

Overlay Multicast Assisted Mobility for Future Publish/Subscribe Networks

Konstantinos Katsaros, Nikos Fotiou, George C. Polyzos, George Xylomenos

Mobile Multimedia Laboratory Department of Computer Science Athens University of Economics and Business Greece

Session 5c, 10 June 2009

ICT-MobileSummit 2009

Copyright 2009

Outline

- Internet and mobility
- Mobile IP
- Multicast assisted mobility
- Internet Clean-Slate Design
- Publish-Subscribe Networking
- Overlay multicast architecture
 - Pastry
 - Scribe
- Overlay multicast assisted mobility (OMAM)
- OMAM vs. MIPv6: case studies
- Performance Evaluation
- Preliminary results
- Limitations and Future work

- Internet not designed with mobility in mind
 - No distinction between Location & End-point identifiers
 - "Add-on" solutions
 - Mobile IP and optimizations
 - Micro-mobility protocols e.g. Cellular IP
 - Signaling delays, inefficient routing
 - IP Multicast assisted mobility
 - Localize route changes
 - IP multicast failed to gain momentum!

At the same time:

- Lack of multicast support & shift to information-centric services resulted in excessive traffic
 - P2P, file-sharing applications dominate traffic (e.g. BitTorrent)
 - End-to-end Internet semantics neglect network resource consumption
 - Redundant transmissions
 - IP multicast would prove beneficial but again ... not available!

Copyright 2009

 Fundamentals of the Internet Cooperation Reflected in trust among participants Collaboration Reflected in forwarding and routing Endpoint-centric services (mail, FTP, even web) Reflected in E2E principle Stationary endpoints ⇒ IP, full end-to-end reachability	VS.	 Reality in the Internet Today Phishing, spam, viruses There is no trust any more! Current economics favor senders Receivers are forced to carry the cost of unwanted traffic Information-centric services Endpoint-centric services move towards information retrieval through, e.g., CDNs Cloud computing Mobility
		⇒ IP with middleboxes & significant decline in trust in the Internet

Copyright 2009

- Envision a system that dynamically adapts to evolving concerns and needs of its participating users
- Publish–subscribe based internetworking architecture restores the balance of network economics incentives between the sender and the receiver
- Recursive use of publish-subscribe paradigm enables dynamic change of roles between actors

Information-centric Network

The Publish/Subscribe approach

• Endpoints:

- Publishers: data owners
 - Provide pieces of information in the form of *publications*
- Subscribers (data consumers)
 - Express interest in pieces of information via *subscriptions*

• Network:

Event notification service (broker substrate): matching *publications* and *subscriptions*

- End-to-end decoupling
 - Publishers/Subscribers need not be aware of corresponding Subscribers/Publishers
 - Asynchronous communication

Multicast

- Multiple subscriptions can be grouped, brokers merge data streams
- Norm in pub/sub
- Caching
 - Pub/sub state and multicast suitable for in-network caching

ICT-MobileSummit 2009

Copyright 2009

Overlay multicast architecture

- Considering an overlay publish/subscribe architecture
 - Access routers participate in a DHT (Pastry)
 - Also providing overlay multicast routing (Scribe)
 - (Mobile) end-nodes directly connected to an overlay access router (OAR)
 - Neither participate Pastry, nor carry an IP address
- Overlay approach: easier to deploy
 - Incremental/partial deployment
 - Not only for mobility support …!
- At the cost of extra *signaling* and *stretch*
- Special care must be taken for inter-domain routing
 - Hierarchical DHTs (e.g. Canon)

Multicast assisted mobility revisited

- User movement tends to be localized
 i.e. trajectory visiting neighboring network entities
- Target: localize routing updates too!
 - Not necessary to inform the source (CN)
- Multicast tree per user
 - Multiple users may share a single tree
 - Especially in a PSIRP architecture!
- Proactive
 - Data can delivered to multiple locations
 - All locations around the current location
 - Predicted locations
 - Resource consumption
- Reactive
 - Data redirection upon handoff
- Application dependent

Overlay Multicast Assisted Mobility (OMAM)

- Overlay realization:
 - MN sends a subscription message to its OAR (Reactive) to receive a publication
 - Also upon handoff
 - Translated by the OAR into a Scribe JOIN message towards the RV
 - OARs schedule a LEAVE Scribe message for a specific group when the last (mobile) member of that group has disassociated from the AP + *delay*
 - delay: else the tree may have collapsed before handoff
 - A mobile node may return to its original OAR
- Route convergence: neighboring access points expected to have a close by common ancestor (CA)
 - In favor of localized routing updates!
- No end-to-end signaling: fast re-routing
- At the cost of path stretch!

The available solution: Mobile IP

- Updates routing information so that the MN can be reached
 - at 1 node (HA, every move),
 or 2 nodes (& CN, every move if active connection)
 - Updates not local to the move
 - Binding Updates
- Bidirectional tunneling
 - All traffic passing through Home Network
 - Sub-optimal routing
- Route optimization
 - Binding update towards CN
 - Return Routability procedure
 - Excessive signaling

PSIRP PUBLISH-SUBSCRIBE INTERNET ROUTING PARADIGM

- Packet flow considered already established
- MN initially attached to its Home Network
- What happens upon handoff?
 - MIPv6:
 - Case A: Route Optimization (RO)
 - Return Routability procedure
 - Case B: Simple Binding Update
 - OMAM: newly visited OAR joins the tree
 - Single JOIN message to OAR
 - Propagates until lowest common ancestor (CA) of current and previous OAR
- Pastry signaling omitted
 - DHT assumed already available

OMAM vs. MIPv6 simple BU

Localized character of movement + Multicast + Route Convergence \Rightarrow Reduced handoff delay!

