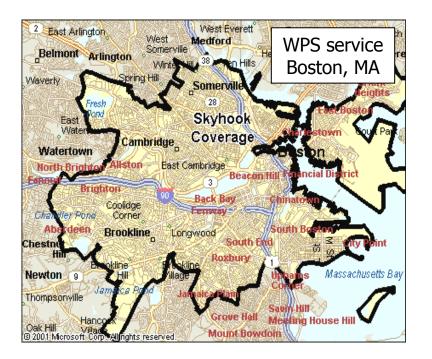
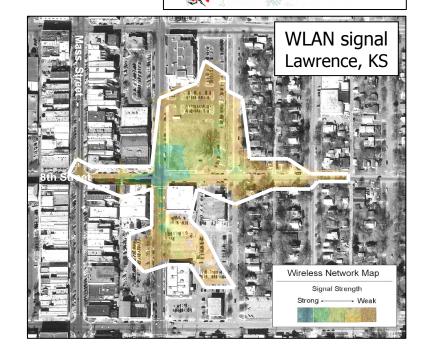
A Peer-to-Peer Approach to Sharing Wireless Local Area Networks

PhD Dissertation


Elias C. Efstathiou


Advisor: Professor George C. Polyzos

Athens University of Economics and Business Department of Computer Science

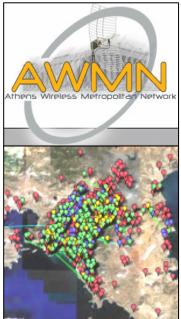
Motivation

- Numerous WLANs in metropolitan areas
- Signal covers greater area than intended
- The case of Skyhook Wireless, Inc.
 - Wi-Fi Positioning System: a GPS-like service
 - Relies on database of WLAN beacon signals

New York, NY

2002

WLAN Technology


- Access bandwidth: 11-54 Mbps (IEEE 802.11b, g)
- Backhaul bandwidth
 - Internet connections: DSL now up to 8 Mbps in London
 - Wireless Community Networks: 54 Mbps backbone in AWMN
- WLAN-enabled phones available

- WLANs: An alternative to cellular?
 - Faster
 - Maximum RF power: 100–200 mW vs. 1–2 W
 - Handovers not a problem for low-mobility video, audio, browsing

Observation

- WLANs and their backhaul have excess capacity
- Technically, we *could* share them, however:
 - Direct and indirect costs in sharing
 - If WLAN owners rational \rightarrow no one shares

The Peer-to-Peer Approach:

Payments 'in kind'

- Rely on subscriptions, pay-as-you-go schemes
- Revenue sharing with WLAN owner
 - Focus on public venues (Boingo, iPass)
 - Focus on residential WLANs (Netshare, FON)

Peer-to-Peer Incentives: Literature

- i. Tie consumption to contribution, relying on:
 - Central bank, which issues community currency [1]
 - Distributed bank, which keeps track of accounts [2]
 - Tamperproof modules, which enforce reciprocity [3]
 - Simple Tit-For-Tat [4]

ii. Fixed contribution scheme, properties shown in [5]

- [1] B. Yang and H. Garcia-Molina, PPay: micropayments for peer-to-peer systems, 10th ACM Conference on Computer and Communications Security (CCS'03), Washington, DC, 2003.
- [2] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, KARMA: a secure economics framework for P2P resource sharing, 1st Workshop on Economics of Peer-to-Peer Systems (p2pecon'03), Berkeley, CA, 2003.
- [3] L. Buttyán and J.-P. Hubaux, Stimulating cooperation in self-organizing mobile ad hoc networks, ACM/Kluwer Mobile Networks and Applications, vol. 8, no. 5, 2003.
- [4] R. Axelrod and W. D. Hamilton, The evolution of cooperation, *Science*, vol. 211, 1981.
- [5] C. Courcoubetis and R. Weber, Incentives for large peer-to-peer systems, *IEEE Journal on Selected Areas in Communications*, vol. 24, no. 5, 2006.

Peer-to-Peer Incentives: Requirements

- 1. Central bank
 - Requires a central authority
- 2. Distributed bank
 - Requires altruists: to form overlay network, to hold accounts
- 3. Tamperproof modules
 - Requires trusted hardware/software
- 4. Tit-For-Tat
 - Requires permanent IDs, repeat interactions

Whitewashing [6] and Sybil attacks [7]: problem for all schemes

- [6] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, Free-riding and whitewashing in peer-topeer systems, *IEEE Journal on Selected Areas in Communications*, vol. 24, no. 5, 2006.
- [7] J. Douceur, The Sybil attack, 1st International Workshop on Peer-to-Peer Systems (IPTPS'02), Cambridge, MA, 2002.

