## Optimizing the Channel Load Reporting Process in IEEE 802.11k-enabled WLANs

# E.A. Panaousis, P.A. Frangoudis, C.N. Ververidis & George C. Polyzos



### **Mobile Multimedia Laboratory**

Department of Informatics/Computer Science **Athens University of Economics and Business**47A Evelpidon, 11362 Athens, Greece

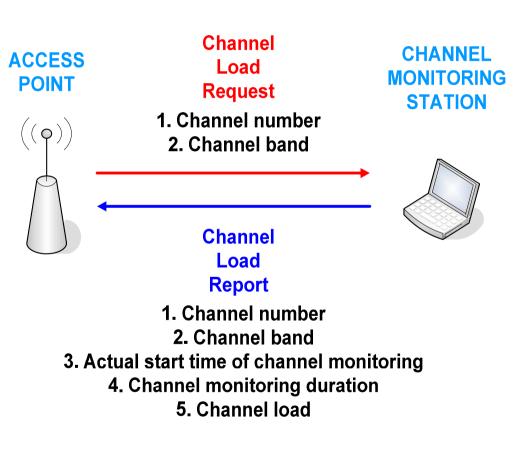


polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

LANMAN 2008, Cluj-Napoca, Romania, September 2008

### IEEE 802.11k: Radio Resource Measurements

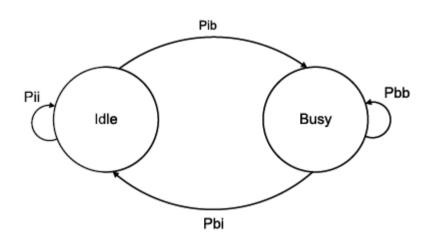
 Specifies types of radio resource information to measure and the associated request and report mechanisms


- Provide information to discover the best available access point
- Load Balancing
  - If the access point having the strongest signal is overloaded, a wireless client is connected to one of the access points with *lower utilization*
- Improve the way traffic is distributed within a network
- Mangold & Berlemann: "IEEE 802.11k: Improving Confidence in Radio Resource Measurements," IEEE PIMRC 2005.

### The Process of Monitoring

- Channel monitoring station reports estimated channel load
  - number (ID) of monitored channel
  - frequency band of monitored channel
  - actual start time of monitoring & monitoring duration
  - estimation of channel load:
    - final computed confidence interval
    - (final estimated mean load)

#### For example:


[0.13, 0.25] confidence interval indicates *channel load* between 13% & 25% w. prob. *p*=0.95 and mean estimated load 19%



### More General Motivation

- Open/Dynamic Spectrum Access
  Cognitive Radio Networks
- Need reports of the channel state as it is sensed...
  - over time
  - across the area (as sensors cover/pass through it)
    - building coverage maps
- Reporting devices
  - may be ad hoc, dedicated devices (sensors)
  - or regular clients (most probably)
  - In both cases: need efficient/economic sensing/sampling
    - continuous / regular reporting
    - energy / battery issues
    - impact on main client function

### **Channel Pattern Generation**



- Simulation of the wireless channel utilization using the Gilbert model
  - Idle channel → state 0
  - Busy channel → state 1
- slot duration = 0.02 ms(IEEE 802.11b)
- During a channel monitoring sub-period, a channel monitoring station is taking samples from the channel
- Present a simple algorithm for performing the channel monitoring process based on the concept of confidence intervals
- sampling period determined by the quality of channel monitoring station
  - High quality/high cost stations: samples with r = ½ ms
  - Low quality/low cost stations: samples with r = ½ ms

### The Algorithm: Channel Load Measurement

- if a channel load report is requested
  - while monitoring the channel do
  - for the next period equal to channel monitoring sub-period
    - sample the channel with rate r
    - calculate the confidence interval and the estimated mean value of all taken samples
    - 3. If the width of last computed confidence interval  $w_{current}$ , is smaller than a default value, let it be  $w_{default}$  or the improvement ratio value is smaller than a minimum ratio, let it be  $improvement_{min}$ 
      - terminate monitoring process
      - report the results of channel monitoring process to the requesting entity
      - wait for a new reporting request
      - else continue monitoring

### **Scenarios**

- WLAN cell where wireless clients (1, 5, 15, 25) are attached to an AP connected to a wired host
  - Each wireless node transfers data using FTP to the wired host, via the AP
  - Each wireless client sets up a VoIP session with the wired host (CBR carried over UDP)
  - Each wireless client simultaneously executes both the FTP and VolP applications

