
Decentralized As-Soon-As-

Possible Grid Scheduling: A

Feasibility StudyFeasibility Study

Backup Slides

Xenofon Vasilakos
Ph.D. Student at the

Athens University of Econ. And Business

xvas@aueb.gr

Contents

• What is the Grid

• Scope of research / Vs. other schedulers

• Messaging: Alternative Policies and Evaluation

• Node Degree

• Evaluation Metrics• Evaluation Metrics

• GWA Trace of Requests

• Further Performance Analysis

• Search Algorithm

• Prerequisites of Requests

• Why A p2p overlay?

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
2

���� Contents

WHAT IS THE GRID

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
3

The grid[1] is a system that…

1. Computing resources are not administered
centrally

� Issues of policy, security, payment, membership
etc..

2. Open standards are used

Q’s���� Contents

2. Open standards are used

� Resource discovery, authentication/authorization
..

3. Provides nontrivial quality of service

� response time, throughput, latency, secure co-
allocation of multiple resources while meeting
complex user demands

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
4

[1] I. Foster, “What is the Grid? - a three

point Checklist”

DGS Goals and Limitations

DGS Vs. Metaschedulers

DGS Vs. Zorilla

DGS Vs. Condor

���� Contents

SCOPE OF THIS RESEARCH /

VS. OTHER SCHEDULERS

DGS Vs. Condor

DGS Vs. DIOGENES

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
5

DGSASAP Goal

• The goal is to prove the feasibility of

Distributed Grid Scheduling (DGS).

• There is no other previous work from

literature to directly compare to ours

Q’s���� Contents

literature to directly compare to ours

– Yet we produce encouraging utilization results

– We did very well compared to Grid5000’s waiting

times

• note though that requests in Grid5000 could have

asked for more detail allocation optimizations

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
6

DGSASAP Limitations

• Focus exclusively on ASAP scheduling of

compute-intensive jobs

– The location of resource nodes is of low

importance

Q’s���� Contents

importance

• No limitation on grid scale

• Jobs start & run concurrently & uninterruptedly

– No prioritizing, No preemption, No migration of

jobs (unlike Metaschedulers, Condor)

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
7

DGS Vs. Metaschedulers

�Distributed, yet not decentralized solution

� Requests go through the meta-scheduler

� The meta-scheduler iterates local schedulers

If a local scheduler goes down, its nodes remain idle

Q’s���� Contents

If a local scheduler goes down, its nodes remain idle

�The choice of the initial clusters is very important

� Done on the basis of estimating file-transfer time and

#jobs that will migrate

Job priorities plus job-preemption: Jobs migrate to

better-ranked resources

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
8

DGS Vs. Zorilla

� Distributed solution, Opportunistic allocation

� Based on a non random p2p (locality-aware
overlay)

� Cyclon[2] used in DGSASAP is an inexpensive protocol

Allocates currently available near-by resources

���� Contents

� Allocates currently available near-by resources
• On failure, queues the request; repeats after

timeout

Floods the proximity
Exponential number of messages; difficult to scale
difficult to define optimal timeout / flooding-radius

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
9

DGS Vs. Condor

�Centralized solution

� One coordinator node (CN), and a local
scheduler (LS) per node

– CN polls LSs for idle cycles (resource)

Q’s���� Contents

– CN polls LSs for idle cycles (resource)

– Job migration to another workstation in case of
local activity

� CN chooses how to re-allocate cycles

Single point of failure

Can not scale to big numbers of nodes

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
10

DGS Vs. DIOGENES

�Genes: (Task j, Processor i) ; Chromosome �
schedule

�Distributed, not decentralized

After each generation all participants

Q’s���� Contents

After each generation all participants
broadcast their local optima � Too many
messages; Can not scale to the whole grid

Use of the same fitness function in all nodes
reflects � applying the same Resource
Handling Policy; non realistic scenario

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
11

Why messaging?

Assumptions on messaging

Q’s���� Contents

MESSAGING: ALTERNATIVE

POLICIES AND EVALUATION

Assumptions on messaging

Messaging policies

Evaluation Of Performance of policies

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
12

Why Messaging?