Our Requirements

The Peer-to-Peer Wireless Network Confederation scheme:

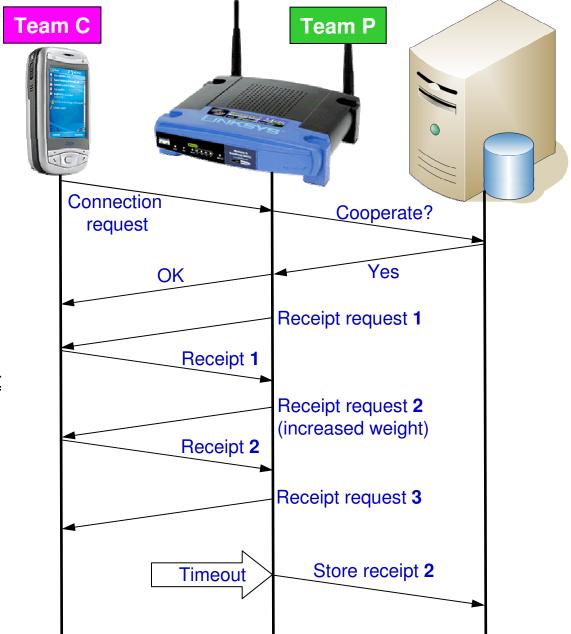
- 1. Must assume rational peers—at all layers
- 2. Must be implementable on common WLAN APs
- 3. Must not rely on authorities, therefore:
 - Must not rely on central servers, super-peers
 - Must not rely on tamperproof modules
 - Must assume IDs are free and that anyone can join, and must penalize newcomers—proven unavoidable in [8], [9]
- [8] E. Friedman and P. Resnick, The social cost of cheap pseudonyms, *Journal of Economics and Management Strategy*, vol. 10, no. 2, 1998.
- [9] M. Feldman and J. Chuang, The evolution of cooperation under cheap pseudonyms, 7th IEEE Conference on E-Commerce Technology (CEC), Munich, Germany, 2005.

P2PWNC Architecture and Algorithms

System Model

P2PWNC Receipts

P2PWNC receipts


Proof of prior contribution

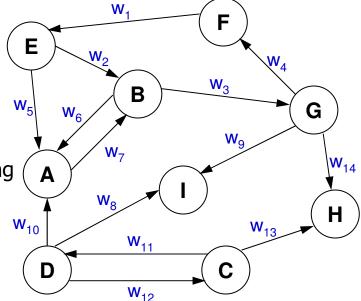
Provider public key Consumer certificate Timestamp Weight (bytes)

Consumer signature

Receipt generation protocol The only time two teams interact

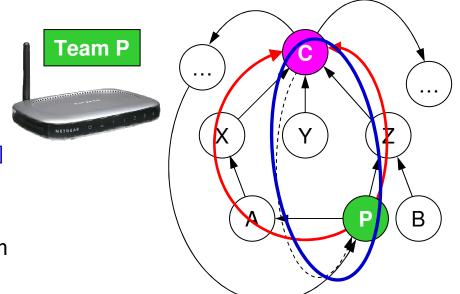
- 1. Consumer presents certificate
- 2. Provider decides
- 3. Provider periodically requests receipt
- 4. Consumer departs

The Receipt Graph


A logical graph

- Vertices represent team/peer IDs
- Edges represent receipts
- Edges point from consumer to contributor (they represent 'debt')
- Edge weight equals sum of weights of corresponding receipts

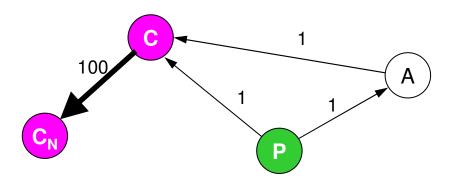
Possible manipulations


- A peer **can** create many vertices
- A peer can create many edges starting from these vertices
- A peer **cannot** create edges starting from vertices he did not create
- A peer cannot change the weights on edges

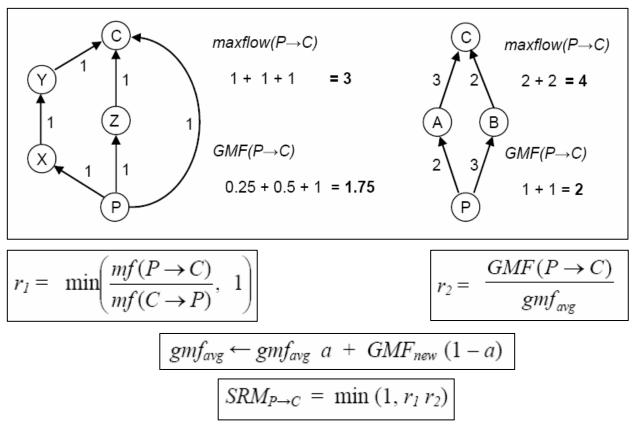
For the analysis that follows, assume that a central server exists, which stores the entire receipt graph

