

Information-Centric Networking & the Ψ Architecture

George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics Athens University of Economics and Business Athens 113 62, Greece

polyzos@aueb.gr, http://mm.aueb.gr/

Tel.: +30 210 8203 650, Fax: +30 210 8203 325

Mobile Multimedia Laboratory

Outline

- Introduction, motivation, overview
- An Overlay Approach
- The PSI (clean-slate) Architecture
- Discussion & Conclusion

Internet Clean-Slate Design

- What stood at the beginning
 - Collaboration
 - Cooperation
 - NO commercial traffic allowed!
- Endpoint-centric services not enough
- What about:
 - Trust?
 - Legitimacy of E2E?
 - NAT, firewalls, middleboxes
 - Role of overlays?
 - Information centrism?

Clean-slate design...

- Question ALL fundamentals
- Challenge our thinking
- Take nothing for granted, including industry structures
- Clear vision

...with late binding (to reality)

- Consider migration and evolvability in separate work items
 - How to get our design into real deployments, e.g., overlay vs. IP replacement?
- Consider necessary evolution of industry (and regulatory) structures
 - How do industries need to evolve in certain scenarios?

Motivation for an Information-Oriented Architecture

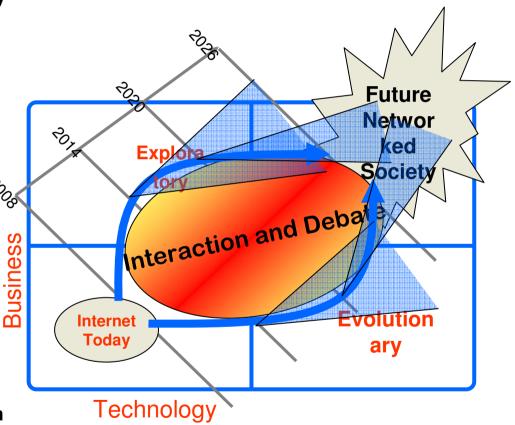
- End-to-end communication is not the prevailing paradigm
 - Firewalls, NATs, proxy-servers...
 - Information-centric use of the Internet (e.g. CDNs, proxy-servers)
 - Overlay content delivery structures ignore
 - network topology & data location
 - Request aggregation hard to achieve without information-awareness!
- Imbalance of power in favor of the sender
 - The network will forward anything a sender will inject
- No trust
 - E.g., phishing, spam, viruses, worms, etc.
- No adequate support for mobility (& multicast)

It's the new ways the Internet is used, for which it was not designed...

Relevant Research Projects

- **PSIRP**: Publish Subscribe Internet Routing Paradigm
 - FP7 ICT STREP, 2008-2010
 - the basis
- **PURSUIT**: Publish Subscribe Internet Technologies
 - ◆ FP7 ICT STREP, 2010-2013
 - revisiting, extending, above and below the Internet layer
- Euro-NF: Anticipating the Network of the Future— From Theory to Design
 - FP7 ICT NoE, 2008-2011+
 - various topics, including network architecture
- **EIFFEL**: FP7 ICT SSA, 2008-2010
 - Think-Tank continues
 - next meeting in June-July 2011 at MIT

FFFI

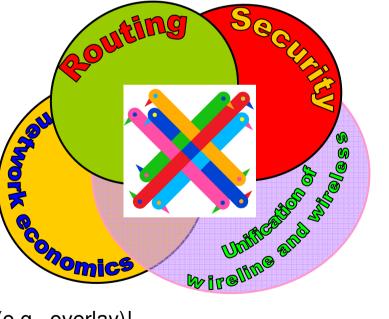


EIFFEL: Evolved Internet Future For European Leadership (FP7 SSA)

- Recognize importance of evolutionary & explorative path (balance)
- Vision trajectories developed for both paths (research agendas)
- Development of agendas over time (phased approach)

Interaction & debate needed for agendas & visions meet in common challenge

- Think Tank meetings
- White Papers
- Flpedia
- Creation of a community of scientific & technical experts
- Creation of European Dialog
- Identification of the areas of investigation and research that are crucial for the transformation of the Internet towards the Future Networked Society



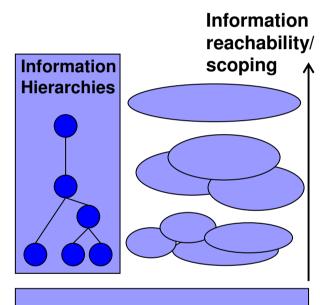
Publish Subscribe Internet Routing Paradigm (PSIRP) Vision

