Supporting Mobile Streaming Services in Future Publish/Subscribe Networks

Konstantinos Katsaros, Nikos Fotiou, **George C. Polyzos**, George Xylomenos

Mobile Multimedia Laboratory Department of Computer Science Athens University of Economics and Business

Outline

- Internet and mobility
- Mobile IP
- Multicast assisted mobility
- Internet Clean-Slate Design
- Publish-Subscribe Networking
- Overlay multicast architecture
 - Pastry
 - Scribe
- Overlay multicast assisted mobility (OMAM)
- OMAM vs. MIPv6: case studies
- Performance Evaluation
- Preliminary results
- Limitations and Future work

Internet and mobility

- Internet not designed with mobility in mind
 - No distinction between Location & End-point identifiers
- "Add-on" solutions
 - Mobile IP and optimizations
 - Micro-mobility protocols e.g. Cellular IP
 - Signaling delays, inefficient routing
- IP Multicast assisted mobility
 - -Localize route changes
 - —IP multicast failed to gain momentum!

Mobile IP

- Updates routing information so that the MN can be reached
 - at 1 node (HA, every move),
 - or 2 nodes (& CN, every move if active connection)
 - Updates not local to the move
 - Binding Updates
- Bidirectional tunneling
 - All traffic passing through Home Network
 - Sub-optimal routing
- Route optimization
 - Binding update towards CN
 - Return Routability procedure
 - -Excessive signaling

Bidirectional tunneling

Route Optimization

Home Agent

Foreign Network Access Router

Multicast assisted mobility

- Localize routing updates
 - Not necessary to inform the source (CN)
- Multicast tree per user
 - Multiple users may share a single tree
- Proactive
 - Data can delivered to multiple locations
 - -All locations around the current location
 - -Predicted locations
 - Resource consumption
- Reactive
 - Data redirection upon handoff
- Application dependent

Are Internet Fundamentals Still Valid?

Fundamentals of the Internet

- Collaboration
 - Reflected in forwarding and routing
- Cooperation
 - Reflected in trust among participants
- Endpoint-centric services
 - (mail, FTP, even web)
 - Reflected in E2E principle
- ⇒ IP, full end-to-end reachability

Reality in the Internet Today

- Phishing, spam, viruses
 - There is no trust any more!
- Current economics favor senders
 - Receivers are forced to carry the cost of unwanted traffic
- Information-centric services
 - Do endpoints really matter?
 - Endpoint-centric services move towards information retrieval through, e.g., CDNs
- ⇒ IP with middleboxes & significant decline in trust in the Internet

Vision

- Envision a system that dynamically adapts to evolving concerns and needs of its participating users
- Publish–subscribe based internetworking architecture restores the balance of network economics incentives between the sender and the receiver
- Recursive use of publish-subscribe paradigm enables dynamic change of roles between actors

Information-centric Network

Main PSIRP design principles

Information is multi-hierarchically organised

Higher-level information semantics are constructed in the form of directed acyclic graphs (DAGs), starting with meaningless forwarding labels towards higher level concepts (e.g., ontologies).

Information scoping

- Mechanisms are provided that allow for limiting the reachability of information to the parties having access to the particular mechanism that implements the scoping.
- Scoped information neutrality
 - Within each scope of information, data is only forwarded based on the given (scoped) identifier.
- The architecture is receiver-driven
 - No entity shall be delivered data unless it has agreed to receive those beforehand, through appropriate signalling methods.

Communication Model

Overlay multicast architecture

- Considering an overlay publish/subscribe architecture
 - Access routers participate in a DHT (Pastry)
 - Also providing multicast routing (Scribe)
 - (Mobile) end-nodes directly connected to an overlay access router (OAR)

-Neither participate Pastry, nor carry an IP address

- Easier to deploy
 - Incremental/partial deployment
- At the cost of signaling and stretch
- Special care must be taken for inter-domain routing
 - Hierarchical DHTs (e.g. Canon)

Pastry overview

- DHT based, overlay routing infrastructure
- Nodes have unique 128-bit IDs
- Nodes are responsible for the keys (numerically) closer to their ID
- Proximity awareness (e.g. RTT)
- ➡ Routing of incoming message with key K:
 - Send to the (physically) closest of nodes that share one more digit with K
 - Increasing length of overlay (hops)
- Logarithmic number of overlay hops to any destination

Scribe overview

- Fully distributed pub/sub multicast infrastructure
 - Topic-based
 - —RV point = Pastry owner of Overlay Key(topic)
 - Subscribers send JOIN messages towards RV
 - —Each node forwards the message in the overlay UNLESS it has already subscribed to the group
 - Any node can send data to the RV point.

Route convergence

- —"Group members that are close in the network tend to be children of the same parent in the multicast tree that is also close to them."
- —Simulations have demonstrated that the distance between the parent and every child is approximately equal to the distance between the children (in the proximity space).

Overlay multicast assisted mobility (OMAM)

- Whenever a MN wishes to receive a publication and/or upon handoff it sends a subscribe(RId) message to its OAR (Reactive)
- The OAR issues a Scribe JOIN message towards the RV
- OARs schedule a LEAVE Scribe message for a specific group when the last (mobile) member of that group has disassociated from the AP + delay
 - -delay: else the tree may have collapsed before handoff
 - —A mobile node may return to its original OAR
- In addition to multicast in general:
 - Route convergence: neighboring access points expected to have a close by common ancestor (CA)
- No end-to-end signaling: fast re-routing
- At the cost of path stretch!