Maxflow-based Decision Rule

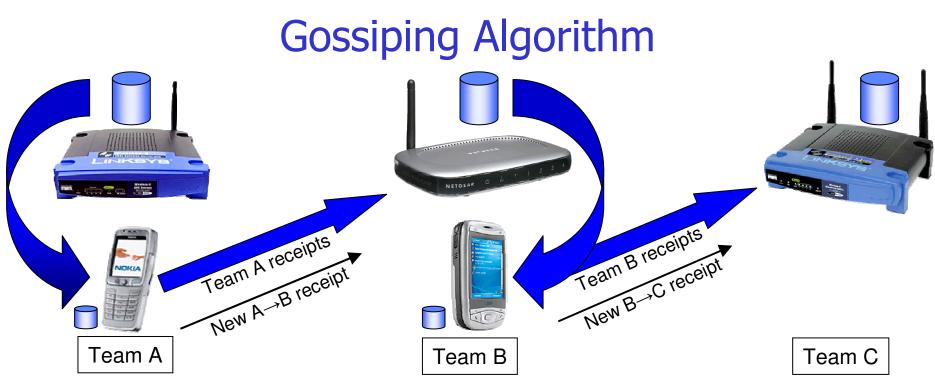
- What if a prospective consumer **C** appears at the root of a tree of receipts?
 - All IDs and receipts could be fake!
- What if the prospective contributor **P** sees himself in the tree?
 - P owes direct or indirect debt to C
 - Potential for multi-way exchange, like in [10]
- Find all direct and indirect debt paths [11]
 - Maxflow from P to C
- Find also direct and indirect debt paths from
 C to P
 - Ref. [11] proposes that **P** cooperates with probability: $p = \min\left(\frac{mf(P \to C)}{mf(C \to P)}, 1\right)$



- [10] K. G. Anagnostakis and M. B. Greenwald, Exchange-based incentive mechanisms for peer-to-peer file sharing, 24th International Conference on Distributed Computing Systems (ICDCS 2004), Tokyo, Japan, 2004.
- [11] M. Feldman, K. Lai, I. Stoica, and J. Chuang, Robust incentive techniques for peer-to-peer networks, ACM Conference on Electronic Commerce (EC'04), New York, NY, 2004.


Two Problems with Maxflow-based Decision

$$p = \min\left(\frac{mf(P \to C)}{mf(C \to P)}, 1\right)$$


- 1. Cooperate with a probability?
 - Encourages continuous re-requests
 - Answer: Interpret fraction as service differentiation
- 2. Problem in denominator
 - Attacker can always get best service with small maxflow in the numerator as long as he 'erases debt' using new ID
 - Answer: GMF heuristic

P2PWNC Reciprocity Algorithm

- First, work around 'erase debt' attack with Generalized Maxflow (GMF)
 - GMF heuristic: examines directness of debt
 - Punishes those who 'push' good reputation away
- Subjective Reputation Metric (SRM)
 - P2PWNC APs use this to guide cooperation decisions

- Realize the receipt graph without overlays or central servers (idea based on [12])
 - Server receipt repositories
 - Client receipt repositories
- Phase 1: Client update
 - Get fresh receipts from team
- Phase 2: Merge
 - Show these receipts to prospective contributors
 - Contributor merges these receipts with 'oldest-out' replacement
- [12] S. Čapkun, L. Buttyán, and J.-P. Hubaux, Self-organized public key management for mobile ad hoc networks, *IEEE Transactions on Mobile Computing*, vol. 2, no. 1, 2003.

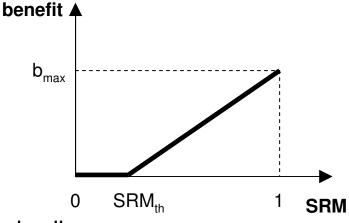
15

Notes on Gossiping Algorithm

- Teams do not show outgoing receipts to other teams
- Members do not show own consumption to their team

Gossiping will be enough to find (some of) them

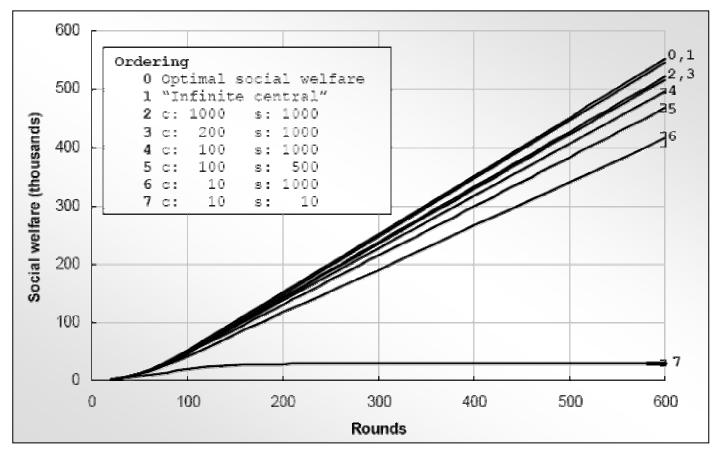
• Short-term history due to finite repositories encourages continuous contribution