- Envision a system that dynamically adapts to evolving concerns and needs of its participating users
 - information centrism
- Publish–subscribe based internetworking architecture restores the balance of network economics **incentives between the sender and the receiver**
- Recursive use of publish-subscribe paradigm enables dynamic change of roles between actors

Objectives

- Specify, implement and test an internetworked pub/sub architecture
 - follow a **clean-slate design** approach
- Perform qualitative and quantitative evaluation
 - Security and socio-economics important!
 - Migration and incentive scenarios important (e.g., overlay)!

The PSIRP Project


- EU FP7 ICT STREP, 2008-2010 (http://www.psirp.org/)
- A Pub/Sub based clean-slate architecture for the Future Internet
- Multicast (& caching) will be the norm
- Security (& privacy) are main design goals
- Mobility will be considered from the early stages of the design
- *Everything* is **Information**... (content, meta-data, publications...)
- Trust-to-Trust (T2T) principle
 - Helsinki Institute for Information Technology (HIIT)
 - RWTH Aachen
 - British Telecom (BT)
 - Oy LM Ericsson Ab (LMF)
 - Nokia Siemens Networks Oy (NSNF)

- Athens University of Economics and Business (AUEB)
- Institute for Parallel Processing, Bulgarian Academy of Science (IPP-BAS)
- Ericsson Hungary Ltd. (ETH)

Main Design Principles of the Ψ Architecture

• Information is multi-hierarchically organised

- Higher-level information semantics are constructed in the form of directed acyclic graphs (DAGs), starting with meaningless forwarding labels towards higher level concepts (e.g., ontologies).
- Information scoping
 - Mechanisms are provided that allow for limiting the reachability of information to the parties having access to the particular mechanism that implements the scoping.
- Scoped information neutrality
 - Within each scope of information, data is only forwarded based on the given (scoped) identifier.
- The architecture is receiver-driven
 - No entity shall be delivered data unless it has agreed to receive those beforehand, through appropriate signalling methods.

Communication Model

An Information-Centric Overlay Network Architecture for Content Distribution and Mobility Support

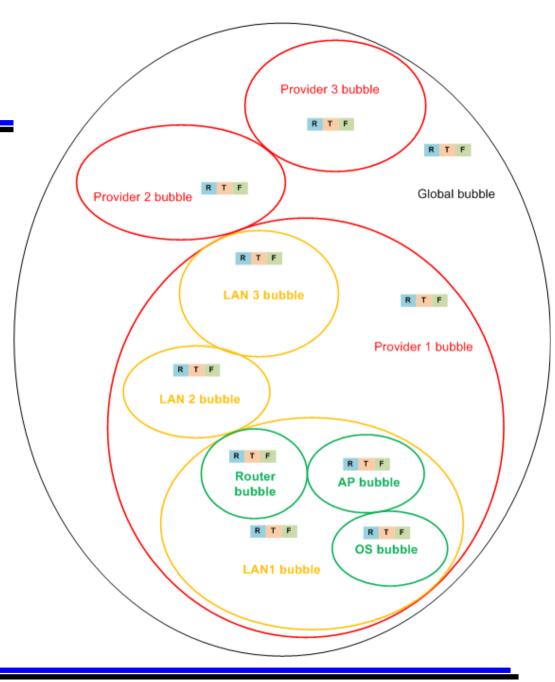
Ph.D. Dissertation by Konstantinos Katsaros

• Multicast

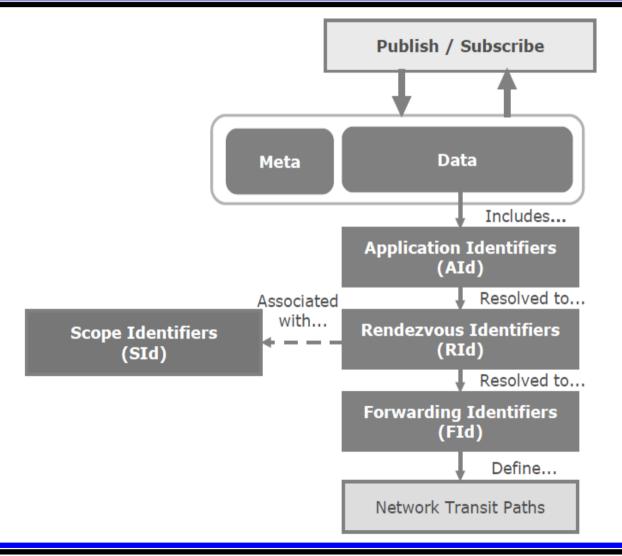
- Router Assisted Overlay Multicast (RAOM)
 - Deploying multicast functionality in an overlay fashion
- Multicast & Caching
 - MultiCache
 - Enabling caching of data delivered by multicast trees
- Adapting to the inter-network structure
 - H-Pastry
 - Canonical version of Pastry
- Mobility Support
 - Overlay Multicast Assisted Mobility (OMAM)
 - Revisiting multicast assisted mobility

