## Design Challenges of Open Spectrum Access

K.V. Katsaros, P.A. Frangoudis, G.C. Polyzos, MMIab, **AUEB**, GR G. Karlsson, EE, **KTH**, SE

### George C. Polyzos

### **Mobile Multimedia Laboratory**



Department of Informatics/Computer Science Athens University of Economics and Business 47A Evelpidon, 11362 Athens, Greece M M Mab

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

CRNETS 2008, Cannes, French Riviera, France, September 2008

## The Problem

- Proliferation of wireless networks & devices
- Increased demand for radio spectrum
  - Need for regulation ...
- Traditional approach rather inefficient
  - Difficult to find a vacant frequency
  - Competition leads to need for high investments
    - High entry barrier for new operators
    - Long payback time
    - Customers tied to a specific network
      - o Often impossible to choose the best price-quality
  - Frequency bands tied to specific technologies
  - Licensed bands
    - temporal & spatial underutilization of the spectrum
  - Unlicensed bands
    - interference







### The Role of Cognitive Radio

- Interact with the wireless environment
  - Sense, learn and adapt/react
- mostly focused on the Primary/Secondary user model
  - Focus on spectrum underutilization
    - Filling spectrum *holes*
  - Spectrum access priorities
- However...
  - still hard/risky for secondary users/operators
    - primary user priority hinders even the minimum service guarantees
  - primary operator investments still key for growth of wireless networks & services

### Key Survey Papers

- Qing Zhao and B.M. Sadler, "A Survey of Dynamic Spectrum Access," *IEEE Signal Processing Magazine*, vol. 24, no. 3, pp. 79-89, May 2007.
- I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey," Computer Networks,

vol. 50, no. 13, pp. 2127-2159, September 2006.

 S. Haykin, "Cognitive Radio: Brain-Empowered Wireless Communications," IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, Feb. 2005.

## **Alternative Spectrum Utilization Model**

- Unlicensed spectrum
  - Anyone can become an operator
    - Residential WLAN owners, (W)ISPs, municipalities, etc.
    - No inter-operator or inter-technology priorities in principle!
  - Increased competition
    - Better service offerings
      - Subject to operator/user interactions and not preset priorities
    - Increased interference
  - Low entry cost
    - Increased coverage
- Open access
  - Without any form of prior contract (subscription)
  - Getting (buying?, exchanging?) network access in small quanta

## **The Proposed Architecture**

- Utilization of client-supplied information
  - Outer feedback loop
  - Spectrum usage, service offerings
  - Hidden interference problem …
  - Planning AP deployment
  - Cheap sensors deployed to supply spectrum utilization information
- Adaptive wireless infrastructure
  - Inner feedback loop
  - Interference mitigation
- Service discovery, negotiation and handovers
  - *Direct:* mobile node AP interactions
  - Indirect: user reports

## The Proposed Architecture:

## **Functional Requirements**

#### Mobile Node

- Spectrum sensing
- Service discovery
- Reporting (especially of *white spots*)
- Spectrum agility
- Secure micro-payments
- Advanced handover capabilities (frequency, air interface, AP, operator)

#### Reporting System/Spatial Database

- Aggregate reports
- Monitoring
- Provides information on service availability and spectrum usage
  - Operators: white spots, interference, etc.
  - Users: coverage, services, etc.

#### Access Point

- Announcing
  - Spectrum portfolio
  - Service capabilities
- Secure micro-payments
- Interference feedback and reporting
- Interference control
- Handover preparation





polyzos@aueb.gr

## Dynamic Spectrum Access:

## Challenges and Goals

- Spectrum sharing dimensions: frequency, space and time
  - A unified framework considering all dimensions will provide the necessary flexibility (unlicensed spectrum)
- Primary/Secondary model vs. Open Spectrum Access (OSA)
  - OSA enables new (micro-)operators to enter the market
- Centralized vs. distributed
  - Outer/inner feedback loop
  - Goal: a low overhead reporting system
- Cooperative vs. non-cooperative spectrum sharing
  - Design incentives that will lead to a high degree of cooperation between competing spectrum users
- Game theoretic modeling of spectrum sharing
  - Various degrees of cooperation
    - Expressed by the amount and quality of the available information
  - Translation of a game-theoretic model to a practical system

## Our Related Work

#### • "Stimulating Participation in Wireless Community Networks"

- E.C. Efstathiou, P.A. Frangoudis, and G.C. Polyzos
- Proc. IEEE INFOCOM 2006, Barcelona, Spain, April 2006

### • "Power Control in WLANs for Optimization of Social Fairness"

- V. Douros, K. Katsaros, P.A. Frangoudis, and G.C. Polyzos,
- Proc. 12th Pan-Hellenic Conference on Informatics (PCI'08), Samos, Greece, August 2008
- "Optimizing the Channel Load Reporting Process in IEEE 802.11k-enabled WLANs"
  - E. Panaousis, C.N. Ververidis, and G.C. Polyzos
  - Proc. IEEE LANMAN 2008, Cluj-Napoca, Romania, September 2008
- "Coupling QoS Provision with Interference Reporting in WLAN Sharing Communities"
  - P.A. Frangoudis and G.C. Polyzos,
  - Proc. Social and Mesh Networking Workshop (IEEE PIMRC 2008), Cannes, France, September 2008

### Additional Related Work

### Gunnar Karlsson's work on WLANs

- support for mobility, handover
- very large WLANs (WMANs) / distribution network
- The ASPECTS project: Agile SPECTrum Security
  - Euro-NF NoE Specific Joint Research Project
    - AUEB
    - Blekinge Institute of Technology (M. Fiedler),
    - Universität Passau (H. de Meer)

## Conclusions

- New wireless networking paradigm
- Organic growth of wireless networks
  - micro-operators
  - micro-payments
  - getting service in small quanta
- Focus on unlicensed spectrum
  - foster inter-operator competition
    - and cooperation (information exchange...)
  - increase coverage
    - increase available bandwidth to users
  - lower cost to users / society

# Thanks!

### George C. Polyzos

### **Mobile Multimedia Laboratory**



Department of Informatics/Computer Science Athens University of Economics and Business 47A Evelpidon, 11362 Athens, Greece

> polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325



CRNETS 2008, Cannes, French Riviera, France, September 2008