Bootstrap Algorithm

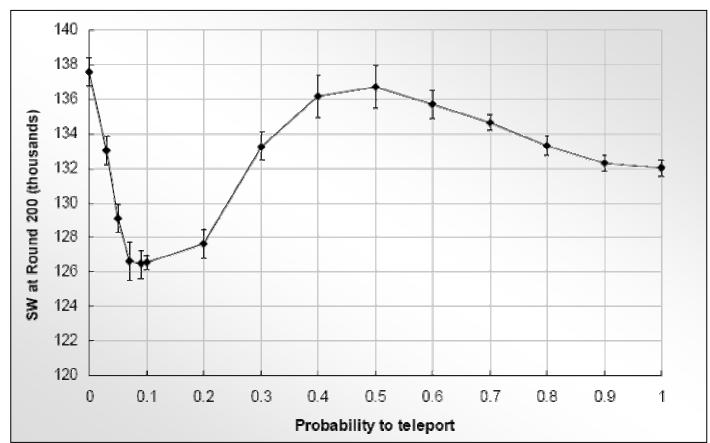
- New teams/peers must contribute to the system first
 - Maxflows **from** and **to** a new ID are zero
 - New peer appears as free-rider to others
 - Others appear as free-riders to new peer
 - Cooperate with everyone at first
 - Including free-riders...
- For how long?
 - The 'patience' heuristic
 - 1. Start to contribute
 - 2. At the same time, try your luck as consumer
 - 3. After a number of successful consumptions, start to use the reciprocity algorithm
 - Other simple heuristics possible

P2PWNC Simulation

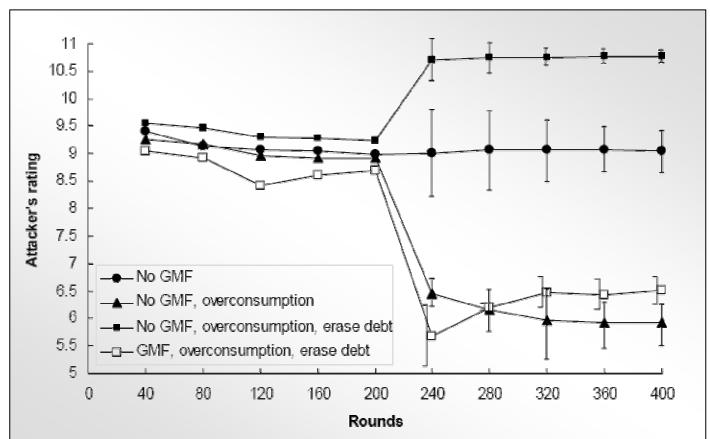
Simulation Model: Benefit, Cost


- Usage model
 - Users make CBR video-calls of fixed duration
 - Users issue receipts of fixed weight, normalized to 1
- Contributor cost
 - Do not model congestion
 - Cost generators
 - RF energy
 - Potential for security attacks
 - Metered connections
 - ISP Acceptable Use Policies
 - Assume cost linear to the number of allowed calls
 - Normalize to c = 1 unit of cost per allowed call
- Consumer benefit
 - User obtains b_{max} units of benefit per allowed call
 - Contributors can punish (reduce benefit) by **delaying login**
 - Contributors use SRM to judge
 - Assume a universal SRM-to-benefit function

Simulation Model: Rounds, Ratings


- Rounds
 - A match is the pairing of a consumer with a potential contributor
 - A round is a set of matches equal to the number of peers
 - 3 mobility models
 - **Perfect matching:** Each peer has one chance to consume, one chance to contribute per round
 - Preferential visitations
 - Random waypoint
- Ratings
 - Peer net benefit is total benefit minus total cost
 - Peer rating is the running average net benefit per round
 - Social Welfare (SW) is the sum of peers' net benefits
 - Optimal SW is the SW that would have been attained if every match resulted in b_{max} for the consumer and 1 unit of cost for the contributor
- Community growth
 - Peers join, up to a maximum number
 - Peers never leave

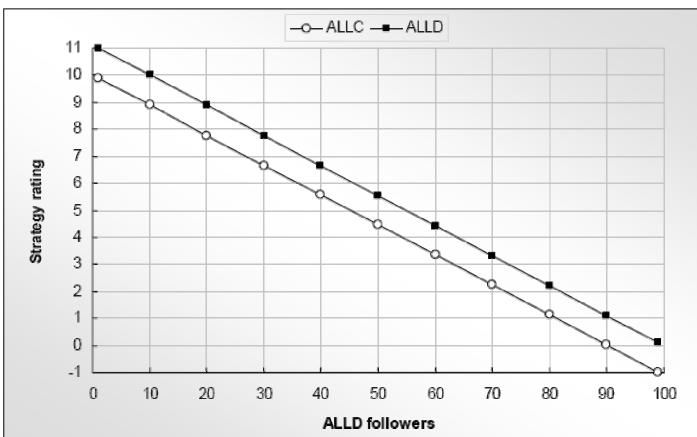
Cooperation vs. Information


Maximum number of peers	100
Server repository size	Variable
Client repository size	Variable
Community growth	1 new peer per round
b _{max}	11
Mobility model	Perfect matching