• Computing a schedule

implies knowledge of

the current status of

the schedule of each

candidate to allocate

Q’s���� Contents

candidate to allocate

node.

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
13

View of Schedules

• Search Algorithm needs an up-to-

date view of the schedules of a

node’s immediate neighbors

• Upon a schedule status-change, a

.

.

.

i+1
i+2
i+3

i

���� Contents

• Upon a schedule status-change, a

node pushes an update message

to its neighbors

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
14

i+3
i+4
i+5
i+6
i+7
i+8
i+9

i+10
.

.

.

Unreserved timeslot

Reserved timeslot

Assumptions on Messaging

• Study Scope: Only schedule-update messages

• Outside of study Scope:

� Size of the message

� Cost of storing / processing of messages

Q’s���� Contents

� Cost of storing / processing of messages

• e.g. delta updates instead of full schedule views

in update-messages

� Potential loss of messages

• That would imply dealing invalid scheduling and

submission-failures

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
15

Messaging Policies (1/3)

B

Choice 1: Polling

• Poll members of the

cache periodically

���� Contents

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
16

A

C

D

E

Messaging Policies (2/3)

Choice 2: Pulling

• A node pulls the current

status of the schedules

of its neighbors when

B

���� Contents

of its neighbors when

searching for scheduling

a request

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
17

A

C

D

E

Messaging Policies (3/3)

Choice 3: Pushing

• Nodes send (push) an

update message to all

neighbors whenever

B

���� Contents

neighbors whenever

their schedule gets

updated

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
18

A

C

D

E

Messaging Evaluation (1/2)

Pulling Pushing Polling*

messages: 2.188 M 152.3 K 72 M

Failure rate: 0% 0% 0.21%

Q’s���� Contents

Failure rate: 0% 0% 0.21%

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
19

� #Messages per 24h

� 5000 nodes, Node degree= 20, Average RU

= 0.28%

*Note that the polling period is 120 seconds.

Messaging Evaluation (2/2)

Q’s���� Contents

5/8/2010 20

Node Degree Vs. Messaging Cost

���� Contents

NODE DEGREE

Node Degree Vs. Messaging Cost

Node Degree Vs. the Waiting time

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
21

Node Degree Evaluation

Q’s���� Contents

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
22

Node Degree Vs. Messaging cost
Q’s

increases

���� Contents

5/8/2010 23

Non-zero

failure rate

increases

Node Degree Vs. Messaging cost
Q’s���� Contents

5/8/2010 24

our choice:

• zero failure rate,

• less waiting time,

• less messaging cost

Node Degree Vs. Waiting Time

increases

our choice:

stabilizes

���� Contents

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
25

Non-zero

failure rate

our choice:

• zero failure rate,

• less waiting time,

• less messaging cost

Compressed Trace

���� Contents

EVALUATION METRICS

Compressed Trace

Request Utilization

Effective Utilization

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
26

Trace of Requests (1/2)

• 2.7-month trace of job requests submitted to

Grid’5000[2]

– 5000 Nodes is realistically big

– Realistic scenario of requesting from a popular

���� Contents

– Realistic scenario of requesting from a popular

grid

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
27

[2] Grid Workload Archive,
Iosup et al. (2008)

Trace of Requests (2/2)

• We compressed the original trace period from

2.7 to 0.78 months (by scaling job submission

times).

– Goal: investigate the system’s behavior

���� Contents

– Goal: investigate the system’s behavior

under stressful c ircumstances.

