

Athens University of Economics and Business Mobile Multimedia Laboratory

Supporting Mobility in a Pub/Sub Architecture

Publish Subscribe Internet (PSI - Ψ) in mobile environments

BACKGROUND

Mobility Support in PSI

PSI architecture can support mobility with no adjustment/modifications

- **Goal**: Present a scenario that supports mobility
 - With no adjustment/modifications
 - Applies optimizations for mobile agents.

Mobility Support in PSI

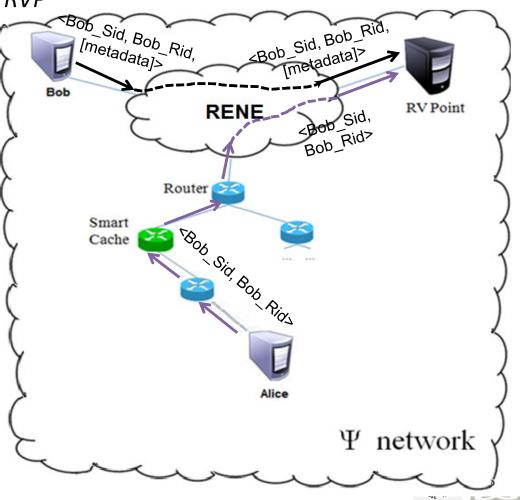
Smart Caches (SC):

- An Optimization
- In-network caches

Study Assumptions:

- micro-mobility, where mobility is deteriorated, thus mobile agents are not expected to move to far distant access points
- Publishers and RVPs: fixed Vs. Subscribers: mobile

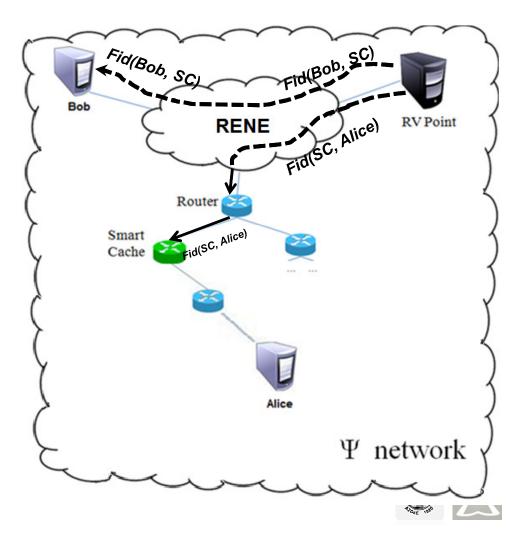
Dobility Scenario


Smart Cache Selection

SMARTCACHES

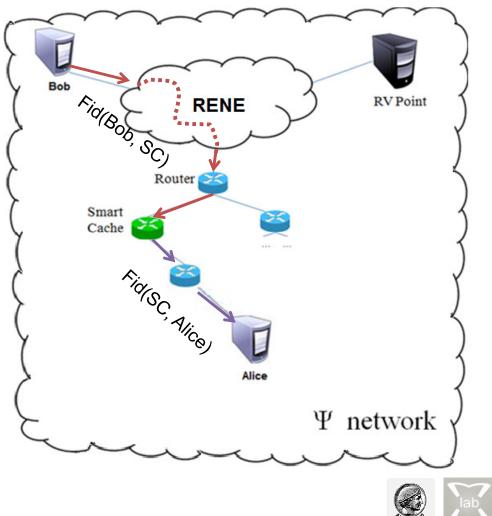
Step-by-step Mobility Scenario

Issuing publications, submissions to RVP


- The publisher (Bob) issues a publication: <Bob_Sid, Bob_Rid, [metadata]>
- 2. RVP records the publication
- A Subscriber (Alice) issues a subscription for <Bob_Sid, Bob_Rid>
- **RVP matches publication** and subscription based on SID, RID

Step-by-step Mobility Scenario

Smart cache comes in


- 5. RVP selects a smart cache (SC)
 - based on topological knowledge
 - Goal: to better facilitate the delivery of data to subscribers thought SC
- The RVP records the SC as both a publisher and a subscriber for Bob_Sid/Bob_Rid
- 2 Fids used upon a matching subscription:
 - Fid(Bob, SC)
 - Fid(SC, Alice)

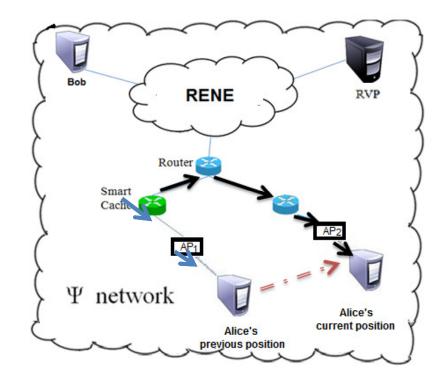
Step-by-step Mobility Scenario

data delivering

- 8. Data sent
 - SC caches data for at least as much time as the time required for Alice to move to another access point AP

3/4

4/4


Step-by-step Mobility Scenario

Alice moves.. while receiving data

- 9. Alice sends a new subscription<Bob_Sid,Bob_Rid> from the new position
- 10. 2 different matching publications in RVP.
 - One corresponding to Bob

10

- One corresponding to the SC
- RVP selects the best suited publisher (anycast), e.g., the closer one to Alice
 - in this case most probably the SC

Smart Cache Selection

1st case: Based on topological knowledge

RVP forecasting (RVPf)

11

- Forecast the next possible positions of mobile agent Alice (micromobility)
- Possible to even assign a SC before Alice "handovers" to another AP.
 - Data sent via multicast tree to all the SCs.

Smart Cache Selection

2nd case

- The AP detects Alice's movement
- Sends a control message to RVP
 - Triggers the creation of an new SC, suitable for the prospective new AP for Alice
- initiates the assignment of SC before Alice is detached from the current AP (smooth handover)
- □ Cost
 - additional control message (small overhead).
 - Yet, it mitigates the load at RVP.

CONCLUSION

Conclusions

- \Box Ψ architecture supports mobility in any case
 - Asynchrony,
 - ID are independent from the current location
- Optimization for mobility of subscribers
 - Without modifying the PSI architecture
- By products:
 - Smart Cashes SCs enhance anonymity as intermediates/proxies
 - SCs could also be used for transport layer reliability
 - Acts as a local rendezvous point
 - useful for new coming subscribers who can receive data by anycast immediately
- □ SCs feeding other SCs: Multicast trees.