Preferential Visitations

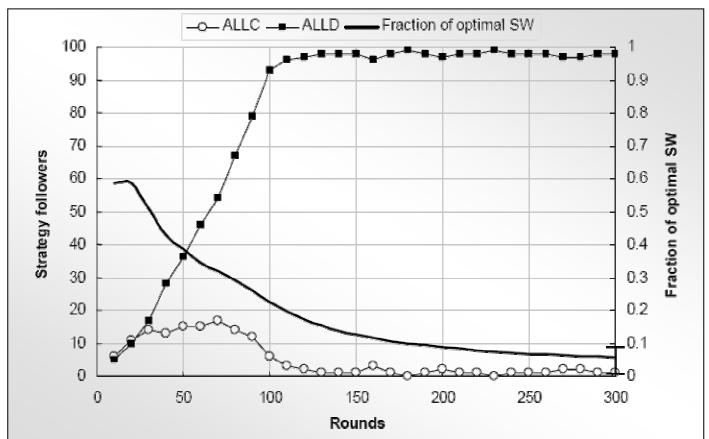
Maximum number of peers	100
Server repository size	1000 receipts
Client repository size	100 receipts
Community growth	1 new peer per round
b _{max}	11
Mobility model	Preferential visitations

The Need for GMF

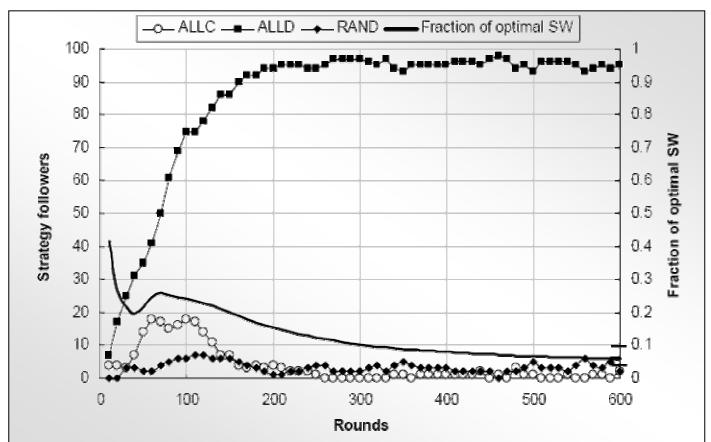


Maximum number of peers	100
Server repository size	1000 receipts
Client repository size	200 receipts
Community growth	All peers join at Round 1
b _{max}	11
Mobility model	Random waypoint

Simulation Model: Evolution


- Shortsighted rational, adaptive peers
 - Results from assuming non-tamperproof modules
- Define 4 strategies
 - RECI (RECIprocating)
 - The combination of the P2PWNC reciprocity, gossiping, and bootstrap algorithms
 - ALLC
 - Gossips like RECI, always cooperates giving b_{max}
 - ALLD
 - No gossip, never cooperates
 - RAND
 - ALLC or ALLD with a probability, starting at 0.5 and adapting
 - An 'under-provider'
- The rating of a strategy is a weighted average of the ratings of its followers
 - Weighted according to how many rounds they have been following the strategy
- An 'Internet-based' learning model
 - Learn with probability
 - Then jump to strategy with $p = 1 \frac{rating_{OLD} + 1}{ration}$
 - Mutate with a probability $rating_{NEW} + 1$
 - Explore strategy set (perhaps under more favorable conditions)

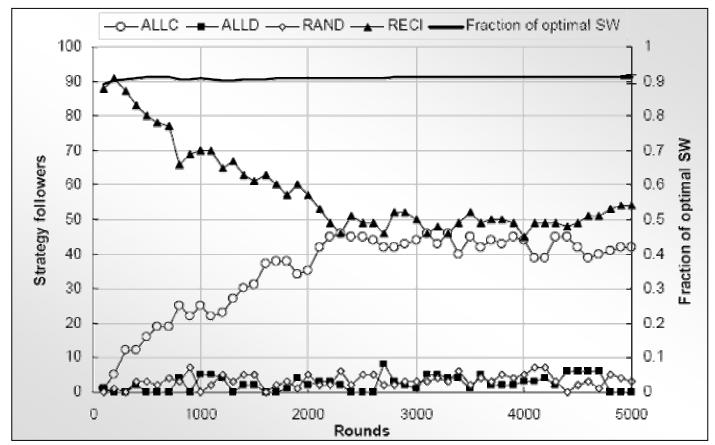
Strategy Set: ALLC, ALLD


Maximum number of peers	100
Community growth	All peers join at Round 1
b _{max}	11
Mobility model	Perfect matching
Strategy mixture	ALLDs and ALLCs
Evolution	No

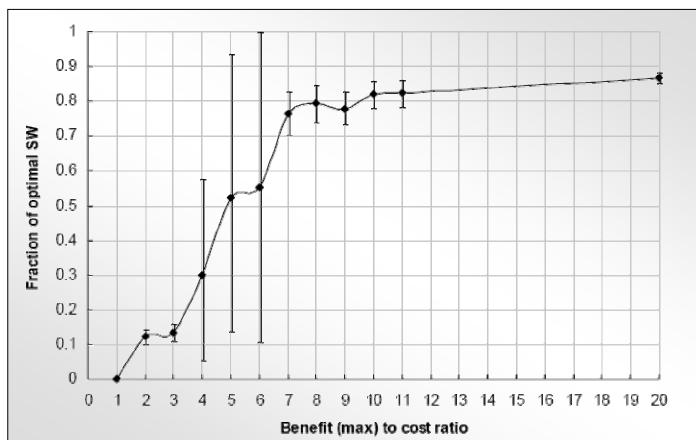
Strategy Set: ALLC, ALLD

Maximum number of peers	100
Community growth	1 new peer per round
b _{max}	11
Mobility model	Perfect matching
Join probabilities	50% ALLC, 50% ALLD
Evolution	$p_l = 0.2, \ p_m = 0.001$

