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WHAT IS THE GRID
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The grid[1] is a system that…

1. Computing resources are not administered 
centrally

� Issues of policy, security, payment, membership 
etc..

2. Open standards are used
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2. Open standards are used

� Resource discovery, authentication/authorization 
..

3. Provides nontrivial quality of service

� response time, throughput, latency, secure co-
allocation of multiple resources while meeting 
complex user demands
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[1] I. Foster, “What is the Grid? - a three 

point Checklist”



DGS Goals and Limitations

DGS Vs. Metaschedulers

DGS Vs. Zorilla

DGS Vs. Condor

���� Contents 

SCOPE OF THIS RESEARCH /

VS. OTHER SCHEDULERS

DGS Vs. Condor

DGS Vs. DIOGENES
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DGSASAP Goal

• The goal is to prove the feasibility of 

Distributed Grid Scheduling (DGS).

• There is no other previous work from 

literature to directly compare to ours

Q’s���� Contents 

literature to directly compare to ours

– Yet we produce encouraging utilization results

– We did very well compared to Grid5000’s waiting 

times 

• note though that requests in Grid5000 could have 

asked for more detail allocation optimizations
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DGSASAP Limitations

• Focus exclusively on ASAP scheduling of 

compute-intensive jobs

– The location of resource nodes is of low 

importance
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importance

• No limitation on grid scale

• Jobs start & run concurrently & uninterruptedly

– No prioritizing, No preemption, No migration of 

jobs (unlike Metaschedulers, Condor)
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DGS Vs. Metaschedulers

�Distributed, yet not decentralized solution

� Requests go through the meta-scheduler

� The meta-scheduler iterates local schedulers

If a local scheduler goes down, its nodes remain idle
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If a local scheduler goes down, its nodes remain idle

�The choice of the initial clusters is very important

� Done on the basis of estimating file-transfer time and 

#jobs that will migrate

Job priorities plus job-preemption: Jobs migrate to 

better-ranked resources
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DGS Vs. Zorilla

� Distributed solution, Opportunistic allocation

� Based on a non random p2p (locality-aware 
overlay)

� Cyclon[2] used in DGSASAP is an inexpensive protocol

Allocates currently available near-by resources 
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� Allocates currently available near-by resources 
• On failure, queues the request; repeats after 

timeout

Floods the proximity
Exponential number of messages; difficult to scale
difficult to define optimal timeout / flooding-radius
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DGS Vs. Condor

�Centralized solution

� One coordinator node (CN), and a local 
scheduler (LS) per node

– CN polls LSs for idle cycles (resource)
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– CN polls LSs for idle cycles (resource)

– Job migration to another workstation in case of 
local activity

� CN chooses how to re-allocate cycles

Single point of failure

Can not scale to big numbers of nodes
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DGS Vs. DIOGENES

�Genes: (Task j, Processor i) ; Chromosome �
schedule

�Distributed, not decentralized

After each generation all participants 
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After each generation all participants 
broadcast their local optima � Too many 
messages; Can not scale to the whole grid

Use of the same fitness function in all nodes 
reflects � applying the same Resource 
Handling Policy; non realistic scenario
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Why messaging?

Assumptions on messaging
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MESSAGING: ALTERNATIVE 

POLICIES AND EVALUATION

Assumptions on messaging

Messaging policies

Evaluation Of Performance of policies
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Why Messaging?

• Computing a schedule 

implies knowledge of 

the current status of 

the schedule of each 

candidate to allocate
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candidate to allocate

node.
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View of Schedules

• Search Algorithm needs an up-to-

date view of the schedules of a 

node’s immediate neighbors 

• Upon a schedule status-change, a 

.
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• Upon a schedule status-change, a 

node pushes an update message 

to its neighbors
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Assumptions on Messaging

• Study Scope: Only schedule-update messages

• Outside of study Scope:

� Size of the message

� Cost of storing / processing of messages
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� Cost of storing / processing of messages

• e.g. delta updates instead of full schedule views 

in update-messages

� Potential loss of messages

• That would imply dealing invalid scheduling and 

submission-failures 
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Messaging Policies (1/3)