K.V. Katsaros, G. Xylomenos, and G.C. Polyzos, "MultiCache: an Overlay Architecture for Information-Centric Networking," *Computer Networks*, vol. 55, no. 4, pp. 936-947, Elsevier, Special Issue on 'Architectures and Protocols for the Future Internet, 'March 2011.

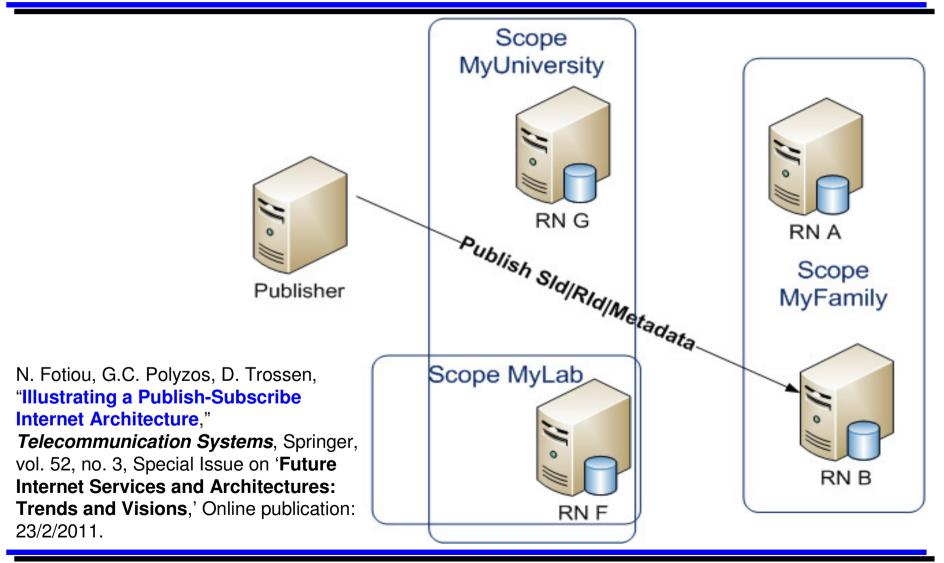
N. Fotiou, K.V. Katsaros G.C. Polyzos, M. Särelä, D. Trossen, G. Xylomenos, "Handling Mobility in Future Publish-Subscribe Information-Centric Networks," *Telecommunication Systems*, Springer, Special Issue on 'Mobility Management in the Future Internet,' to appear.

