MultiCache: an incrementally deployable overlay architecture for information-centric networking

Konstantinos Katsaros, George Xylomenos and George C. Polyzos
Mobile Multimedia Laboratory
Athens University of Economics and Business
Outline

- Motivation
- Design objectives
- MultiCache architecture
- Functionality overview
- Performance evaluation
- Ongoing and Future work
- Conclusions
Motivation

- **Internet model: end-to-end principle**
 - Need to resolve a specific end-host to retrieve data
- **Internet use: information-centric**
 - “Anyone” that can provide the required data is fine
 - E.g. P2P, cloud computing, etc.
- **Arbitrary overlay content delivery structures, ignoring:**
 - Network topology
 - Data location
 - Data popularity
- **Inefficient use of network resources**
 - E.g. 70% percent of an AS ingress traffic could be avoided in BitTorrent[1]

Design objectives

- Efficient use of network resources
 - Resource sharing mechanisms: multicast, caching
- Scalability
 - Unlimited size of the information domain
- Usage model simplification
 - End hosts not engaging in translating what to where
- Facilitated deployment of new functionality
 - Clean-slate requires replacing existing functionality
 - E.g. PSIRP Project
 - Network layer available solutions (e.g., IP Multicast)
 - Practically not available
 - Not easy to deploy gradually
 - Difficult group management
 - Targeting at an overlay architecture...
MultiCache architecture

- Deploying Overlay Access Routers (OARs) inside access networks
 - Gradual deployment is feasible
- Providing overlay multicast
 - Based on Scribe over Pastry
 - Scalable
 - Adaptive to physical topology
- Acting as caches
 - Multiple cache locations
 - Close to end-hosts
- Proxy-ing end host access to the overlay
 - Facilitating group management
 - Proxy OAR designated during network attachment
Currently focusing on content distribution
- Overlay multicast brings content from its origin
- Caching
 - Data @ proxy OARs, i.e., multicast tree leaves
 - Forwarding state @ Forwarding OARs
- Anycasting cache requests
 - Localizing traffic inside sub-trees
 - Taking advantage of Pastry’s locality properties
- Unicasting cached data
 - Reducing stretch...
- Content fragmentation
 - Parallelizing transfers
 - Enabling partial caching
Performance evaluation

- Cache replacement scheme not available at that time
 - Infinite cache sizes assumed
 - Upper bound on potential benefits
- Simulation based evaluation
 - OMNeT++, OverSim
- Comparing against BitTorrent [1]
- Scenario
 - Single 256MB file
 - 100 end hosts
 - GT-ITM topology
 - 1200 access routers in 25 AS’s
- Metrics:
 - Download Time (sec)
 - Egress Interdomain traffic (MB)
 - Intra-domain link stress

MultiCache vs. BitTorrent: traffic

Egress inter-domain traffic reduction: ↓60%
Same gains for intra-domain traffic
Traffic localized due to cache deployment
 → Forwarding mechanisms favors the discovery of near-by cache locations
 → Average block hop count:
 - BitTorrent: 8.86 hops
 - MultiCache: 4.61 hops
Reducing operational costs for network operators
Exchanging transmission with storage
Huge download time reduction:
\[\downarrow 90\%\]
This is only an upper limit
- Infinite cache sizes guarantee cache availability
- But:
 - Localized traffic favors faster downloads
 - End hosts do not search for content
 - Direct consequence of the information-centric model
 - No peer uplink bottlenecks
Caching scheme completed
- Global Internet Symposium, this Friday, March 19th
 - MultiCache takes advantage of multiple cache locations

Ongoing work:
- Comparing full fledged MultiCache with BitTorrent
 - Multi-torrent scenarios

Future work:
- Gaining control of inter-domain cache provision
 - Establishment of peering relationships between domains
 - Expressing them in a new “proximity” metric for Pastry
 - Employing Canonical Pastry
Conclusions

- Resource sharing, Request aggregation, Information awareness
- Combined use of multicast & caching inside access networks
- Overlay approach facilitates deployment
- Potential benefits:
 - Localizing traffic at sub-trees
 - Exchanging network traffic with storage
 - Reducing load on content provider
 - Potentials for download reduction
 - No search for data provider
 - No uplink bottlenecks
Thank you!

Questions?

Konstantinos Katsaros

Mobile Multimedia Laboratory

Department of Informatics/Computer Science

Athens University of Economics and Business

ntinos@aueb.gr

http://mm.aueb.gr/