Panel: Building the Internet of the Future The Wireless Challenge

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics/Computer Science Athens University of Economics and Business 47A Evelpidon, 11362 Athens, Greece Mab

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

IEEE PIMRC 2008, Cannes, France, September 2008

Challenge

Challenge

- Function: noun
- Date: 14th century

1:

- a: a summons that is often threatening, provocative, stimulating, or inciting; specifically: a summons to a duel to answer an affront
- b: an invitation to compete in a sport
- 3: a stimulating task or problem <looking for new challenges>

The David Goodman Challenge (16/09/2008)

... and my response

- The Emerging Internet
- The Wireless Advantage (of the Internet) rather than the Wireless *Challenge*...
- mobility improves performance
- additional nodes
 - add BW
 - save energy
- self-organizing
- inter-operating
- optimized to specific requirements
- a lot of Internets
 - Health applications

- Wireless Community Networks
 organic growth...
- The Challenge to build the Internet of the future so that Wireless, Mobility, Security are not afterthoughts...
 - ♦ FP7/ICT PSIRP
- agree on all those
- ... and incorporated into design...
 - e.g. P2PWNC
- freedom & incentives for cooperation...
- 1 Internet (@ levels of functionality?)
 - PDAs & WSNs for health support

Emerging Wireless Internet & Open Spectrum Access

- **Organic growth** of Wireless Nets Proliferation of wireless services & devices Increased demand for spectrum • Regulation ... Traditional approach inefficient: Licensed bands: temporal & spatial underutilization of the spectrum Iow BW/high cost
 - Unlicensed bands:
 - interference
 - limited coverage
 - The Role of Cognitive Radio / Networks

communication

Interference

WISP

communication

Wireless Community Networks...

	1		1	
Seattle Wireless	Seattle, US	75 nodes	Mesh	SERVICE MERITALE
AWMN	Athens, GR	2331 nodes	Mesh	ATHINK WEBIES, Metropolition Network
CUWIN	Urbana, US	48 nodes	Mesh	
Berlin's Freifunk	Berlin, DE	316 nodes	Mesh	
NYCWireless	NYC, US	149 nodes	Hotspot- based	nyc wireless
Wireless Philadelphia	Philadelphia, US	15 miles ²	Hotspot- based	THE ADE
FON	Worldwide	~210 000 registered APs	Hotspot- based	fon

🕒 EETT

Athens Wireless Metropolitan Network

Alternative Spectrum Utilization Model ...

- Unlicensed spectrum
 - Anyone can become an operator
 - Low entry cost
 - o Increased coverage (@ broader BW, lower cost)
 - Residential WLAN owners, (W)ISPs, 3G operators, municipalities, etc.
 - No inter-operator priorities, in principle!
 - Increased competition
 - Wider service offerings
 - Subject to operator interactions and not user priorities
 - Increased interference \Rightarrow sensing, mitigating
 - Privacy, Security, Trust...
- Open access
 - Without any form of prior contract (subscription)
 - Getting (buying?) network access in small quanta

Peer-to-Peer Wireless Access Sharing

- P2P Wireless Network Confederation (P2PWNC)*
 - A WLAN sharing community
- Rely on (indirect) reciprocity
 - Users set up their APs for public access
 - Get access to other peers' APs when mobile
 - Access and QoS proportional to their contribution
- Authority Distributing IDs (distributed?): trivial... (scales?)
- No central authorities: hard
 - Users identified by self-certified public-private key pairs
- Accounting based on the exchange of digital "receipts"
 - Receipt: proof of transaction signed by client
 - Distributed accounting: each peer stores receipts
- Implemented on common WLAN equipment
 - Linux-based AP, Smartphones, PDAs

* E. C. Efstathiou, P. A. Frangoudis, and G. C. Polyzos, Stimulating Participation in Wireless Community Networks, IEEE INFOCOM 2006, Barcelona, Spain, April 2006.

Dealing with Interference

- Interference control
 - power control, directional transmission
 - channel selection/assignment/suggestion
- Interference detection (across bands and technologies)
 - Access Point-centric schemes
 - Sense spectrum usage at the AP site
 - Easier to control/manage
 - May require additional interface (for channel monitoring)
 - Fail to capture interference beyond the AP
 - Hidden terminals
 - Client-based schemes
 - Clients periodically monitor channel usage
 - Report to APs (or other control entity)
 - Reveal more information, capture user-perceived interference
 - **Cooperation** in determining the interference map...
 - Trustworthy reports?
 - Monitoring overhead?