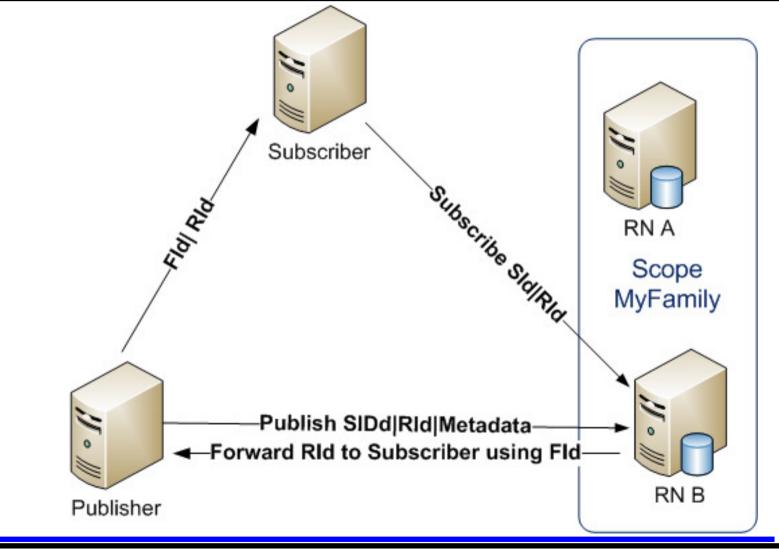

The PSI (Pub/Sub Internet) Architecture

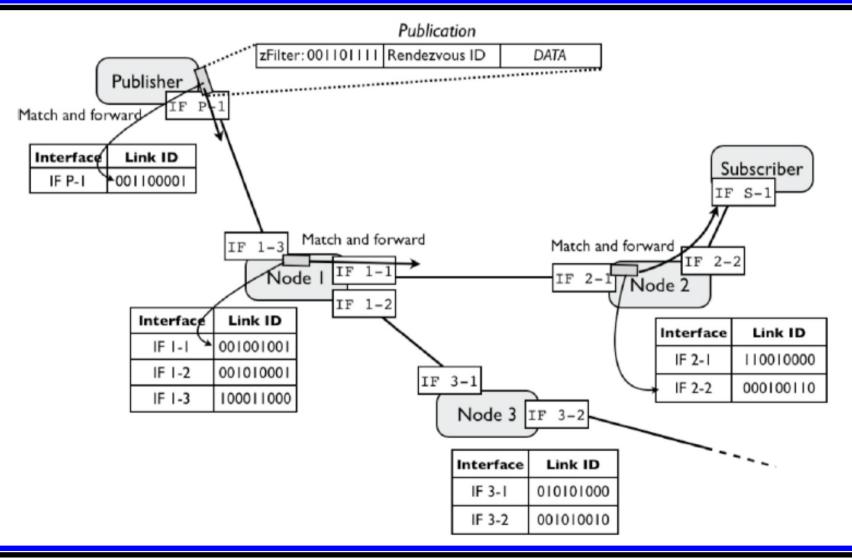
• Ψ


- Clean-Slate
- Native
- Two different prototype implementations exist
 - Blackhawk (PSIRP)
 - Blackadder (PURSUIT)
- More coming up...?

Basic Functions


- *Rendezvous*: Matches *publications* with *subscriptions* and initializes the forwarding process
- *Topology*: Monitors the network and it creates information delivery paths
- *Forwarding*: Implements information forwarding