### **Gilbert Model Parameters**

#### GILBERT PARAMETERS FOR FTP TRAFFIC

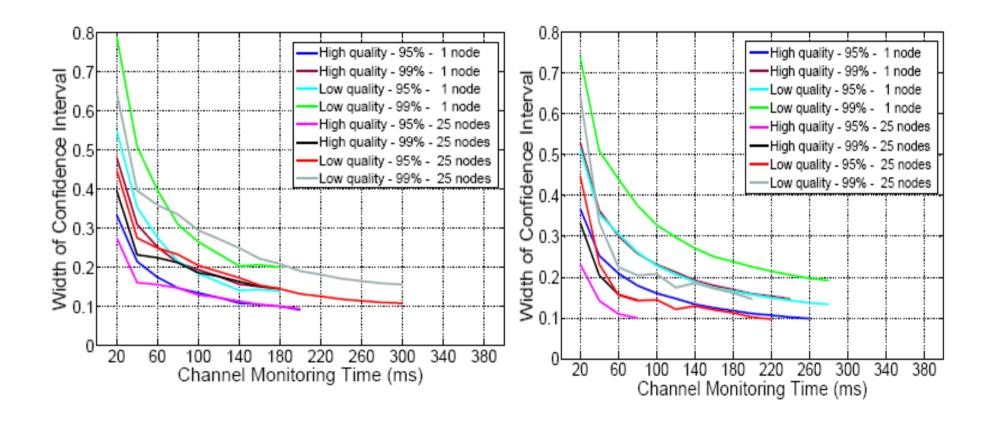
#### GILBERT PARAMETERS FOR VOIP TRAFFIC

| Number   |       |       |          |          |
|----------|-------|-------|----------|----------|
| of nodes | $P_b$ | $P_i$ | $P_{ib}$ | $P_{bi}$ |
| 1        | 0.795 | 0.205 | 0.103    | 0.027    |
| 5        | 0.805 | 0.195 | 0.091    | 0.022    |
| 15       | 0.814 | 0.186 | 0.094    | 0.021    |
| 25       | 0.815 | 0.185 | 0.094    | 0.021    |

| Number   |       |       |          |          |
|----------|-------|-------|----------|----------|
| of nodes | $P_b$ | $P_i$ | $P_{ib}$ | $P_{bi}$ |
| 1        | 0.364 | 0.636 | 0.021    | 0.036    |
| 5        | 0.841 | 0.159 | 0.160    | 0.030    |
| 15       | 0.873 | 0.127 | 0.197    | 0.029    |
| 25       | 0.882 | 0.118 | 0.212    | 0.028    |

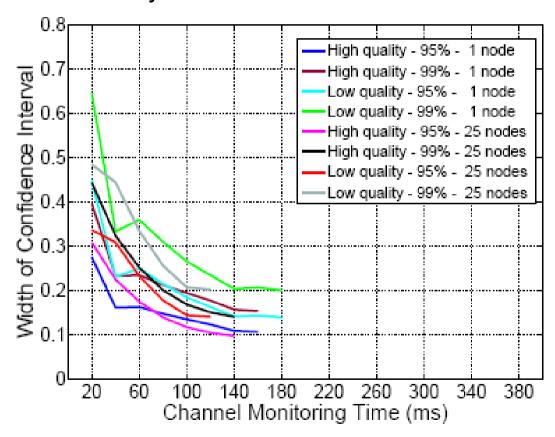
#### GILBERT PARAMETERS FOR FTP AND VOIP TRAFFIC

| Number   |       |       |          |          |
|----------|-------|-------|----------|----------|
| of nodes | $P_b$ | $P_i$ | $P_{ib}$ | $P_{bi}$ |
| 1        | 0.782 | 0.218 | 0.112    | 0.031    |
| 5        | 0.841 | 0.159 | 0.159    | 0.030    |
| 15       | 0.873 | 0.127 | 0.198    | 0.029    |
| 25       | 0.883 | 0.117 | 0.213    | 0.028    |


### **Experimentation**

- We have implemented our channel monitoring algorithm in *Matlab*
- simulated its operation on various channel access patterns that we derived using the Gilbert model
- We examine the change in the width of the computed confidence intervals as a function of the channel monitoring duration
- Channel monitoring sub-period = 20 ms
  - → after this value the channel monitoring duration is increased without significant enhancement in results