B

Choice 1: Polling

• Poll  members of the 

cache periodically
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Messaging Policies (2/3)

Choice 2: Pulling

• A node pulls the current 

status of the schedules 

of its neighbors when 

B
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of its neighbors when 

searching for scheduling 

a request
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Messaging Policies (3/3)

Choice 3: Pushing

• Nodes send (push) an 

update message to all 

neighbors whenever 

B
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neighbors whenever 

their schedule gets 

updated
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Messaging Evaluation (1/2) 

Pulling Pushing Polling*

# messages: 2.188 M 152.3 K 72 M

Failure rate: 0% 0% 0.21%
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Failure rate: 0% 0% 0.21%
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� #Messages per 24h

� 5000 nodes, Node degree= 20, Average RU 

= 0.28%

*Note that the polling period is 120 seconds.



Messaging Evaluation (2/2) 
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Node Degree Vs. Messaging Cost

���� Contents 

NODE DEGREE

Node Degree Vs. Messaging Cost

Node Degree Vs. the Waiting time
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Node Degree Evaluation
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Node Degree Vs. Messaging cost
Q’s

increases
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Non-zero 

failure rate

increases



Node Degree Vs. Messaging cost
Q’s���� Contents 
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our choice:

• zero failure rate,

• less waiting time,

• less messaging cost



Node Degree Vs. Waiting Time

increases

our choice:

stabilizes

���� Contents 

5/8/2010
A Decentralized Grid Scheduler for ASAP 

Scheduling
25

Non-zero 

failure rate

our choice:

• zero failure rate,

• less waiting time,

• less messaging cost



Compressed Trace
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EVALUATION METRICS

Compressed Trace

Request Utilization

Effective Utilization
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Trace of Requests (1/2)

• 2.7-month trace of job requests submitted to 

Grid’5000[2]

– 5000 Nodes is realistically big

– Realistic scenario of requesting from a popular 
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– Realistic scenario of requesting from a popular 

grid
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[2] Grid Workload Archive, 
Iosup et al. (2008)



Trace of Requests (2/2)

• We compressed the original trace period from 

2.7 to 0.78 months (by scaling job submission 

times).

– Goal: investigate the system’s behavior 
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– Goal: investigate the system’s behavior 

under stressful  c ircumstances.

• The average requesting load increased from 

28% to 95% � higher load
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[2] Grid Workload Archive, 
Iosup et al. (2008)



Evaluation Metrics (1/3)

• Request Utilization (RU): load imposed

1. The total number of time slots requested (TTR) 

in the Grid 
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in the Grid 

2. during a certain period 

3. divided by the total number of time slots (TTS)

at all nodes in the Grid
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Evaluation Metrics (2/3) 

• Effective Utilization (EU): utilization of 

resources

���� Contents 

resources

� The percentage of the total timeslots of the grid 

that DGSASAP managed to allocate, within a 

certain period of time
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Evaluation Metrics (3/3) 

• Waiting Time: scheduling delay
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• Waiting Time: scheduling delay

� Average time elapsed from job issue until the start 

of the execution, within a certain period of time
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RU / EU Examples (1/2)

�Suppose a grid of 5 nodes, during the past ½ 

hour (30 timeslots)

• Request Utilization (RU):

� TTS = 5 * 30 = 150 ts (timeslots)
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� TTS = 5 * 30 = 150 ts (timeslots)

� 2 requests for 1 nodes and 50 ts, 3 requests for 3 

nodes and 25 ts: TTR = 2*1*50 +3*3*25 = 100 + 

225= 320

� RU = 325 / 150 =217%
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RU / EU Examples (2/2)

�Suppose DGSASAP achieves to serve 

• both requests for 1 nodes and 50 ts

• no request for 3 nodes and 25 ts

• Request Utilization (RU):
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• Request Utilization (RU):

� TTS = 5 * 30 = 150 ts (timeslots)

� Timeslots reserved TRSV = 2*1*50 + 0*3*25 = 100

� EU = 100 / 150 = 67%
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Static Vs. Dynamic overlay Waiting time CDF