Identifiers


Ψ Publication

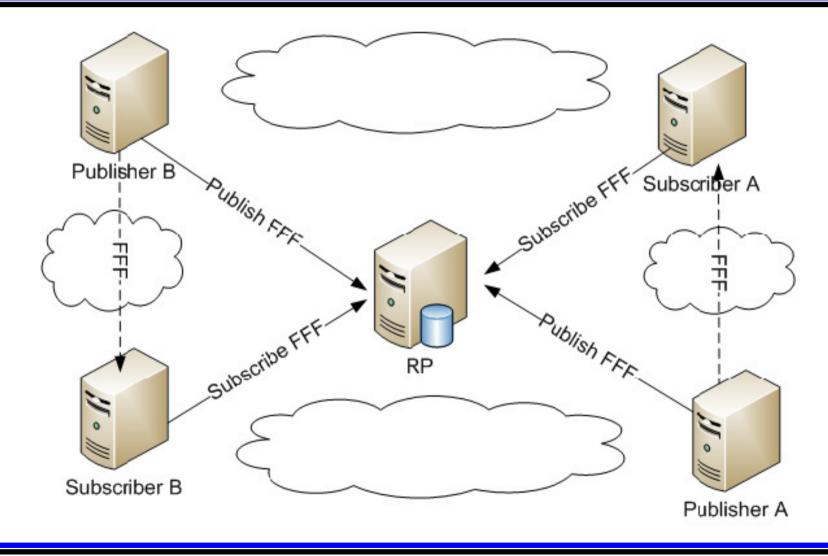
Ψ Subscription

zFilters Based Forwarding

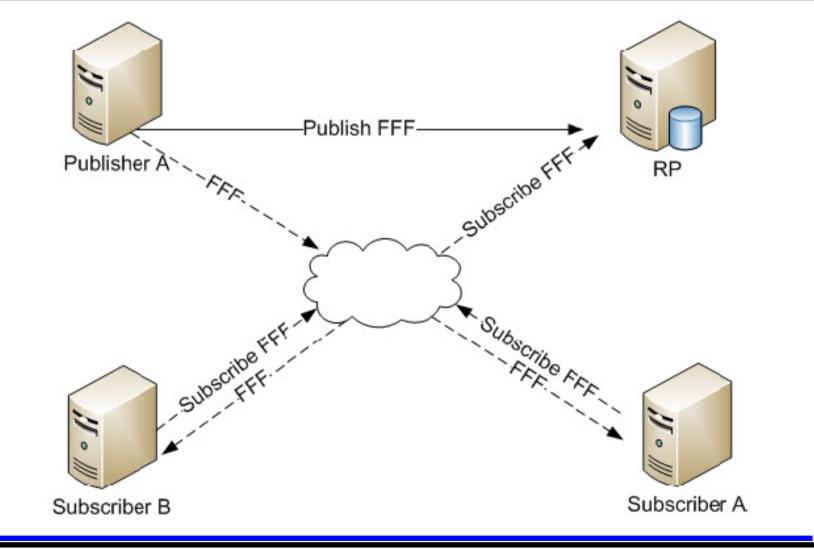
Security Requirements

• Publications confidentiality

publications should be not revealed to unauthorized subscribers


Subscription confidentiality

- user subscriptions should be kept secret
- Integrity, Availability
- Authentication, Anonymity
- Accountability
- Information Scoping


Security Characteristics of $\boldsymbol{\Psi}$

- Pub/Sub restores the imbalance of power between sender and receiver(s)
- No information flow until **explicit** signal for
 - Interest for specific piece of information
 - Anti-Spam mechanism
 - Availability of a specific piece of information
 - Anti-DoS mechanism
- Pub/Sub facilitates
 - Anonymity
 - Mobility
 - Multihoming
- Message aggregation
 - Resource sharing (e.g., with multicast)

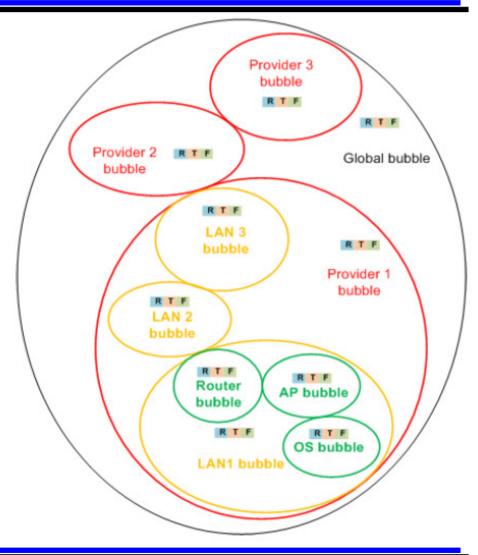
'Caching' / Multiple Information Providers & Multiple Paths Example

Resource Sharing Example

Packet Level Authentication (PLA)

- Per packet public key cryptographic operations are possible
 - at wire speed
- The network carries only authentic data
 - Requires third-party certificates
- Need not be implemented at all nodes
 - Selected key nodes
- PLA offers significant energy efficiency
- Implemented in NetFPGAs

Secure Forwarding Mechanism

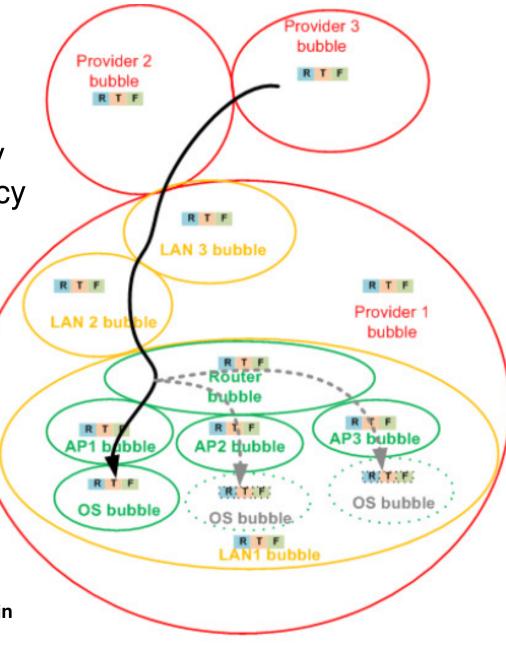

- Forwarding is based on the creation of a Bloom filter (called zFilter) that contains all the link identifiers through which a packet has to travel
- Link identifiers are unique per information flow
- zFilter creation involves an encryption mechanism
 - DoS attack resistant
 - Almost impossible to
 - redirect an information flow
 - send arbitrary packets to a destination

