Structure and Evolution of a Large-Scale Wireless Community Network

Fotios Elianos, Georgia Plakia, Pantelis Frangoudidis
George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics/Computer Science
Athens University of Economics and Business
47A Evelpidon, 11362 Athens, Greece

WoWMoM 2009, Kos, Greece, June 2009
Wireless Nets in Metropolitan Areas…

- “Ubiquitous” Wi-Fi coverage in metropolitan areas
- Infrastructures based on Wi-Fi for public Internet access
- Wireless Community Networks
 * wireless mesh networks
 * organized by radio enthusiasts
 * cover metropolitan areas
 * numerous WCNs around the world
 * Athens Wireless Metropolitan Network
 * one of the largest
Athens Wireless Metropolitan Network

- among the largest, globally
 - 2010 active nodes
 - 2354 links
 - 655 active services

- Node #66 @ MMlab
Investigation

- Our results come from
 - Information stored in WiND database
 - Wireless Node Database
 - available on the Internet
 - stores data about nodes, links, services
 - Measurements that we made from our AWMN node (aueb|mmlab, #66)
 - measurements were repeated on 5 different days and at different times

- We investigate divergences between the two sources
Number of Nodes in AWMN

- Many client nodes connect temporarily and are not always registered in the WiND database
- Backbone nodes are always registered and more stable
- Total number of nodes
 - 2369 according to our measurements
 - 2022 according to WiND
The size of AWMN has always been increasing
Number of newly registered nodes per year

- They started decreasing after 2006
- ADSL price decreased significantly during the same period

Expensive broadband connections were one of the major factors that encouraged the creation of AWMN.
Distances of the Links

- Most links have distance of about 1km
- Shortest link 8m
- Longest link 124km (!)
- Power is within bounds (20dBm)
- Some links extend to neighboring cities
Diameter of the Network

We ran traceroute commands from 5 different spots in Athens

- Diameter based on our traceroute is 9.5

Diameter was calculated according to the links registered in WiND

- Diameter based on WiND is 8.2
- Maybe more accurate, because it takes into account every link
Distribution of Clients (per Backbone Node)

- Many backbone nodes do not support any client nodes
 - Client nodes seen as not contributing much to the network
 - They increase its size and are potential future backbone nodes
Distribution of Links (per Backbone Node)

- The average out degree is 1.58
- Most backbone nodes have 3 links with other peers
- Connectedness and reliability
 - If one node fails, part of the network is not isolated, as there are often other links and alternative paths
Most Popular Services

- We examined whether some of the registered services are indeed provided.
- We noticed that the number of nodes that indeed provide a service is larger than the number registered in WiND.

- Proxy service (when a node shares its fixed broadband connection with the rest of the network) is not always for public use.
Topological Statistics of AWMN—Power Laws Comparison to the Internet during the 90s

- Attempted to model the AWMN topology through 3 power laws
 - Frequency of the Outdegree
 - Rank of the node in decreasing order of Outdegrees
 - Neighborhood size in specific hops
- They help us answer some important questions
 - What does AWMN look like?
 - Are there some topological properties that do not change in time?
 - How will it look like in a year?
- These power laws were identified for the Internet during the 90’s

- A potentially significant similarity(?) between the 2 networks
The frequency, f_d, of an outdegree, d, is proportional to the outdegree to the power of a constant, Θ:

$$f_d \propto d^\Theta$$
Rank of the nodes in decreasing order of Outdegree

Power-Law 1 (rank exponent) The outdegree, d_v, of a node v, is proportional to the rank of the node, r_v, to the power of a constant, \mathcal{R}:

$$d_v \propto r_v^\mathcal{R}$$
Neighborhood Size at a specific Hops-count

Approximation 1 (hop-plot exponent) The total number of pairs of nodes, \(P(h) \), within \(h \) hops, is proportional to the number of hops to the power of a constant, \(\mathcal{H} \):

\[
P(h) \propto h^{\mathcal{H}}, \quad h \ll \delta
\]
Comparison to the Internet

- **Similarities**
 - AWMN resembles the Internet in addressing and routing
 - The services provided are a subset of those on the Internet
 - Free Services (all in AWMN, many on the Internet)
 - We have identified 3 Power Laws
 - that apply to the Internet topology during the 90s and
 - may be argued that they also apply to AMWN

- **Differences**
 - Internet is much larger than AMWN
 - ISP charges--AWMN participation is free
 - no central repository of information about the whole Internet, while there is WiND for AMWN
 - the Internet can be used for profit, while AWMN is always not-for-profit
Thanks!

Fotios Elianos, Georgia Plakia, Pantelis Frangoudis
George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics/Computer Science
Athens University of Economics and Business
47A Evelpidon, 11362 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/
Tel.: +30 210 8203 650, Fax: +30 210 8203 325

WoWMoM 2009, Kos, Greece, June 2009