wireless
 - TCP applications (file transfer, web browsing)
 - UDP applications (media distribution)
- Enhancement approaches
- Multi Service Link Layers
 - Multi-protocol, adaptive, QoS aware solution
 - Evaluation of application performance
 - Implicit and explicit service selection

Wireless Systems

- Digital wireless systems
 - Cellular, PCS, 3G/4G
 - Wireless LANs (802.11)
 - LEO/MEO satellites, fixed wireless (802.16)
- Internet protocols: designed for
 - Wired networks: low error rate
 - TCP: any loss means congestion
 - Fixed networks: no mobility, no handoffs
- Physical layer solutions
 - Inflexible: one size fits all
 - Good for telephony, not for data

Internet Applications

- Conventional data exchange applications
 - Usually TCP based
 - Error intolerance
 - Delay tolerance
 - Jitter intolerance (TCP)
 - Example: File transfer, web browsing
- Interactive and real-time applications
 - Often UDP based (plus RTP)
 - Often multipoint (IP Multicast)
 - Some error tolerance
 - Delay intolerance
 - Example: Media distribution

Proposed Approaches

- Indirect TCP
 - Violates TCP semantics (not end-to-end anymore)
- Snoop TCP
 - Works well only in the direction towards the mobile
- Modifications to TCP
 - Compatibility: usually both ends need to be updated
 - End-to-end retransmissions for a local problem
 - Non multi-protocol: useless for non TCP applications
- Conventional link-layer schemes
 - Inflexible: one service only
 - Irrelevant for some protocols/applications

Simulation Setup

- Simulations using ns-2 with additions
- Two topologies simulated
 - One wireless link and two wireless links
 - 2 Mbps wired link with 50 ms delay
- HSCSD wireless links (also WLAN)
 - 86.4 Kbps, 100 ms delay, 100 byte packets
 - Independent losses at 1%, 2%, 5% and 10%

Applications

- File transfer (FTP) over TCP
 - 10 Mbytes from server to client
 - Application level throughput
- WWW browsing (HTTP) over TCP
 - 2000 sec of non-stop single-user transactions
 - Empirical distributions for object sizes
 - Server to client application level throughput
- Continuous media (CBR) over UDP
 - Two-state on-off speech source
 - 14.4 Kbps constant bit rate in active state
 - Residual loss, mean delay + 2 × standard deviation

Protocols

- Raw Link: native link service
- TCP enhancements
 - Go Back N: basic sliding window scheme
 - Selective Repeat: adds selective retransmissions
 - Karn's RLP: up to 3 retransmissions per frame
 - Berkeley Snoop: TCP aware retransmissions
- UDP enhancements
 - XOR based FEC: 1 parity for 8 data frames
 - Selective Repeat: TCP oriented scheme
 - Karn's RLP: up to 1 retransmission per frame
 - Out of sequence RLP: variant of Karn's RLP

File Transfer

- Go Back N works terribly at any error rate
- Overhead matters for low bandwidth links
- Persistence helps at high error rates

File Transfer

- TCP unaware schemes perform the same
- Berkeley Snoop performs very bad
- Retransmissions are needed in both directions

WWW Browsing

- Bi-directional traffic (requests-replies)
- Retransmissions are needed in both directions
- Berkeley Snoop has problems even in this case

WWW Browsing

- TCP unaware schemes again perform well
- Berkeley Snoop drops below Go Back N
- File transfer cannot model interactive applications

Continuous Media

- Both RLP schemes perform identically
- XOR based FEC is too wasteful
- Selective Repeat is perfect, but do we need it?

Continuous Media

- In sequence delivery schemes are too slow
- Out of sequence RLP is close to XOR based FEC
- Both schemes do not deliver frames in sequence

Conclusions: Single Service

• TCP enhancements

- File transfer cannot model interactive applications
- Both directions matter, even for downloads
- TCP aware schemes fail for interactive applications
- TCP unaware schemes worked for both applications
- Excellent performance with low overhead
- UDP enhancements
 - Continuous media: low delay medium reliability
 - Out of sequence delivery greatly reduces delay
 - Retransmissions can compete with FEC
- There is no single solution for both

Multi Service Link Layer

- Address the problem at its source
 - Local solution to a local problem
- Compatible with Internet architecture
 - IP and higher layers unchanged
- Aware of QoS requirements
 - Implicitly or explicitly
- Per stream/class QoS differentiation
 - Fully or mostly reliable
- Dynamic adaptation to stream/class mix
 - Variable bandwidth allocation
- Dynamic adaptation to channel conditions

MSLL Architecture

- Multiple link layer modules
- Packet classifier
 - TCP/UDP ports
 - IP ToS, DS field
- Per class load measurements
- Service class specific processing
 - Isolation between services

MSLL Scheduler

- Enforces incoming allocations
 - Protects services
 - Encourages efficiency
- Self-clocked fair queueing (SCFQ)
 - Efficient, simple, fair
 - One queue per class

Multi Service Protocols

- Same protocols, two services (TCP and UDP)
- Raw Link: native link service
- TCP enhancements
 - Selective Repeat: standard selective retransmissions
 - Karn's RLP: up to 3 retransmissions per frame
 - Berkeley Snoop: TCP aware retransmissions
- UDP enhancements
 - Out of sequence RLP: variant of Karn's RLP
- TCP / UDP combinations
 - Raw link / Raw link (baseline)
 - {SR, RLP, Snoop} / OOS RLP

File Transfer

- Similar to single application tests
- Overhead matters for low bandwidth links
- Persistence helps at high error rates

File Transfer

- TCP unaware schemes perform excellent
- Berkeley Snoop performs very bad
- Retransmissions are needed in both directions

WWW Browsing

- Similar to single application tests
- Retransmissions are needed in both directions
- Berkeley Snoop has problems even in this case

WWW Browsing

- TCP unaware schemes again perform well
- Berkeley Snoop drops below Go Back N
- File transfer cannot model interactive applications

Continuous Media

- Delay is nearly the same with all TCP schemes
- Most delay is due to OOS RLP retransmissions
- The scheduler effectively protects UDP from TCP

Conclusions: Multiple Services

- TCP application performance
 - The same schemes work for both TCP applications
 - One service is sufficient for all TCP applications
- UDP application performance
 - Excellent performance improvements
 - The scheduler protects UDP from TCP
- Multi-service link layer performance
 - Applications perform as in single application tests
 - Each application uses the most appropriate scheme
 - Transparent and locally customized solution
 - Supports diverse application requirements

Service Selection

- Implicit QoS specification
 - Assigns applications to services
 - Protocol and TCP/UDP port fields
 - No changes to Internet protocols and applications
 - More immediate
- Explicit QoS specification
 - Assigns traffic classes to services
 - QoS provision
 - Integrated Services, RSVP
 - QoS differentiation
 - Differentiated Services
 - DiffServ is more flexible

Heuristic Packet Classifier

• Implicit QoS specification

DiffServ Packet Classifier

- Explicit QoS specification
- Dynamic service selection

Measurements and Feedback

Conclusions: Summary

- TCP performance severely impacted
- TCP is not the only concern
 - Real-time multimedia over UDP
- Link layer enhancements
 - Fast local recovery
 - Customized to underlying link
- Wireless links: natural choice for QoS support
- Differentiated services because
 - Bandwidth is scarce and precious
 - Link performance is variable and unpredictable