Scopes: Ψ's Information *Firewalls*

- Scopes allow for information location as well as for control of information dissemination
- Can be physical....
 - e.g., a sub-network
- ... or logical
 - e.g., my friends in Facebook
- In scopes, access control and accounting mechanism will be implemented

Building Blocks in Ψ: *Bubbles*

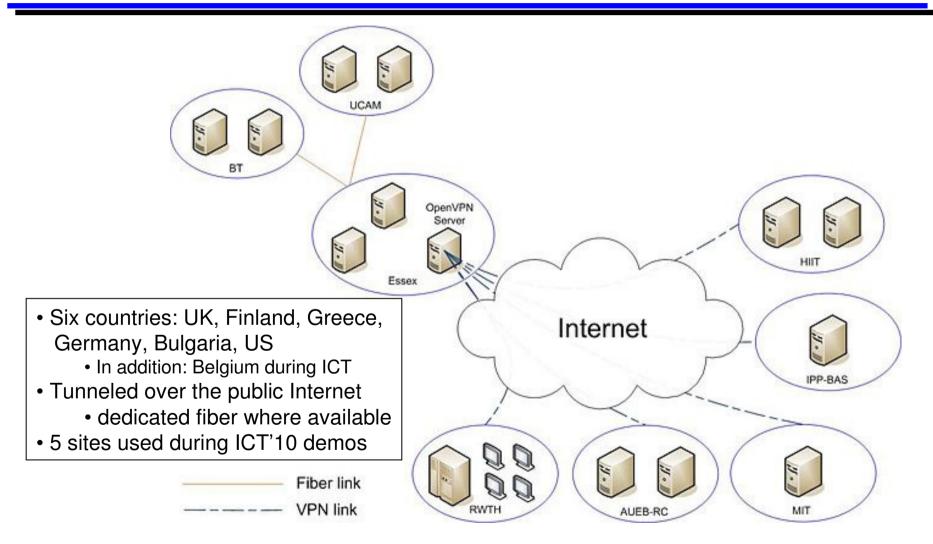
- The *bubble* concept is akin to the current layering model
- The basic building block of functionality at all levels
 - from OS
 - through LAN
 - to Global Internetwork
- Bubbles offer availability and extensibility through the recursive execution of basic functions


Bubbles...

- Need to implement the 3 basic functions: *Rendezvous*, *Topology* and *Forwarding* (RTF)
 - Rendezvous
 - responsible for matching subscriptions with publications
 - Topology
 - monitors the network topology
 - and creates information delivery paths
 - Forwarding
 - implements information forwarding
 - ... throughout the delivery path(s)
- ... differently, depending on level

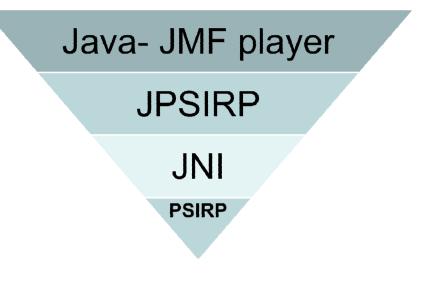
Mobility and Privacy support

 Bubbles support mobility as well as location privacy


N. Fotiou, K.V. Katsaros G.C. Polyzos, M. Särelä, D. Trossen, G. Xylomenos, "Handling Mobility in Future Publish-Subscribe Information-Centric Networks," *Telecommunication Systems*, Springer, Special Issue on '**Mobility Management in the Future Internet**,' to appear.

Advantages of PSI in Mobility Support

- Publishers & Subscribers can seamlessly & simultaneously move
 - Data (packets) are identified independently from source or destination
 - Information (cached? content) is still transparently available
- Publish/Subscribe is **asynchronous** and **multicast**
 - Demand for content served without the need of the synchronous presence of a publisher (source)
 - Adapts better to frequent mobility
- Anonymity
 - subscribers and publishers remain anonymous (unlike IP)
- Routing and Forwarding
 - decoupling IDs from addressing is a major advantage
 - locations are ephemeral
 - no need for **triangular** routing
 - ingress filtering problem
 - **anycast** choice of the best source of content