(d $_{x \rightarrow y}$: delay of message sent from network entity x to y)

Session 5c, 10 June 2009

Copyright 2009

Mobile Multimedia Laboratory

Performance Evaluation

- Performance metrics
 - Packet loss
 - Lost connectivity + signaling delay
 - Depicts handover speed (depends on acceptable delay)
 - End-to-end packet delay
 - Time required for a packet to reach its destination
 - Depicts overlay stretch!
 - Resume time
 - Time required for the first packet to be received after a handoff
 - Depicts handover speed
- One-way communication, e.g. video streaming
- Simulation environment
 - OMNeT++, xMIPv6, OverSim

- Grid topology
 - IEEE 802.11b APs
- Full coverage
 - Focus on signaling-based disruption
- UDP stream: H.264, Level 1 SQCIF video stream, 30.9 fps

Parameter	Value
Grid size	30 x 30
Number of MNs	1
Number of CNs	1
Wired connections type	100Mps Ethernet
Propagation delay (ms)	0.5
Data rate (Kbps)	64
Packet size (bytes)	26
Total number of packets sent	556200

Copyright 2009

Preliminary results

- Significant gains in signaling overhead
 - Service disruption greatly improved
- At the cost of increased end-to-end delay
 - Impact of overlay routing i.e. *stretch*
 - Acceptable for non-interactive streaming application

	MIPv6	Mobile Scribe	
Packet loss	2.002%	1.059%	
End-to-end delay	12ms	17ms	
Resume time	1.208 sec	0.007 sec	

- Multicast presents significant advantages in supporting mobility
 - Enabled/revisited in an overlay context
- DHT substrate properties further enhance multicast tree properties
- Promising preliminary results,
 - Especially for streaming applications
- Comparison with micro-mobility protocols
 - Hierarchical Mobile IPv6
- Measure/quantify *route convergence* property
- Simplistic topology & mobility model
 - Incorporate campus-wide wireless traces, e.g. Dartmouth campus traces
- Two-way, reliable communication
 - Lag-behind/get-ahead, reverse path vs. distinct trees, etc.

Thanks!

Konstantinos Katsaros

Mobile Multimedia Laboratory

Department of Informatics/Computer Science Athens University of Economics and Business

47A Evelpidon, 11362 Athens, Greece

ntinos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 693, Fax: +30 210 8203 686

Back up slides ...

ICT-MobileSummit 2009

Copyright 2009

OMAM vs. MIPv6: signalling

Required for Step 5 or No Route Optimization

	(1.)	Binding Update (BU),	MN→HA	(d _{MN→HA})			
In narallel	2.	Binding Acknowledgement (BA),	HA→MN	(d _{MN→HA})			
	3.	Home Test init (HoTi),	$MN\toHA{\to}CN$	(d _{MN→HA} + d _{HA→CN})			
In norallal	4	Care-of-Test init (CoTi),	$MN\toCN$	(d _{MN\rightarrowCN})			
	5.	Home Test (HT),	$CN\toHA\toMN$	(d _{MN\rightarrowHA} + d _{HA\rightarrowCN})			
	6.	Care-of Test (CT),	$\text{CN} \rightarrow \text{MN}$	(d _{MN\rightarrowCN)}			
	7.	Binding Update (BU),	$MN\toCN$	(d _{MN\rightarrowCN)}			
	8.	Binding Acknowledgement (BA),	$\text{CN} \rightarrow \text{MN}$	(d _{MN\rightarrowCN)}			
 OMAM: newly visited OAR_k joins the tree 							

- Scribe JOIN msg, $MN \to OAR_k \to CA$ 1.
- $OAR_{k-1} \rightarrow CA$ Scribe LEAVE msg, 2.

(d $_{x \rightarrow y}$: delay of message sent from network entity x to y)

Mobile Multimedia Laboratory

OMAM vs. MIPv6 with RO

- Resume Time (*RT* ~handoff)
- MIPv6:

$$RT_{MIPv6} = 4d_{MN \to HA} + 2d_{MN \to CN} + 2d_{HA \to CN}$$

– OMAM:

$$RT_{OMAM} = \mathbf{d}_{MN \to OAR_{k}} + \mathbf{d}_{OAR_{k} \to CA}$$

– Route Convergence:

$$\mathbf{d}_{\mathrm{OAR}_{k}\to\mathrm{CA}} = \alpha \times \mathbf{d}_{\mathrm{OAR}_{k}\to\mathrm{OAR}_{k-1}}, \alpha \to 1$$

• OMAM faster when:
$$RT_{MIPv6} > RT_{OMAM}$$

$$\Rightarrow \alpha < 4 + 2 \frac{2d_{OAR_{k-1} \to HA} + d_{OAR_k \to CN} + d_{HA \to CN}}{d_{OAR_{k-1} \to OAR_k}}$$

But, according to route convergence property:

$$\alpha \rightarrow 1$$

