Information-Centric Networking
& the
Publish-Subscribe Internet (PSI) Architecture

George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics
Athens University of Economics and Business
Athens 113 62, Greece

polyzos@aueb.gr, http://mm.aueb.gr/
Tel.: +30 210 8203 650, Fax: +30 210 8203 325
Outline

- Introduction, motivation, overview
 - An Overlay Approach
- The PSI (clean-slate) Architecture
- Discussion & Conclusion
Internet Clean-Slate Design

- **What stood at the beginning**
 - Collaboration
 - Cooperation
 - NO commercial traffic allowed!

- **Endpoint-centric services not enough**

- **What about:**
 - Trust?
 - Legitimacy of E2E?
 - NAT, firewalls, middleboxes
 - Role of overlays?
 - Information centrism?

Clean-slate design...
- Question ALL fundamentals
- Challenge our thinking
- Take nothing for granted, including industry structures
- Clear vision

...with late binding (to reality)
- Consider migration and evolvability in separate work items
 - How to get our design into real deployments, e.g., overlay vs. IP replacement?
- Consider necessary evolution of industry (and regulatory) structures
 - How do industries need to evolve in certain scenarios?
Relevant Research Projects

- **PSIRP**: Publish Subscribe Internet Routing Paradigm
 - FP7 ICT STREP, 2008-2010
 - the basis
- **Pursuit**: Publish Subscribe Internet Technologies
 - FP7 ICT STREP, 2010-2013
 - revisiting, extending, above and below the Internet layer
- **φSAT**: The role of Satellite in the Future Internet
 - ESA funded study, 2011-2012
- **Euro-NF**: Anticipating the Network of the Future
 - From Theory to Design
 - FP7 ICT NoE, 2008-2011+
 - various topics, including network architecture
- **Eiffel**: FP7 ICT SSA, 2008-2010
 - Think-Tank continues
 - last meeting in June-July 2011 at MIT
Recognize importance of evolutionary & explorative path (balance)
Vision trajectories developed for both paths (research agendas)
Development of agendas over time (phased approach)

Interaction & debate needed for agendas & visions meet in common challenge

- Think Tank meetings
- White Papers
- FIpedia
- Creation of a community of scientific & technical experts
- Creation of European Dialog
- Identification of the areas of investigation and research that are crucial for the transformation of the Internet towards the Future Networked Society
Motivation for an Information-Oriented Architecture

- **End-to-end** communication is not the prevailing paradigm
 - Firewalls, NATs, proxy-servers…
 - **Information-centric use** of the Internet (e.g. CDNs, proxy-servers)
 - Overlay content delivery structures ignore
 - network topology & data location
 - Request aggregation hard to achieve without information-awareness!
- Imbalance of power in favor of the sender
 - The network will forward anything a sender will inject
- No trust
 - E.g., phishing, spam, viruses, worms, etc.
- No adequate support for mobility (& multicast)

It’s the new ways the Internet is used, for which it was not designed…
Publish Subscribe Internet Vision

- Envision a system that dynamically adapts to evolving concerns and needs of its participating users
 - information centrism
- Publish–subscribe based internetworking architecture restores the balance of network economics incentives between the sender and the receiver
- Recursive use of publish-subscribe paradigm enables dynamic change of roles between actors

Objectives

- Specify, implement and test an internetworked pub/sub architecture
 - follow a clean-slate design approach
- Perform qualitative and quantitative evaluation
 - Security and socio-economics important!
 - Migration and incentive scenarios important (e.g., overlay)!

polyzos@aueb.gr
The PSIRP Project

- EU FP7 ICT STREP, 2008-2010 (http://www.psirp.org/)
- A Pub/Sub based clean-slate architecture for the Future Internet
- Multicast (& caching) will be the norm
- Security (& privacy) are main design goals
- Mobility will be considered from the early stages of the design

- *Everything* is *Information*… (content, meta-data, publications…)
- Trust-to-Trust (T2T) principle
 - Helsinki Institute for Information Technology (HIIT)
 - RWTH Aachen
 - British Telecom (BT)
 - Oy LM Ericsson Ab (LMF)
 - Nokia Siemens Networks Oy (NSNF)
 - Athens University of Economics and Business (AUEB)
 - Institute for Parallel Processing, Bulgarian Academy of Science (IPP-BAS)
 - Ericsson Hungary Ltd. (ETH)
Main Design Principles of the Ψ Architecture

- **Information is multi-hierarchically organised**
 - Higher-level information semantics are constructed in the form of directed acyclic graphs (DAGs), starting with meaningless forwarding labels towards higher level concepts (e.g., ontologies).

- **Information scoping**
 - Mechanisms are provided that allow for limiting the reachability of information to the parties having access to the particular mechanism that implements the scoping.