PSIRP Testbed

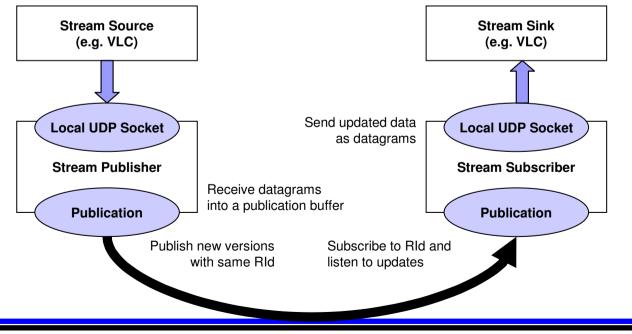
Multimedia over Ψ

- Motive: Multimedia over Ψ
 - the "YouTube" of the future
- Streaming videos
 - without RTP/TCP/IP
 - only native Ψ
- Basic Components of the application:
 - Publisher: the owner of the video
 - **Subscriber**: the user that seeks to view the video

Technologies Involved

- We tried different applications
 - Video

...


Audio/voice (VoPSI)

Publish Videos

- Publish a video or a directory with multiple videos
- Define the scope for the video she uploads to the network
- Currently done via local exchange of video knowledge

Subscribe to a Video

- Search for the desirable video using the name of the video
 - Currently done via local exchange of information
- Subscribe to its PSI-level identifiers
- Play the video while downloading

NOTE: The publisher knows the subscriber set for this RId, sends the metadata directly to the subscribers; no rendezvous. Subscriber with metadata for a new version, subscribes to the corresponding data chunks.

The PURSUIT Project

- EU FP7 ICT STREP, 2010-2013 (http://www.fp7-pursuit.eu/)
- information-centric view on networking
- Focusing on WHAT is being exchanged
 - rather than who are exchanging it, or where it is
- Builds on the results of PSIRP
- Designing (/extending/completing) an internet architecture based on pub/sub
 - Routing
 - Security
 - Economics
 - Unification of Wireless w/ Wireline
- 8 partners from 4 EU countries: Finland, Germany, Greece and UK
 - Aalto University (FI)
 - RWTH Aachen University (DE)
 - Athens University of Economics and Business (GR)
 - University of Cambridge (UK)

- Oy L M Ericsson Ab (FI)
- Centre for Research and Technology Hellas (GR)
- ◆ University of Essex (UK) ◆ CTVC Ltd (GB)

Current Work in PURSUIT

extends PSIRP's work & results

- Creation of robust & reliable rendezvous system & topology manager
 - Inter-domain rendezvous, topology, forwarding
- New Prototypes
 - PSIRP: Blackhawk; PURSUIT: Blackadder (new)
- Securing Scopes
 - and rethinking the implementation
- Deployment of a large PSIRP testbed for experimentation
 - and alternative evaluation tools
- secure naming services

Conclusions

- ICN is better positioned to address
 - mobility, caching, security, privacy...
 - Evolution & tussles resolved at or near run-time
- The Ψ architecture inherits the advantages of ICN & the publish/subscribe paradigm
 - In particular the security ones, but....
- PSIRP selected and added specific security mechanisms
 - Packet Level Authentication
 - Secure Forwarding (zFilters)
 - Scopes
 - Bubbles
 - Information ranking

PSI: Key Observations and Issues

- RIDs: hash of content vs. not...
 - Implications of uniquely indentifying content
 - Caching (enabled/facilitated)
- SIDs as special case of RIDs
- pub/sub "recursively"
 - at many levels of the hierarchy/network
 - from wire-level to the global Internet
 - perhaps used to realize reliable transport
- Granularity of items (to publish/subscribe to)
- pub/sub model: documents vs. channels
 - versions (& IDs) of publications?
- Algorithmic Identifiers (RIDs)
 - nice for intra-channel IDs...
- asynchronous (subscribe before publish)
- search engines probably still important (at different level?)
- Naming vs. IDs?
- Mobility, multi-homing, soft handoff...

More Observations, Questions & Issues

• ...

- information vs. content -centric vs. named data vs. pub/sub vs. ...
- overlay vs. clean-slate
 - special-purpose nets only? Not global?
- Wireless?
- Rendezvous
 - powerful
 - trusted
 - has lots of information...
 - target of DOS attacks
 - networks of RPs = RN
 - belongs to different entities than network provider?
 - competing RN
 - RP functionality needed at multiple & different levels
 - intranet, global... on a wire...