Incentives!

Express/Ad hoc sensing devices/sensors

Open Issues in Interference Detection

- Security and reliability
 - How to spot fake reports?
 - Use a client reputation scheme, punish/reward?
 - Use monitors/sensors
 - Where to place them?
 - How many? Who owns/deploys them?
- Model and study incentives mechanism
 - Intuitively, no strong incentive to cheat...
 - ...but, still, needs to be proven

IEEE 802.11k

- The ASPECTS project: Agile SPECTrum Security
 - Euro-NF (NoE) Specific Joint Research Project
 - AUEB, Blekinge Institute of Technology (M. Fiedler), Universität Passau (H. de Meer)
- Smart monitoring/reporting
 - Optimize monitoring time, energy etc.
 - Ask each client to scan a subset of the channels/spectrum
 - Will reduce scanning time
 - Cooperative scheme / build interference maps
 - Who has the picture? Partial?

Hypothesis: Clean-Slate Design Required

- What stood at the beginning
 - Collaboration
 - Cooperation
 - Endpoint-centric services

does not seem enough

- What about:
 - Trust?
 - Information centrism?
 - Legitimacy of E2E?
 - Role of overlays?

Clean-slate design...

- Question ALL fundamentals
- Challenge our thinking
- Take nothing for granted, including industry structures
- Clear vision

...with late binding (to reality)

- Consider migration and evolvability in separate work items
 - How to get our design into real deployments, e.g., overlay vs. IP replacement?
- Consider necessary evolution of industry (and regulatory) structures
 - How do industries need to evolve in certain scenarios?

Vision

Envision a system that dynamically adapts to evolving concerns and needs of its participating users

- Publish–subscribe based internetworking architecture restores the balance of network economics incentives between the sender and the receiver
- Recursive use of publish-subscribe paradigm enables dynamic change of roles between actors

Main PSIRP design principles

- Information is multi-hierarchically organised
 - Higher-level information semantics are constructed in the form of directed acyclic graphs (DAGs), starting with meaningless forwarding labels towards higher level concepts (e.g., ontologies).
- Information scoping
 - Mechanisms are provided that allow for limiting the reachability of information to the parties having access to the particular mechanism that implements the scoping.
- Scoped information neutrality
 - Within each scope of information, data is only forwarded based on the given (scoped) identifier.
- The architecture is receiver-driven
 - No entity shall be delivered data unless it has agreed to receive those beforehand, through appropriate signalling methods.

Project Objectives

- Specify, implement and test an internetworked pub/sub architecture
 - follow a clean-slate design approach
- Perform qualitative and quantitative evaluation
 - Security and socio-economics important!
 - Migration and incentive scenarios important (e.g., overlay)!
- The results will be widely published
 - Open source code for the Future Internet
 - Targets specifically SMEs opportunities in Future Internet
- Engage with FI community
 - Cooperate with FIRE (OneLab2) to test on large scale
 - Engage openly through public Wikis

OneLab2

- An Open *Federated* Laboratory
 - Supporting Network Research
 - for the Future Internet
 - Coordinator: Prof. Serge Fdida, UPMC Paris
- built on *PlanetLab* Europe
- enhances the testbed-native network monitoring service
- pilot projects that are potential customers of the testbed
- e.g., PSIRP plans to have application trials on OneLab2
 Dr. Dirk Trossen, BT
- FIRE: Future Internet Research & Experimentation
 - FIRE Expert Group

The Need for Large-Scale Shared Testbeds

PSIRP

- Pub/sub, overlays, multicast
- Beyond simulations
 - OneLab2: ideal environment for experiments
- Wireless research
 - How to experiment with new Open Spectrum Access schemes?
 - FIRE: Future Internet Research & Experimentation
 - OneLab2
 - ORBIT (NSF funded)
 - http://www.orbit-lab.org
 - A grid of ~400 IEEE 802.11a/b/g nodes
 - Issues and limitations
 - Interference →only one, or limited # experiments at a time
 - MAC-layer modifications?

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics/Computer Science Athens University of Economics and Business

47A Evelpidon, 11362 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325