Publish/Subscribe Internetworking
From PSIRP to PURSUIT

George Xylomenos
Mobile Multimedia Laboratory, AUEB
xgeorge@aueb.gr
Motivation

• Why revisit internetworking?
 – No need to preach to the converted, but…
 – …shift emphasis from endpoints to content
 – …adapt the network to application patterns

• Why use publish/subscribe?
 – Inherently content centric
 – Natural model for many applications
 – Seems to solve some current problems
 • Especially the power of senders over receivers
PSIRP and PURSUIT

- PSIRP: 2008-2010 (just ended)
 - Design and prototype the basic concepts
 - Rendezvous – Topology – Forwarding
 - Rough host and protocol implementations
 - Evaluation mostly by analysis and simulation

- PURSUIT: 2010-2013 (just started)
 - Explore lower and higher layers
 - Shift emphasis to inter-domain issues
 - More comprehensive evaluation
Project partners

PSIRP/PURSUIT

PSIRP only
IPP-BAS
NSN
BT

PURSUIT only
U Essex
CERTH
CTVC
Working method

• Spiral development model
 – Design, prototype, evaluate, repeat
 – Worked surprisingly well so far
• PSIRP managed 2-3 iterations
 – Very exploratory initial phases
 – Three closely located partners
 – Loosely coupled modules (maybe too loosely!)
• PURSUIT will probably manage 2 iterations
 – We know more, but we aim for more!
 – More partners in development from the start
High-level architecture
Information organization

- Information is published within (possibly many) scopes
 - Scopes are information collections
 - Scopes implement governance
Information identifiers

- Information is identified by
 - Scope ID (flat) and
 - Rendezvous ID (flat)
- Higher layer
 - Application IDs
 - Arbitrary
 - Resolution?
- Lower layer
 - Forwarding IDs
 - zFilters

Might include some form of application ID
Rendezvous

• Securely matches
 – entities (publishers and subscribers)
 – wishing to communicate (via publications)
 – on a certain topic (indicated by a RId)
 – inside a given scope (indicated by a SId)
• Locates rendezvous point(s) for a particular scope
 – Dedicated control plane (slow path)
• Two tier architecture
 – Individual rendezvous networks
 – Global rendezvous interconnect
Forwarding

- **zFilter**: in packet source route encoded as Bloom filter
 - Each link has a domain-local Link ID
 - Link tags of a path are combined

- **Advantages**
 - Fast forwarding
 - No local routing tables
 - Native multicast

- **Disadvantages**
 - Intradomain only
 - Extensions in PURSUIT
Topology

• Intra-domain (PSIRP)
 – Topology manager(s) in each domain
 – OSPF like protocol distributes Link IDs
 – Shortest paths are encoded to zFilters
 • Easy to combine partial paths

• Inter-domain (PURSUIT)
 – Need to take routing policies into account
 – zFilters have limited capacity
 • Exploring label switching and label stacking
Native implementation

user space

TM client

TM server

scope helper, RVS client

network I/O, forwarding

RVS node

pub/sub library

file system

socket system

pub/sub kernel module

blackboard

kernel space

virtual memory system
Native API

- Publications are simply memory areas
 - Sequences of pages
- Create publication
 - Allocate virtual memory objects
- Publish
 - Make content available to others
- Subscribe
 - Request and get content
- Register / Listen
 - Get notifications about publication events
Applications

• Some demo applications implemented
 – Firefox plugin, VoPSIRP, VidPSIRP, VLC tunnel
• How to get multiple RIds?
 – Assuming Google provides the first one…
• Algorithmic IDs: calculate sets of RIds
 – Good for streaming or segmentation
• BitTorrent-like: files with multiple RIds
 – Good for fixed documents
• Versioning: use the same RId repeatedly
 – Good for evolving documents
Overlay implementation

• Alternative implementation of PSIRP concepts
 – Implemented on top of IP
 • Pastry for key (ID) based routing
 • Scribe for rendezvous and multicast
 – More functionality for more overhead
 – Explored some higher layer ideas
• MultiCache: combined multicast & caching
 – Uses Scribe to serve flash crowds via multicast
 – Exploits Scribe state to keep track of caches
 • Caches serve later arrivals via unicast
Qualitative evaluation

• Security evaluation
 – Red-team approach, many fundamental issues
 • What are the attacker types?
 • What can the attackers do?
 – Search for vulnerabilities
 • Many found in PSIRP, more expected in PURSUIT
• Socio-economic evaluation
 – Test architecture viability in an uncertain future
 – PSIRP: System dynamics approach
 – PURSUIT: Market based approach
Quantitative evaluation

- Modeling and simulation issues
 - Models for traffic, user behaviour, policies?
 - Proper dimensioning for simulations?
 - Proper simulation test bed?
 - NS-3 used for the native implementation
 - OMNeT++ used for the overlay implementation

- Real experiments
 - Isolated test beds at partner sites
 - Hard to use PlanetLab for native implementation
 - Used VPN based testbed between partners
Evaluation testbed
Dissemination

• Open source code releases
 – All PSIRP sources released to the public
 • BSD and MIT licenses
 – External code site and wiki
 • Sources and VM images
 – FreeBSD node and rendezvous implementations
 – NetFPGA forwarding implementation
• Project spin-offs
 – BitTorrent for OMNeT++ (for benchmarking)
 – Hierarchical Pastry (for global rendezvous)
Thorny issues

- Identified in PSIRP, to explore in PURSUIT
- Rendezvous semantics
 - PSIRP assumed 1-to-N (mostly)
 - Also need N-to-1 (at least for network attachment)
- Service model
 - Document model implemented in PSIRP
 - Can a (TV) channel model be retrofitted?
- Network specific issues
 - Optical, wireless, mobile optimizations
- Transport protocols
 - Especially for multicast (back to the future!)
Conclusions

• PSIRP was a very ambitious project
 – Publish/subscribe everywhere in the stack
 – Many issues tackled
 • Rendezvous, local forwarding and topology, simple API
 – Opened up even more
• PURSUIT is more and less ambitious
 – Pursues many new directions
 • Lower and higher layer issues
 – Exploits previous work
 • Code base and lots of mistakes