### Results – FTP, VoIP


• FTP

VoIP



### **Results – FTP & VolP**

FTP & VoIP concurrently



### **Evaluation Tables**

FTP

VoIP

| Monit.  | Conf. | Numb. | Confidence    | Mean  | True  |       |
|---------|-------|-------|---------------|-------|-------|-------|
| Station | Lev.  | of    | Interval      | Load  | Load  | Total |
| Quality | (%)   | nodes | (%)           | (%)   | (%)   | Time  |
| High    | 95    | 1     | 77.41 - 86.59 | 82.00 | 79.15 | 200   |
| High    | 99    | 1     | 72.76 - 87.24 | 80.00 | 78.79 | 180   |
| Low     | 95    | 1     | 74.12 - 88.10 | 81.11 | 78.79 | 180   |
| Low     | 99    | 1     | 71.06 - 91.16 | 81.11 | 78.79 | 180   |
| High    | 95    | 25    | 75.77 - 85.23 | 80.50 | 81.73 | 200   |
| High    | 99    | 25    | 72.13 - 86.76 | 79.44 | 81.76 | 180   |
| Low     | 95    | 25    | 75.22 - 86.11 | 80.67 | 82.64 | 300   |
| Low     | 99    | 25    | 72.83 - 88.51 | 80.67 | 82.64 | 300   |

| Monit.  | Conf. | Numb. | Confidence    | Mean  | True  |       |
|---------|-------|-------|---------------|-------|-------|-------|
| Station | Lev.  | of    | Interval      | Load  | Load  | Total |
| Quality | (%)   | nodes | (%)           | (%)   | (%)   | Time  |
| High    | 95    | 1     | 28.15 - 38.00 | 33.08 | 38.20 | 260   |
| High    | 99    | 1     | 24.77 - 39.40 | 32.08 | 37.60 | 240   |
| Low     | 95    | 1     | 25.47 - 38.81 | 32.14 | 38.36 | 280   |
| Low     | 99    | 1     | 22.54 - 41.74 | 32.14 | 38.36 | 280   |
| High    | 95    | 25    | 87.51 - 97.49 | 92.50 | 88.52 | 80    |
| High    | 99    | 25    | 85.32 - 99.68 | 92.50 | 88.52 | 80    |
| Low     | 95    | 25    | 85.16 - 94.84 | 90.00 | 89.04 | 220   |
| Low     | 99    | 25    | 82.69 - 97.31 | 90.00 | 89.14 | 200   |

### **Evaluation Tables**

### FTP & VoIP concurrently

| Monit.  | Conf. | Numb. | Confidence    | Mean  | True  |       |
|---------|-------|-------|---------------|-------|-------|-------|
| Station | Lev.  | of    | Interval      | Load  | Load  | Total |
| Quality | (%)   | nodes | (%)           | (%)   | (%)   | Time  |
| High    | 95    | 1     | 74.66 - 85.34 | 80.00 | 77.12 | 160   |
| High    | 99    | 1     | 72.31 - 97.69 | 80.00 | 77.12 | 160   |
| Low     | 95    | 1     | 74.12 - 88.10 | 81.11 | 77.10 | 180   |
| Low     | 99    | 1     | 71.06 - 91.16 | 81.11 | 77.10 | 180   |
| High    | 95    | 25    | 81.54 - 91.32 | 86.43 | 86.06 | 140   |
| High    | 99    | 25    | 79.39 - 93.47 | 86.43 | 86.06 | 140   |
| Low     | 95    | 25    | 81.30 - 95.37 | 88.33 | 85.91 | 120   |
| Low     | 99    | 25    | 78.21 - 98.46 | 88.33 | 85.91 | 120   |

### **Summary & Conclusions**

- We investigated the channel load reporting mechanism of the IEEE802.11k standard
- We propose a mechanism to monitor a wireless channel and report an accurate estimate of the channel's load with minimum monitoring cost
- We reduce the
  - channel monitoring duration
  - confidence interval calculation overhead
- We performed simulations of realistic WLAN application scenarios to determine the Gilbert model's parameters





## Thanks!

### George C. Polyzos

### **Mobile Multimedia Laboratory**

Department of Informatics/Computer Science **Athens University of Economics and Business**47A Evelpidon, 11362 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

LANMAN 2008, Cluj-Napoca, Romania, September 2008