• The average requesting load increased from

28% to 95% � higher load

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
28

[2] Grid Workload Archive,
Iosup et al. (2008)

Evaluation Metrics (1/3)

• Request Utilization (RU): load imposed

1. The total number of time slots requested (TTR)

in the Grid

���� Contents

in the Grid

2. during a certain period

3. divided by the total number of time slots (TTS)

at all nodes in the Grid

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
29

Evaluation Metrics (2/3)

• Effective Utilization (EU): utilization of

resources

���� Contents

resources

� The percentage of the total timeslots of the grid

that DGSASAP managed to allocate, within a

certain period of time

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
30

Evaluation Metrics (3/3)

• Waiting Time: scheduling delay

���� Contents

• Waiting Time: scheduling delay

� Average time elapsed from job issue until the start

of the execution, within a certain period of time

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
31

RU / EU Examples (1/2)

�Suppose a grid of 5 nodes, during the past ½

hour (30 timeslots)

• Request Utilization (RU):

� TTS = 5 * 30 = 150 ts (timeslots)

���� Contents

� TTS = 5 * 30 = 150 ts (timeslots)

� 2 requests for 1 nodes and 50 ts, 3 requests for 3

nodes and 25 ts: TTR = 2*1*50 +3*3*25 = 100 +

225= 320

� RU = 325 / 150 =217%

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
32

RU / EU Examples (2/2)

�Suppose DGSASAP achieves to serve

• both requests for 1 nodes and 50 ts

• no request for 3 nodes and 25 ts

• Request Utilization (RU):

���� Contents

• Request Utilization (RU):

� TTS = 5 * 30 = 150 ts (timeslots)

� Timeslots reserved TRSV = 2*1*50 + 0*3*25 = 100

� EU = 100 / 150 = 67%

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
33

Static Vs. Dynamic overlay Waiting time CDF

Homogeneity Vs. Heterogeneity of schedules

Waiting time CDF for demanding requests

Waiting Time Vs. RU (Compressed Trace)

���� Contents

FURTHER PERFORMANCE ANALYSIS

Waiting Time Vs. RU (Compressed Trace)

Median Waiting Time (Compressed Trace)

Utilization (Non Compressed Trace)

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
34

Static Vs. Dynamic Overlay (1/2)

Q’s

Dynamic scenario

� Nodes periodically

exchange neighbors

� The overlay topology

Static scenario

� Nodes do not shuffle

their connections

� The P2P topology is

���� Contents

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
35

� The overlay topology

continuously changes

� The P2P topology is

entirely static

Static Vs. Dynamic Overlay (2/2)

Q’s

30% (25%) of requests

is immediately served

���� Contents

5/8/2010 36

• Static configuration

yields smaller waiting time

Why? homogeneous schedules of

neighboring nodes

Homogeneity Vs. Heterogeneity of Schedules

1010
11
12
13

X

.

.

.

10
11
12
1313

Y

.

.

.

1010
11
12
13

L

.

.

.

1010
11
12
13

M

.

.

.Heterogeneous

schedules

���� Contents

• A request for more than 2 timeslots will be
difficult to allocate nodes X and Y together 37

13
1414
1515
16
17
18
1919
.

.

.

1313
14
15
16
17
1818
1919
.

.

.

13
1414
1515
16
17
18
19
.

.

.

13
1414
1515
16
17
18
19
.

.

.

Homogeneous

schedules

Waiting Time CDF
Demanding requests

���� Contents

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
38

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Median Waiting Time
���� Contents

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Nodes x Job Duration

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Median Waiting Time
Q’s

Total Timeslots Requested: 100 ts

� Requests for 10 nodes, 100 ts

� Requests for 50 nodes, 20 ts

� Requests for 4 nodes, 250 ts

� etc..

���� Contents
M

e
d

ia
n

 W
a

it
in

g
 T

im
e

Nodes x Job Duration

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Median Waiting Time

� Many

Requests are

immediately

served

���� Contents
M

e
d

ia
n

 W
a

it
in

g
 T

im
e

Nodes x Job Duration

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Median Waiting Time

�WT tends to

grow with the

level of demand

for resources

���� Contents
M

e
d

ia
n

 W
a

it
in

g
 T

im
e

Nodes x Job Duration

M
e

d
ia

n
 W

a
it

in
g

 T
im

e

Median Waiting Time

• Schedules even

some big jobs

with little or no

delay

���� Contents
M

e
d

ia
n

 W
a

it
in

g
 T

im
e

Nodes x Job Duration

A
v
e
ra

g
e
 W

a
it
in

g
 T

im
e

U
ti
liz

a
ti
o
n

Avg. WT Vs. RU (avg. RU = 95%)

Q’s���� Contents

A
v
e
ra

g
e
 W

a
it
in

g
 T

im
e

U
ti
liz

a
ti
o
n

Time (months)5/8/2010 44

Utilization (avg. RU = 28%)
U

ti
liz

a
ti
o
n

���� Contents

5/8/2010 45

U
ti
liz

a
ti
o
n

Time (months)

���� Contents

SEARCH ALGORITHM

Private Node schedule

Search Algorithm

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
46

Private Node Schedule

• Each node maintains its own

private local job schedule

– Timeslots: equal time time-

intervals

.