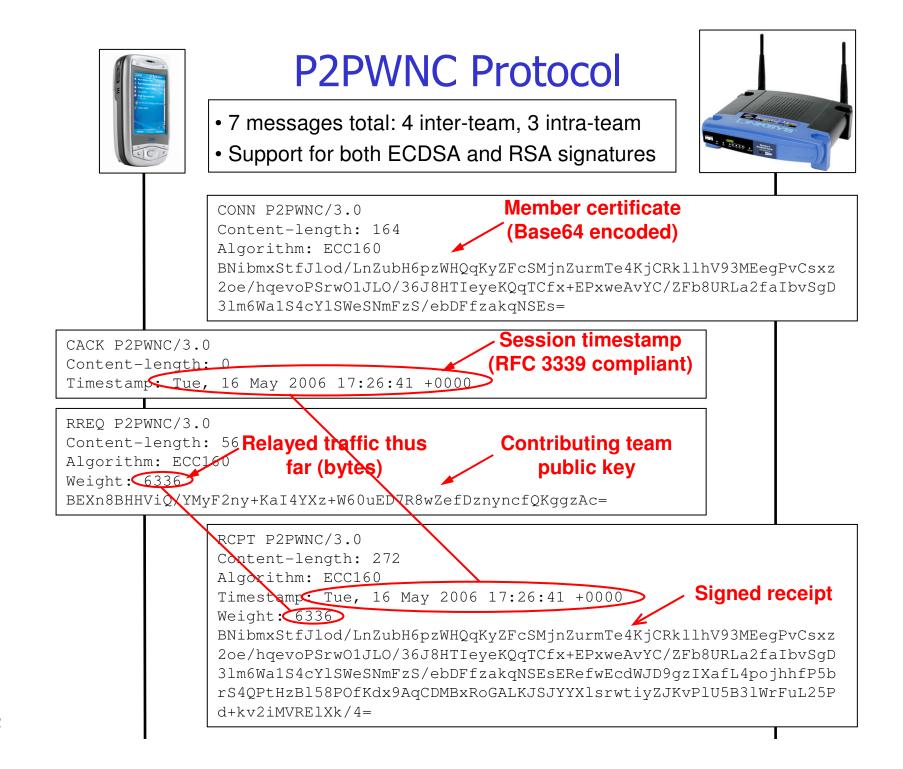
Strategy Set: ALLC, ALLD, RAND


Maximum number of peers	100
Community growth	1 new peer per round
b _{max}	11
Mobility model	Perfect matching
Join probabilities	33% ALLC, 33% ALLD, 34% RAND
Evolution	$p_l = 0.2, \ p_m = 0.001$

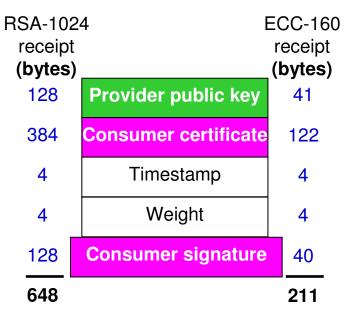
Strategy Set: ALLC, ALLD, RAND, RECI


Maximum number of peers	100
Community growth	1 new peer per round
b _{max}	11
Mobility model	Perfect matching
Join probabilities	33% ALLC, 33% ALLD, 34% RAND
Evolution	$p_l = 1.0, p_m = 0.001$

