Distributed Sensing for Spectrum Agility: Incentives and Security Considerations

S. Arkoulis, P. Frangoudis, G. Marias, G. Polyzos Athens University of Economics and Business {arkoulistam,pfrag,marias,polyzos}@aueb.gr

M. Fiedler Blekinge Institute of Technology markus.fiedler@bth.se

R. Herkenhöner, H. de Meer University of Passau rhk@fim.uni-passau.de, demeer@fmi.uni-passau.de

Euro-NF FIA Workshop, November 2008

Motivation (1/2)

- Trend towards open wireless access
 - Continuous Wi-Fi deployment
 - Ease of installation, operation in unlicensed bands
 - Unplanned, anarchic
- Full Wi-Fi coverage in metropolitan areas, but...
 - Interference issues due to unplanned deployment
 - IEEE 802.11b/g: 3 non-interfering, overlapping WLAN cells
 - Residential WLANs often operate on default channel settings
- Low **licensed** spectrum utilization
 - Need for Dynamic/Opportunistic Spectrum Access
- Basic functions
 - Sensing the environment
 - Adaptation and "smart" decisions for spectrum sharing

- The Internet of Things
 - Myriads of interconnected devices (Smart home, PANs, Wi-Fi, ...)
 - Increased need for spectrum agility
- Technological advances
 - Software Defined Radios / Cognitive radios
 - IEEE 802.11k (radio measurements) finalized

An Open Spectrum Access environment

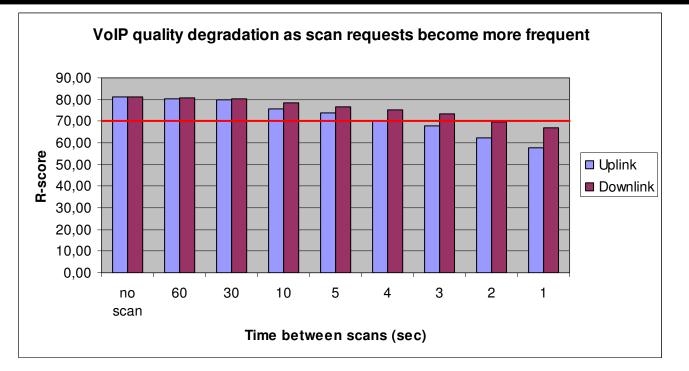
- Basic premises
 - Use of unlicensed spectrum
 - Open access without necessary prior contracts
- Spectrum allocation not an issue
 - Everyone can become an operator
 - Lack of regulation \rightarrow interference
 - Need for alternative interference mitigation strategies
- Distributed spectrum sensing (DSS)
 - Mobile terminals, access points, sensors/monitors sense and report
- Dynamic vs Open Spectrum Access
 - DSA: Opportunistic secondary (unlicensed) user access when primary users are absent
 - Spectrum sensing to detect primary users

Distributed sensing in unlicensed spectrum

- Operations
 - Monitor spectrum usage (when requested)
 - Report to central/distributed entities
- Fuse information from multiple sources
 - Mobile users, local AP measurements, dedicated spectrum "sensors"
- Purpose:
 - Detect service offerings and hidden interference
- Wireless coverage maps
 - Real-time or longer term information for informed spectrum access decisions
 - Detect "white spots" \rightarrow Prospective operators can deploy new infrastructure
 - Help power adaptation, but also ...
 - ...plan handovers
- Off-the-shelf technology capable of simple SS (e.g. IEEE 802.11 scan)

Incentives and security considerations

- Validating interference reports is non-trivial
 - Fake reports
 - Outdated reports due to spectrum usage dynamics
 - Measurement errors
- Do clients have incentives to submit truthful reports?
 - Performance cost of spectrum sensing
 - Competition among providers
- Information filtering
- Reputations and the role of identities
- Privacy concerns


Incentives for truthful reporting

- Reward reporting
 - Access/QoS benefits
 - Cheaper prices discounts (in commercial deployments)
- Punish cheaters
 - Deny / interrupt service for small intervals
 - No QoS benefits
- How about user reputations?

The cost of spectrum sensing (1/2)

- Test case
 - IEEE 802.11b/g
 - Stations scan for nearby APs when requested (periodically)
- Performance overhead
 - IEEE 802.11 active scan on 11 channels: >250msec
 - Stations cannot receive/transmit app packets while scanning
 - QoE degradation of delay-sensitive apps?
- QoE degradation due to sensing must be sufficiently low...
 - ...so that offered "benefits" in exchange outweight it

The cost of spectrum sensing (2/2)

- Testbed experiments: single client, bidirectional VoIP traffic (G.729)
- E-model for VoIP quality assessment
- Acceptable quality: R-score > 70
- Moderate scanning frequency (e.g. 2 scans/min) → Minimal QoE degradation

Competition and misbehavior

- Multiple (micro-)operators compete to offer service
- User affiliated with operator A may send fake reports to operator B
 - Pollute B's view of spectrum conditions and trick him to wrong network configuration decisions ...
 - ... trying to reduce congestion in A's occupied frequencies
 - ... trying to cause dissatisfaction to B's clients

Information filtering (1/2)

- Need mechanisms to filter fake/invalid reports
- Simple approach: voting
 - Easier if reports carry spatial (GPS) and temporal info
 - Filter out "odd" spectrum usage reports
 - for a specific spot/area at a specific period of time

Information filtering (2/2)

• Dedicated monitors

- Assume "trusted" & tamperproof "sensors" at fixed locations
- Provide valid reports (for their spot) when requested
- Can be used as an extra information source

Challenges

Placement, cost, ownership

Applying reputations

- Submitted information weighted against each user's reputation
- Reports considered "fake" reduce reporter's reputation
- Reward for reporting a function of a user's reputation
- But: need a (permanent) user **identification scheme**
- Can we use community identifiers?
 - Example: Users belonging in a wireless community network
 - ♦ Interference reporting & coverage maps → community service
 - Good reporters enjoy community benefits
 - Bad reporters suffer punishment/exclusion

Privacy concerns

- Reports may carry sensitive info
 - E.g. actual user location
- Need confidentiality
 - Standard encryption to prevent eavesdropping
- Confidentiality not always enough
 - Users may not wish to disclose their location to the requesting entity

Spectrum sharing challenges

- Unlicensed spectrum **sharing**: a whole new set of challenges
 - Lack of strict regulation
 - Equal spectrum access rights
- May assume a set of predefined sharing policies
 - Sharing dimensions: frequency, space, time
 - Policy conformance should be monitored
- Potential attacks
 - Disrespect to agreed spectrum allocation, rule violation
 - Not always easy to detect, esp. in wireless networks
 - Attacking spectrum sensing/reporting mechanisms
 - Policy distribution attacks
 - ...
- How to enforce sharing rules without a regulator?

Conclusion

- Robust distributed spectrum sensing not an easy task
 - Hard to detect invalid information
 - May need to provide incentives for reporting
 - Need to design low-overhead sensing/reporting mechanisms
- Technological advances
 - Cognitive radio
 - IEEE 802.11k
- Many open issues in open spectrum sharing