Homogeneity Vs. Heterogeneity of schedules

Waiting time CDF for demanding requests 

Waiting Time Vs. RU (Compressed Trace)
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FURTHER PERFORMANCE ANALYSIS

Waiting Time Vs. RU (Compressed Trace)

Median Waiting Time  (Compressed Trace)

Utilization (Non Compressed Trace)

5/8/2010
A Decentralized Grid Scheduler for ASAP 

Scheduling
34



Static Vs. Dynamic Overlay (1/2)

Q’s

Dynamic scenario

� Nodes periodically 

exchange neighbors

� The overlay topology 

Static scenario

� Nodes do not shuffle 

their connections 

� The P2P topology is 

���� Contents 
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� The overlay topology 

continuously changes

� The P2P topology is 

entirely static



Static Vs. Dynamic Overlay (2/2)

Q’s

30% (25%) of requests 

is immediately served
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• Static configuration 

yields smaller waiting time

Why? homogeneous schedules of 

neighboring nodes



Homogeneity Vs. Heterogeneity of Schedules
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• A request for more than 2 timeslots will be
difficult to allocate nodes X and Y together 37
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Waiting Time CDF 
Demanding requests
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Median Waiting Time
Q’s

Total Timeslots Requested: 100 ts

� Requests for 10 nodes, 100 ts

� Requests for 50 nodes, 20 ts

� Requests for 4 nodes, 250 ts

� etc..
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Median Waiting Time

� Many 

Requests are 

immediately

served
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Median Waiting Time

�WT tends to 

grow with the 

level of demand 

for resources
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Median Waiting Time

• Schedules even 

some big jobs 

with little or no 

delay
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Utilization (avg. RU = 28%)
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SEARCH ALGORITHM

Private Node schedule

Search Algorithm
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Private Node Schedule

• Each node maintains its own 

private local job schedule

– Timeslots: equal time time-

intervals

.

.

.

i+1

i+2

i+3

i+4

i
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intervals
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Search Algorithm (1/3)

• Searching the schedules of the current node 

and its immediate neighbors

• Find an allocation of nodes with free 

consecutive corresponding timeslots
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consecutive corresponding timeslots

– Job start concurrently and continue their 

execution uninterruptedly

p. 48



• 21 candidate nodes

– The request receiver + 20 

neighboring nodes

Search Algorithm (2/3)
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neighboring nodes

– If # eligible candidates < 11,

then searches also the schedules 

of its neighbor’s neighbors

– Max 20 x 20 = 400 new 

candidate nodes

• In best case 421 candidate 

nodes
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• If it is impossible to find a 

schedule starting from 

timeslot 10, then proceed to 

Search Algorithm (3/3)
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timeslot 10, then proceed to 

investigating from the next 

timeslot

• etc..
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REQUESTS PREREQUISITES
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Requests …

• Do not distinguish between node types

– A simplification partly justified by traces

• Users rarely require specific properties at resource 

nodes 

���� Contents 

nodes 

• Exclusive reservation requests for a certain 

number of nodes and for a fixed amount of 

time *
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* [A. Iosup et al.: The Grid Workloads Archive. Future Generation 

ComputerSystems 24(7) Elsevier (2008) 672-686]
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WHY A P2P OVERLAY
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Why a p2p Overlay (1/2)

• Highly resilient to node failures and network 

partitions

• No centralized management to generate and 

maintain a P2P overlay. 
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maintain a P2P overlay. 
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Why a p2p Overlay (2/2)

• They are rather inexpensive to maintain [2]

• We use CYCLON, an inexpensive overlay protocol for 

random overlays[3]

– Peers periodically randomly shuffle the 
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– Peers periodically randomly shuffle the 

connections in the overlay and evict unreachable 

nodes

– Simple join in the by contacting any other 

participant peer
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[2] [Jelacity et al: Gossip-based Peer Sampling] 

[3] S. Voulgaris et. al., “CYCLON: Inexpensive Membership 

Management for Unstructured P2P Overlays”, 2005.
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