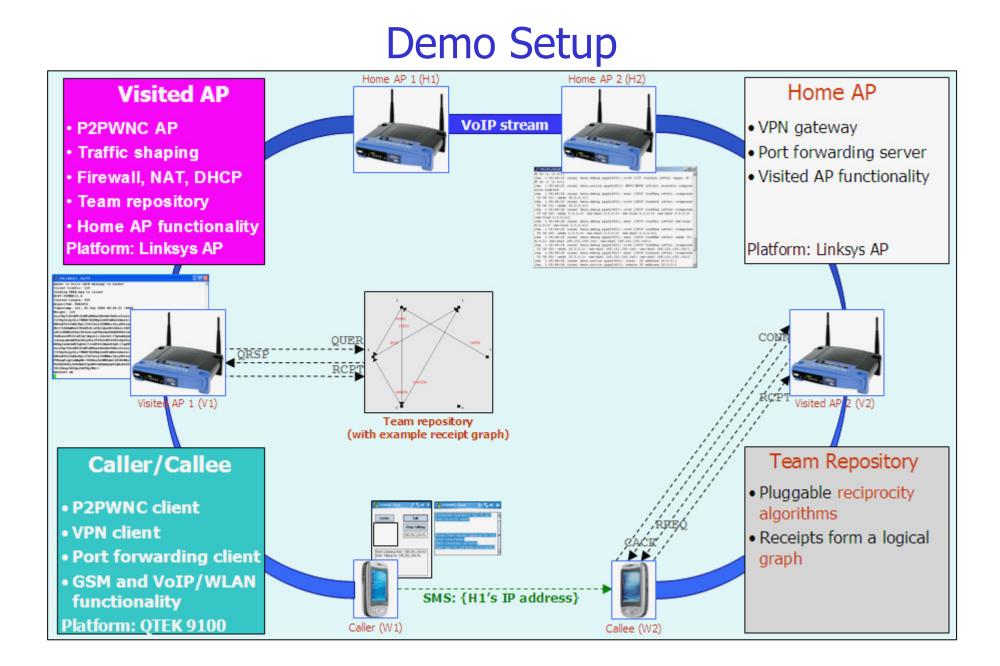
Strategy Set: ALLC, ALLD, RAND, RECI


Maximum number of peers	100
Community growth	1 new peer per round
b _{max}	11
Mobility model	Perfect matching
Join probabilities	100% RECI
Evolution	$p_{l} = 0.2, \ p_{m} = 0.001$

Strategy Set: ALLC, ALLD, RAND, RECI


Maximum number of peers	100
Community growth	1 new peer per round
b _{max}	Variable
Mobility model	Perfect matching
Join probabilities	25% ALLC, 25% ALLD, 25% RAND, 25% RECI
Evolution	$p_{l} = 0.2, \ p_{m} = 0.001$

P2PWNC Protocol and Implementation


Public Key Cryptography: Time, Space

	Athlon XP 2800	Linksys WRT54GS
CPU speed	2.08 GHz	200 MHz
CPU type	AMD Athlon XP 2800	Broadcom MIPS32
RAM	512 MB	32 MB
Storage	60 GB HD	8 MB Flash, 32 KB NVRAM
Operating system	Linux kernel 2.4.18 (Red Hat Linux 8.0)	Linux kernel 2.4.18 (Broadcom specific)

Signing	Athlon XP 2800		SigningAthlon XP 2800Linksys		ksys
Bit length (RSA/ECC)	RSA (ms)	ECC (ms)	RSA (ms)	ECC (ms)	
1024/160	9.0	1.3	300.6	20.3	
1536/192	25.9	1.2	655.6	18.5	
2048/224	47.3	1.4	1529.0	23.4	
3072/256	149.1	1.7	3939.0	73.1	

Verification	Athlon XP 2800		Lin	ksys
Bit length (RSA/ECC)	RSA (ms)	ECC (ms)	RSA (ms)	ECC (ms)
1024/160	0.4	6.5	12.3	114.7
1536/192	0.8	6.0	21.4	99.9
2048/224	1.3	7.1	37.9	135.7
3072/256	2.8	8.6	75.3	453.0

Closing Remarks

Discussion and Future Work

- P2PWNC and ISP Acceptable Use Policies
- P2PWNC and Wireless Community Networks
- Peripheral peers
 - Can expanded teams include them?
 - Or, factor location in receipt weight?
- Model mobility using cellular operator traces
- Model congestion
- Extend benefit-cost model (warm glow?)
- Handovers: how to eliminate QUER-QRSP roundtrip
- Collusion among teams, other adversarial strategies

Summary and Conclusion

- Proposed a P2P system for the sharing of WLANs
 - Fully decentralized
 - Open to all, free IDs
 - No super peers, no tamperproof modules
 - Rational participants
 - No overlay networks, no account holders
 - Minimal protocol
- Proof of concept
 - Promising simulation results
 - Implementation on common WLAN equipment
- Lessons learned
 - Generalized exchange economies are a good match for electronically mediated P2P communities
 - Each P2P community different: understand the users and the shareable good first (as well as the centralized alternatives)
 - Security and incentive techniques are intertwined

Thank you

Elias C. Efstathiou

Mobile Multimedia Laboratory Department of Computer Science Athens University of Economics and Business efstath@aueb.gr

P2PWNC project page:

http://mm.aueb.gr/research/P2PWNC

Publications

Journal Article

[1] E. C. Efstathiou and G. C. Polyzos, Self-Organized Peering of Wireless LAN Hotspots, *European Transactions on Telecommunications*, vol. 16, no. 5 (Special Issue on Self-Organization in Mobile Networking), Sept/Oct. 2005.

