Fighting Spam in Publish/Subscribe Networks Using Information Ranking

Nikos Fotiou, Giannis F. Marias and George C. Polyzos Athens University of Economics and Business Mobile Multimedia Laboratory

{fotiou,marias,polyzos}@aueb.gr

6th Euro-NF Conference on Next Generation Internet Paris, France, June 2-4, 2010

Outline

- Publish/Subscribe Architectures
- Problem Area
- Inforanking
- Approach
- Evaluation
- Conclusions, Future Work

6th NGI Conference, Fighting Spam in Publish/Subscribe Networks Using Information Ranking

Publish/Subscribe Architectures

- 3 Basic Components
 - Publishers : Information providers that advertise information using "publications"
 - Subscribers : Information consumers that express their interest in particular pieces of information using "subscriptions"
 - A network of brokers
- Publication/Subscription matching takes place in the Rendezvous Point
- Information oriented, publisher/subscriber decouple
 - Mobility, multicast, multihoming can be easily achieved

Problem Area

- A publish/subscribe architecture in which
 - Subscribers, subscribe using keywords
 - Publishers may provide misleading publications' description and therefore lure RP
 Spam
- Solutions for this problem
 - Block misbehaving publishers
 - Already Done (Tarkoma S.:Preventing Spam in Publish/Subscribe)
 - Block spam publications 📫 Inforanking

Inforanking (1/2)

- A mechanism that ranks information items within a certain context
- Why do we need an information ranking mechanism?
 - Users change behavior, information no!
 - Information identification is easier
 - Hash Function VS Chain of Certificates
 - Its an information —oriented world after all!
- Ranks is based on users' votes
 - Users may vote only positively
 - Easier to be implemented
 - The weight of a user's vote is inversely proportional the number of user's vote

6th NGI Conference,

Inforanking (2/2)

• Inforanking example where vote weight:

1/(sum(votes of user in this set))

Information Set 1						
Information ID	Users that voted	Rank				
INFO1	U1, U2, U3, U4	1.75				
INFO2	U1, U2, U3, U4	1.75				
INFO3	U1, U5, U6, U7	3.25				
INFO4	U1	0.25				

6th NGI Conference,

Approach (1/2)

- Create a spam rank, the bigger the rank of an information item is the less likely is a RP to select it
- Allow subscribers to vote for publications that they consider spam by applying Inforanking SuR
 - Malicious publishers will start publish even more spam publications therefore ...
- Apply Inforanking in publications, considering as a vote the fact that a publisher publishes a piece of information
 PuR
 - PuR does not add any overhead to the architecture
 - The bigger the PuR is the better a publication is
- Spam rank = 1 Normalized(PuR) + Normalized(SuR)

6th NGI Conference,

Approach (2/2)

Usage example						
Inf. Ident.	Sub. Votes	SuR (NSuR)	Publishers	PuR (NPuR)	Spam Rank	
INF1	S2, S5	1.5 (0.30)	P1, P2	1 (0.25)	1-0.25+0.3 = 1.05	
INF2	S2, S4	1.5 (0.30)	P1, P2	1 (0.25)	1-0.25+0.3 = 1.05	
INF3	S1, S3	1 (0.20)	P3	1 (0.25)	1-0.25+0.2=0.95	
INF4	S1, S3	1 (0.20)	P4	1 (0.25)	1 - 0.25 + 0.2 = 0.95	

Results (1/4)

- 100 publishers, 50% malicious, 100
- . Jus Let selects a Lumber of publications from a pool of a variable re of publications (x- dr'
- Each good publisher publishes in avg. 5 items out of a pool of 80

6th NGI Conference,

Results (2/4)

- 100 publishers,
 80% malicious
- Each publisher selects a number of publications from a pool of a variable size of publications (x-axis)

Results (3/4)

- Variable size of publishers
 publishers, 50%
 malicious, 100
 subscribers
- Each publisher selects a number of publications from a pool of 30 publications

Results (4/4)

- 100 publishers,
 100 subscribers,
 50% of publishers
 and subscribers are
 malicious
- Each publisher selects a number of publications from a pool of 10 or 30 publications

6th NGI Conference, Fighting Spam in Publish/Subscribe Networks Using Information Ranking

Conclusions and Future Work

- Inforanking is a lightweight solution that can be effectively used for fighting spam in a publish/subscribe architecture
- Future works include
 - Applying inforanking in currently existing applications, such as file sharing applications, bittorrent, voting applications
 - Create a rendezvous system that integrates inforanking for future publish/subscribe architectures
 - Pre-trusted voters

6th NGI Conference, Fighting Spam in Publish/Subscribe Networks Using Information Ranking

Thank you

6th NGI Conference, Fighting Spam in Publish/Subscribe Networks Using Information Ranking