OMAM vs. MIPv6: case study

- Packet flow considered already established
- MN initially attached to its Home Network
- What happens upon handoff?
 - MIPv6: Route Optimization (RO)
 - -Return Routability procedure
 - OMAM: newly visited OAR joins the tree
 - —Single JOIN message to OAR
 - Propagates until lowest common ancestor of current and previous OAR
- Pastry signaling omitted
 - DHT assumed already available

OMAM vs. MIPv6: signalling

Required for Step 5 or No Route Optimization

MIPv6: Return Routability procedure overhead						
	1.	Binding Update (BU),	MN→HA	(d _{MN\rightarrowHA})		
In parallel	2,	Binding Acknowledgement (BA),	HA→MN	(d _{MN\rightarrowHA})		
	3.	Home Test init (HoTi),	$MN\toHA{\rightarrow}CN$	(d _{MN\rightarrowHA} + d _{HA\rightarrowCN)}		
In parallel	4,	Care-of-Test init (CoTi),	$MN\toCN$	(d $_{MN \rightarrow CN}$)		
	5.	Home Test (HT),	$CN\toHA\toMN$	(d _{MN→HA} + d _{HA→CN})		
	6,	Care-of Test (CT),	$CN\toMN$	(d $_{MN \rightarrow CN}$)		
	7.	Binding Update (BU),	$MN\toCN$	(d $_{MN \rightarrow CN}$)		
	8.	Binding Acknowledgement (BA),	$CN\toMN$	(d $_{MN \rightarrow CN}$)		
	0	IAM: newly visited OAR _k joins the tree				
	1.	Scribe JOIN msg,	$MN \rightarrow OAR_k \rightarrow C$	CA		
	2.	Scribe LEAVE msg,	$OAR_{k-1} \to CA$			

OMAM vs. MIPv6 with RO

- Resume Time (*RT* ~handoff)
 - MIPv6:

$$RT_{MIPv6} = 4d_{MN \to HA} + 2d_{MN \to CN} + 2d_{HA \to CN}$$

OMAM:

$$RT_{OMAM} = \mathbf{d}_{MN \to OAR_{k}} + \mathbf{d}_{OAR_{k} \to CA}$$

Route Convergence:

$$\mathbf{d}_{\mathrm{OAR}_k \to \mathrm{CA}} = \alpha \times \mathbf{d}_{\mathrm{OAR}_k \to \mathrm{OAR}_{k-1}}, \alpha \to 1$$

– OMAM faster when: $RT_{MIPv6} > RT_{OMAM}$

$$\Rightarrow \boxed{\alpha < 4 + 2 \frac{2d_{OAR_{k-1} \rightarrow HA} + d_{OAR_{k} \rightarrow CN} + d_{HA \rightarrow CN}}{d_{OAR_{k-1} \rightarrow OAR_{k}}}}$$

But, according to route convergence property:

$$\alpha \rightarrow 1$$

OMAM vs. MIPv6 simple BU

MN simply sends a BU message to HA

MIPv6:

$$RT'_{MIPv6} = d_{MN \to OAR_k} + d_{OAR_k \to HA}$$

OMAM:

$$RT_{OMAM} = d_{MN \to OAR_{k}} + d_{OAR_{k} \to CA}$$

- OMAM faster when:
$$RT_{MIPv6} > RT_{OMAM}$$

$$\implies \alpha < \frac{d_{OAR_k \to HA}}{d_{OAR_{k-1} \to OAR_k}}$$

But, usually:
$$d_{OAR_k \rightarrow HA} > d_{OAR_{k-1} \rightarrow OAR_k}$$

and $\alpha \rightarrow 1$

Performance Evaluation

Performance metrics

- Packet loss
 - —Lost connectivity + signaling delay
 - -Depicts handover speed (depends on acceptable delay)
- End-to-end packet delay
 - —Time required for a packet to reach its destination
 - —Depicts overlay stretch!
- Resume time
 - -Time required for the first packet to be received after a handoff
 - —Depicts handover speed
- One-way communication, e.g. video streaming
- Simulation environment
 - OMNeT++, xMIPv6, OverSim

Topology

- Grid topology
 - IEEE 802.11b APs
- Full coverage
 - Focus on signaling-based disruption
- UDP stream: H.264, Level 1 SQCIF video stream, 30.9 fps

Parameter	Value
Grid size	30 x 30
Number of MNs	1
Number of CNs	1
Wired connections type	100Mps Ethernet
Propagation delay (ms)	0.5
Data rate (Kbps)	64
Packet size (bytes)	26
Total number of packets sent	556200

Preliminary results

- Significant gains in signaling overhead
 - Service disruption greatly improved
- At the cost of increased end-to-end delay
 - Impact of overlay routing i.e. stretch
 - Acceptable for non-interactive streaming application

	MIPv6	Mobile Scribe
Packet loss	2.002%	1.059%
End-to-end delay	12ms	17ms
Resume time	1.208 sec	0.007 sec

Conclusions & Future work

- Multicast presents significant advantages in supporting mobility
 - Enabled/revisited in an overlay context
- DHT substrate properties further enhance multicast tree properties
- Promising preliminary results,
 - Especially for streaming applications
- Comparison with micro-mobility protocols
 - Hierarchical Mobile IPv6
- Measure/quantify route convergence property!
- Simplistic topology & mobility model
 - Incorporate campus-wide wireless traces, e.g. Dartmouth campus traces
- Two-way, reliable communication
 - Lag-behind/get-ahead, reverse path vs. distinct trees, etc.

Thanks!

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics/Computer Science Athens University of Economics and Business

47A Evelpidon, 11362 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

WTS 2009, Prague, Czech Republic polyzos@aueb.gr