Conference and Workshop Papers

- [2] E. C. Efstathiou, P. A. Frangoudis, and G. C. Polyzos, Stimulating Participation in Wireless Community Networks, IEEE INFOCOM 2006, Barcelona, Spain, April 2006.
- [3] G. C. Polyzos, C. N. Ververidis, and E. C. Efstathiou, Service Discovery and Provision for Autonomic Mobile Computing, 2nd IFIP International Workshop on Autonomic Communication (WAC), Vouliagmeni, Greece, Oct. 2005.
- [4] P. A. Frangoudis, E. C. Efstathiou, and G. C. Polyzos, Reducing Management Complexity through Pure Exchange Economies: A Prototype System for Next Generation Wireless/Mobile Network Operators, 12th Workshop of the HP Openview University Association (HPOVUA'05), Porto, Portugal, July 2005.
- [5] E. C. Efstathiou and G. C. Polyzos, Can Residential Wireless LANs Play a Role in 4G? 4G Mobile Forum (4GMF) Annual Conference, San Diego, CA, July 2005.
- [6] E. C. Efstathiou and G. C. Polyzos, A Self-Managed Scheme for Free Citywide Wi-Fi, IEEE WoWMoM Autonomic Communications and Computing Workshop (ACC), Taormina, Italy, June 2005.
- [7] E. C. Efstathiou and G. C. Polyzos, Trustworthy Accounting for Wireless LAN Sharing Communities, 1st European PKI Workshop (EuroPKI), Samos Island, Greece, June 2004.
- [8] E. C. Efstathiou and G. C. Polyzos, A Peer-to-Peer Approach to Wireless LAN Roaming, ACM Workshop on Wireless Mobile Applications and Services on WLAN Hotspots (WMASH), San Diego, CA, Sept. 2003.
- [9] C. Ververidis, E. C. Efstathiou, S. Soursos, and G. C. Polyzos, Context-aware Resource Management for Mobile Servers, 10th Annual Workshop of the HP Openview University Association (HPOVUA'03), Geneva, Switzerland, July 2003.
- [10] P. Antoniadis, C. Courcoubetis, E. C. Efstathiou, G. C. Polyzos, and B. Strulo, The Case for Peer-to-Peer Wireless LAN Consortia, 12th IST Summit on Mobile and Wireless Communications, Aveiro, Portugal, June 2003.
- [11] E. C. Efstathiou and G. C. Polyzos, Multipoint Communications in a Beyond-3G Internetwork, International Workshop on Wired/Wireless Internet Communications, Las Vegas, NV, June 2002.

Publications

Demo Papers

- [12] E. C. Efstathiou, F. A. Elianos, P. A. Frangoudis, V. P. Kemerlis, D. C. Paraskevaidis, G. C. Polyzos, and E. C. Stefanis, Practical Incentive Techniques for Wireless Community Networks, 4th International Conference on Mobile Systems, Applications, and Services (MobiSys 2006) Demo Session, Uppsala, Sweden, June 2006.
- [13] E. C. Efstathiou, F. A. Elianos, P. A. Frangoudis, V. P. Kemerlis, D. C. Paraskevaidis, G. C. Polyzos, and E. C. Stefanis, The Peer-to-Peer Wireless Network Confederation Scheme, IEEE INFOCOM 2006 Demo Session, Barcelona, Spain, April 2006.
- [14] E. C. Efstathiou, F. A. Elianos, P. A. Frangoudis, V. P. Kemerlis, D. C. Paraskevaidis, G. C. Polyzos, and E. C. Stefanis, The Peer-to-Peer Wireless Network Confederation Scheme: Protocols, Algorithms, and Services, 2nd International IEEE/Create-Net Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities Demo Session, Barcelona, Spain, March 2006.

Book Chapters

- [15] E. C. Efstathiou and G. C. Polyzos, Peer-to-Peer Wireless Network Confederation, in *Encyclopedia of Virtual Communities and Technologies*, S. Dasgupta, ed., Idea Group Reference, 2005.
- [16] E. C. Efstathiou and G. C. Polyzos, P2PWNC: A Peer-to-Peer Approach to Wireless LAN Roaming, in Handbook of Wireless Local Area Networks: Applications, Technology, Security, and Standards, M. Ilyas, S. Ahson, eds., CRC Press, 2005.
- [17] E. C. Efstathiou and G. C. Polyzos, Mobile Multicast, in Mobile and Wireless Internet: Protocols, Algorithms and Systems, K. Makki, N. Pissinou, K. S. Makki, E. K. Park, eds., Kluwer Academic Publishers, 2003.

Poster Papers

- [18] E. C. Efstathiou, F. A. Elianos, P. A. Frangoudis, V. P. Kemerlis, D. C. Paraskevaidis, G. C. Polyzos, and E. C. Stefanis, Building Secure Media Applications over Wireless Community Networks, 13th Annual Workshop of the HP Openview University Association (HPOVUA'06), Nice, France, May 2006.
- [19] E. C. Efstathiou, Self-Organized Peering of Wireless LANs, IEEE INFOCOM 2005 Student Workshop, Miami, FL, March 2005.
- [20] E. C. Efstathiou and G. C. Polyzos, Designing a Peer-to-Peer Wireless Network Confederation, IEEE LCN Workshop on Wireless Local Networks (WLN'03), Bonn, Germany, Oct. 2003.
- [21] P. Antoniadis, C. Courcoubetis, E. C. Efstathiou, G. C. Polyzos, and B. Strulo, Peer-to-Peer Wireless LAN Consortia: Economic Modeling and Architecture, 3rd IEEE International Conference on Peer-to-Peer Computing (IEEE P2P'03), Linköping, Sweden, Sept. 2003.