- **Scoped information neutrality**
 - Within each scope of information, data is only forwarded based on the given (scoped) identifier.

- **The architecture is receiver-driven**
 - No entity shall be delivered data unless it has agreed to receive those beforehand, through appropriate signalling methods.
An Information-Centric Overlay Network Architecture for Content Distribution and Mobility Support

Ph.D. Dissertation by Konstantinos Katsaros

- **Multicast**
 - *Router Assisted Overlay Multicast (RAOM)*
 - Deploying multicast functionality in an overlay fashion

- **Multicast & Caching**
 - *MultiCache*
 - Enabling caching of data delivered by multicast trees

- **Adapting to the inter-network structure**
 - *H-Pastry*
 - Canonical version of Pastry

- **Mobility Support**
 - *Overlay Multicast Assisted Mobility (OMAM)*
 - Revisiting multicast assisted mobility

The PSI (Pub/Sub Internet) Architecture

- Ψ
- Clean-Slate
- Native

- Two different prototype implementations exist
 - Blackhawk (PSIRP)
 - Blackadder (PURSUIT)
- More coming up...?
Basic Functions

- **Rendezvous**: Matches publications with subscriptions and initializes the forwarding process.

- **Topology**: Monitors the network and it creates information delivery paths.

- **Forwarding**: Implements information forwarding.
Identifiers
Ψ Publication

Ψ Subscription
zFilters Based Forwarding

Publication

Publisher

zFilter: 001101111
Rendezvous ID
DATA

Interface	Link ID
IF P-1 001100001

Node 1

IF 1-3
Match and forward

Interface	Link ID
IF 1-1 001001001
IF 1-2 001010001
IF 1-3 100011000

Node 2

IF 2-1
Match and forward

Interface	Link ID
IF 2-1 110010000
IF 2-2 000100110

Node 3

IF 3-1

Interface	Link ID
IF 3-1 010101000
IF 3-2 001010010

Subscriber

IF S-1
Security Requirements

- Publications confidentiality
 - publications should be not revealed to unauthorized subscribers
- Subscription confidentiality
 - user subscriptions should be kept secret
- Integrity, Availability
- Authentication, Anonymity
- Accountability
- Information Scoping
Security Characteristics of Ψ

- Pub/Sub restores the imbalance of power between sender and receiver(s)
- No information flow until *explicit* signal for
 - Interest for specific piece of information
 - Anti-Spam mechanism
 - Availability of a specific piece of information
 - Anti-DoS mechanism
- Pub/Sub facilitates
 - Anonymity
 - Mobility
 - Multihoming
- Message aggregation
 - Resource sharing (e.g., with multicast)
Resource Sharing Example

Publisher A

Publish FFF

Subscriber B

Subscribe FFF

Subscribe FFF

Subscribe FFF

Subscriber A

RP
Packet Level Authentication (PLA)

- Per packet public key cryptographic operations are possible
 - at wire speed
- The network carries only authentic data
 - Requires third-party certificates
- Need not be implemented at all nodes
 - Selected key nodes
- PLA offers significant energy efficiency
- Implemented in NetFPGAs
Secure Forwarding Mechanism

- Forwarding is based on the creation of a Bloom filter (called zFilter) that contains all the link identifiers through which a packet has to travel.
- Link identifiers are unique per information flow.
- zFilter creation involves an encryption mechanism:
 - DoS attack resistant
 - Almost impossible to:
 - Redirect an information flow
 - Send arbitrary packets to a destination
Scopes: Ψ’s Information Firewalls

- Scopes allow for information location as well as for control of information dissemination
- Can be physical….
 - e.g., a sub-network
- … or logical
 - e.g., my friends in Facebook
- In scopes, access control and accounting mechanism will be implemented
Building Blocks in Ψ: Bubbles

- The **bubble** concept is akin to the current layering model

- The basic building block of functionality at all levels
 - from OS
 - through LAN
 - to Global Internetwork

- Bubbles offer availability and extensibility through the **recursive** execution of basic functions
Need to implement the 3 basic functions:

Rendezvous, *Topology* and *Forwarding* (RTF)

- **Rendezvous**
 - responsible for matching subscriptions with publications
- **Topology**
 - monitors the network topology
 - and creates information delivery paths
- **Forwarding**
 - implements information forwarding
 - … throughout the delivery path(s)

... differently, depending on level
Mobility and Privacy support

- Bubbles support mobility as well as location privacy

Advantages of PSI in Mobility Support

- Publishers & Subscribers can seamlessly & simultaneously move
 - Data (packets) are identified independently from source or destination
 - Information (cached? content) is still transparently available