.

.

i+1

i+2

i+3

i+4

i

���� Contents

intervals

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
47

i+4

i+5

i+6

i+7

i+8

i+9

i+10
.

.

.

Search Algorithm (1/3)

• Searching the schedules of the current node

and its immediate neighbors

• Find an allocation of nodes with free

consecutive corresponding timeslots

Q’s���� Contents

consecutive corresponding timeslots

– Job start concurrently and continue their

execution uninterruptedly

p. 48

• 21 candidate nodes

– The request receiver + 20

neighboring nodes

Search Algorithm (2/3)

10

1

.

.

.

10

21

.

.

.

9,11,10 ===≡ TsNtr

���� Contents

neighboring nodes

– If # eligible candidates < 11,

then searches also the schedules

of its neighbor’s neighbors

– Max 20 x 20 = 400 new

candidate nodes

• In best case 421 candidate

nodes

10
11
12
13
14
15
16
17
18
19
.

.

.

10
11
12
13
14
15
16
17
18
19
.

.

.

. . .

• If it is impossible to find a

schedule starting from

timeslot 10, then proceed to

Search Algorithm (3/3)

10

1

.

.

.

21

10

.

.

.

9,11,10 ===≡ TsNtr

���� Contents

timeslot 10, then proceed to

investigating from the next

timeslot

• etc..

10
11
12
13
14
15
16
17
18
19
.

.

.

10
11
12
13
14
15
16
17
18
19
.

.

.

. . .

���� Contents

REQUESTS PREREQUISITES

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
51

Requests …

• Do not distinguish between node types

– A simplification partly justified by traces

• Users rarely require specific properties at resource

nodes

���� Contents

nodes

• Exclusive reservation requests for a certain

number of nodes and for a fixed amount of

time *

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
52

* [A. Iosup et al.: The Grid Workloads Archive. Future Generation

ComputerSystems 24(7) Elsevier (2008) 672-686]

���� Contents

WHY A P2P OVERLAY

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
53

Why a p2p Overlay (1/2)

• Highly resilient to node failures and network

partitions

• No centralized management to generate and

maintain a P2P overlay.

���� Contents

maintain a P2P overlay.

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
54

Why a p2p Overlay (2/2)

• They are rather inexpensive to maintain [2]

• We use CYCLON, an inexpensive overlay protocol for

random overlays[3]

– Peers periodically randomly shuffle the

���� Contents

– Peers periodically randomly shuffle the

connections in the overlay and evict unreachable

nodes

– Simple join in the by contacting any other

participant peer

5/8/2010 55

[2] [Jelacity et al: Gossip-based Peer Sampling]

[3] S. Voulgaris et. al., “CYCLON: Inexpensive Membership

Management for Unstructured P2P Overlays”, 2005.

References

1. I. Foster, “What is the Grid? - a three point Checklist”,
2002

2. S. Voulgaris, D. Gavidia, M. Van Steen, “CYCLON:
Inexpensive Membership Management for Unstructured
P2P Overlays”, Journal of Network and Systems
Management, 1064-7570, 2005.

Q’s

Management, 1064-7570, 2005.

3. Thesis report of “DGSASAP: A Distributed Grid Scheduler
for As Soon As Possible Scheduling”

4. M. Fiscato, P. Costa, G. Pierre, “On the feasibility of
Decentralized Grid Scheduling”, sasow, pp.225-229, 2008
Second IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshops, 2008.

5/8/2010
A Decentralized Grid Scheduler for ASAP

Scheduling
56