- Publish/Subscribe is **asynchronous** and **multicast**
 - Demand for content served without the need of the synchronous presence of a publisher (source)
 - Adapts better to frequent mobility

- Anonymity
 - subscribers and publishers remain anonymous (unlike IP)

- Routing and Forwarding
 - decoupling IDs from addressing is a major advantage
 - locations are ephemeral
 - no need for **triangular** routing
 - **ingress filtering** problem
 - **anycast** choice of the best source of content
Multimedia over Ψ

- Motive: Multimedia over Ψ
 - the “YouTube” of the future

- Streaming videos
 - without RTP/TCP/IP
 - only native Ψ

- Basic Components of the application:
 - **Publisher**: the owner of the video
 - **Subscriber**: the user that seeks to view the video

- Technologies Involved
 - Java- JMF player
 - JPSIRP
 - JNI
 - PSI

- We tried different applications
 - Video
 - Audio/voice (VoPSI)
 - ...
Publish Videos

- Publish a video or a directory with multiple videos
- Define the scope for the video she uploads to the network
- Currently done via local exchange of video knowledge

Subscribe to a Video

- Search for the desirable video using the name of the video
 - Currently done via local exchange of information
- Subscribe to its PSI-level identifiers
- Play the video while downloading

NOTE: The publisher knows the subscriber set for this RId, sends the metadata directly to the subscribers; no rendezvous. Subscriber with metadata for a new version, subscribes to the corresponding data chunks.
Six countries: UK, Finland, Greece, Germany, Bulgaria, US
 • In addition: Belgium during ICT
 • Tunneled over the public Internet
 • dedicated fiber where available
 • 5 sites used during ICT’10 demos
The PURSUIT Project

- EU FP7 ICT STREP, 2010-2013 (http://www.fp7-pursuit.eu/)
- *information-centric* view on networking
- Focusing on *WHAT* is being exchanged
 - rather than who are exchanging it, or where it is
- Builds on the results of PSIRP
- Designing (/extending/completing) an internet architecture based on pub/sub
 - Routing
 - Security
 - Economics
 - Unification of Wireless w/ Wireline
- 8 partners from 4 EU countries: Finland, Germany, Greece and UK
 - Aalto University (FI)
 - RWTH Aachen University (DE)
 - Athens University of Economics and Business (GR)
 - University of Cambridge (UK)
 - Oy L M Ericsson Ab (FI)
 - Centre for Research and Technology Hellas (GR)
 - University of Essex (UK)
 - CTVC Ltd (GB)

polyzos@aueb.gr
Current Work in PURSUIT

extends PSIRP’s work & results

- Creation of robust & reliable rendezvous system & topology manager
 - Inter-domain rendezvous, topology, forwarding
- New Prototypes
 - PSIRP: Blackhawk; PURSUIT: Blackadder (new)
- Securing Scopes
 - and rethinking the implementation
- Deployment of a large PSIRP testbed for experimentation
 - and alternative evaluation tools
- secure naming services
PURSUIT Testbed

- 25 nodes
- 5 countries:
 - UK
 - Finland
 - Greece
 - Germany
 - USA
- Tunneled (VPN)
 - over the public Internet
Conclusions

- ICN is better positioned to address
 - mobility, caching, security, privacy...
 - Evolution & tussles resolved at or near run-time
- The Ψ architecture inherits the advantages of ICN & the publish/subscribe paradigm
 - In particular the security ones, but....
- PSIRP selected and added specific security mechanisms
 - Packet Level Authentication
 - Secure Forwarding (zFilters)
 - Scopes
 - Bubbles
 - Information ranking
PSI: Key Observations and Issues

- RIDs: hash of content vs. not...
 - Implications of uniquely identifying content
 - Caching (enabled/facilitated)
- SIDs as special case of RIDs
- pub/sub “recursively”
 - at many levels of the hierarchy/network
 - from wire-level to the global Internet
 - perhaps used to realize reliable transport
- Granularity of items (to publish/subscribe to)
- pub/sub model: documents vs. channels
 - versions (& IDs) of publications?
- Algorithmic Identifiers (RIDs)
 - nice for intra-channel IDs...
- asynchronous (subscribe before publish)
- search engines probably still important (at different level?)
- Naming vs. IDs?
- Mobility, multi-homing, soft handoff...
More Observations, Questions & Issues

- ...
- information vs. content -centric vs. named data vs. pub/sub vs. ...
- overlay vs. clean-slate
 - special-purpose nets only? Not global?
- Wireless?
- Rendezvous
 - powerful
 - trusted
 - has lots of information...
 - target of DOS attacks
 - networks of RPs = RN
 - belongs to different entities than network provider?
 - competing RN
 - RP functionality needed at multiple & different levels
 - intranet, global... on a wire...

polyzos@aueb.gr