		Conclusion


User-centrism in wireless networking

Pantelis Frangoudis

Pantelis Frangoudis

Introduction 000000		Conclusion

Outline

- 2 User-provided wireless network infrastructure
- 3 User-centric secure multimedia services
- 4 Crowdsourced Wi-Fi topology discovery

6 Conclusion

Introduction		Conclusion

Introduction

Pantelis Frangoudis

Introduction		Conclusion
• 0 0000		
Background		

Background

Traditional view of communications has been disrupted

- Operator-centric view: user as a consumer
- Evident user empowerment

Recent advances

- Increased user-based wireless coverage
- Flexible technologies for wireless home networking
- Versatile technologies at the user end
- The rise of crowdsourcing

Introduction		Conclusion
00000		
Background		

Opportunities and challenges for a user-centric networking paradigm

Why user-centric?

- Exploit underutilized resources
- Exploit user capabilities (versatile devices, mobility,...)
- Flexibility, autonomy
- Reduced mgmt complexity and infrastructure cost

Performance challenges

- Low-cost, resource-constrained user equipment
- Lack of technical expertise
- Lack of central planning and control
- Best-effort-style operation

Security challenges

- Untrusted crowds
- Lack of "contracts"
- Loose identification

Pantelis Frangoudis

Introduction		Conclusion
00000		
Thesis		

Thesis

Research axes

- Wireless access
- Multimedia service provision
- Information provision (for network mgmt/optimization)

Pantelis Frangoudis

Introduction		Conclusion
00000		
Thesis		

Thesis

Research axes			E2E multimedia	Provide
 Wireless access 	User roles	Share resources	communication	information
 Multimedia service provision 				
 Information provision (for network mgmt/optimization) 	Dimensions	Network infrastructure	Service provision	Network management and optimization
Principles			nt, open access, security,	aw east appratian
User empowerment	Principles	oser empowermer	decentralization	ow-cost operation,
 Open access 				
 Decentralization 				
 Security 				
Low-cost operation				

Pantelis Frangoudis

Introduction		Conclusion
000000		
Contribution		

User-centric wireless access

Community wireless mesh networks

- Studied and classified existing wireless communities around the world
- Discovered power law behavior in their structure

Building a Wi-Fi sharing scheme

- Protocol design with existing, low-cost equipment in mind
- First to implement a decentralized Wi-Fi sharing scheme on home Wi-Fi routers

Introduction		Conclusion
000000		
Contribution		

User-centric multimedia services

Highlights

- Built on existing user equipment
- Minimal need for additional rendezvous infrastructure
- Secure and tackling legal implications

First to:

- Propose a tunneling-based secure communication scheme for wireless communities
- Do it purely on home user equipment
- Do it in a purely user-centric way
- Measure its impact on VoIP QoE

Pantelis Frangoudis

Introduction		Conclusion
000000		
Contribution		

User-centric Wi-Fi topology discovery

A robust crowdsourcing approach

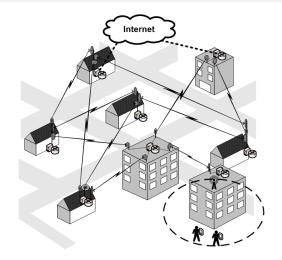
- Tailored to managed Wi-Fi deployments
- Distributed information collection for centralized network management
- IEEE 802.11k-based reporting architecture
- Reputation-based report filtering to combat fake reporting

First to:

- Address specific IEEE 802.11k attacks & propose/implement countermeasures
- Derive analytic expressions on topology discovery accuracy
- Quantify the performance of a user-centric scheme vs an AP-centric one...
- ...even for large numbers of attackers

Access		Conclusion

User-provided wireless network infrastructure


Pantelis Frangoudis

	Access		Conclusion
	0000		
Wireless Community N	letworks		

Wireless Community Mesh Networks

Wireless mesh

- Community owned all-wireless backhaul
- Intra-community services (VoIP, file sharing, ...)
- Focus on autonomy

	Access		Conclusion
	0000		
Wireless Community N	letworks		

Large WNCs and their structure

Notable communities

- Athens Wireless Metropolitan Network (2400 nodes)
- guifi.net (14000 nodes)

Pantelis Frangoudis

	Access		Conclusion
	0000		
Wireless Community N	letworks		


Large WNCs and their structure

Notable communities

- Athens Wireless Metropolitan Network (2400 nodes)
- guifi.net (14000 nodes)

Network structure

- Wireless mesh
- Link distribution not homogeneous
- Most users with few links
- Power-law like properties

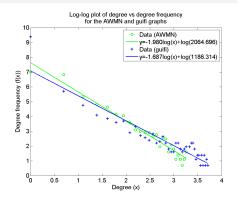
- Degree: # links
- Degree frequency: # nodes with degree x

Pantelis Frangoudis

	Access		Conclusion
	0000		
Wireless Community N	letworks		

Large WNCs and their structure

Notable communities


- Athens Wireless Metropolitan Network (2400 nodes)
- guifi.net (14000 nodes)

Network structure

- Wireless mesh
- Link distribution not homogeneous
- Most users with few links
- Power-law like properties

Why?

- Few very active members
- Favorable node locations
- It's a social network, after all...

- Degree: # links
- Degree frequency: # nodes with degree x

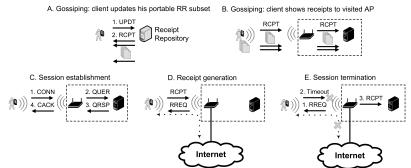
Pantelis Frangoudis

	Access		Conclusion
	0000		
P2P Wi-Fi sharing			

Peer-to-Peer Wi-Fi sharing

Efstathiou (2006) on Wi-Fi sharing *

- A fully-distributed, reciprocity-based approach
- Accounting: digital "receipts" signed by consumer
- Distributed algorithms to stimulate cooperation, exclude free riders


Requirements and assumptions

- Users do not trust their provider
- Decentralized operation
- Operation on low-cost equipment

* E.C. Efstathiou, "A peer-to-peer approach to sharing wireless local area networks," Ph.D. dissertation, AUEB, 2006.

	Access		Conclusion
	0000		
P2P Wi-Fi sharing			

P2PWNC operations

P2PWNC Protocol

- Access control, receipt generation
- Design with off-the-shelf equipment in mind
- All functionality in home router firmware
- Elliptic Curve Crypto to reduce receipt storage requirements...
- ...and CPU/battery requirements at the client side

Pantelis Frangoudis

	Services	Conclusion

User-centric secure multimedia services

Pantelis Frangoudis

	Services	Conclusion
	0 0000	
Architecture		

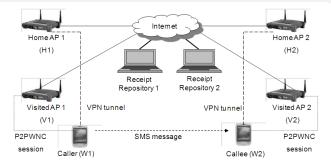
User-centric secure multimedia services

Requirements

- Compatible with P2P Wi-Fi sharing architecture
- Minimize dependence on centralized infrastructure
- Low-cost equipment

Challenges

- Secure comm. from untrusted networks/peers
- Legal implications
- Acceptable performance/QoE


Design highlights

- Tunneling through visited networks
- P2P VoIP/Multimedia service
- Off-band call setup

Pantelis Frangoudis

	Services	Conclusion
	00000	
Architecture		

Architecture

Assumptions

- Peers operate home VPN GWs
- Know each other's GSM phone no

Discovery/call setup via external channel

Caller sends SMS with home IP addr, call params

Steps

 P2PWNC session establishment
 VPN tunnel setup
 VoIP call setup (caller sends SMS)
 Callee responds with VoIP stream (W2-H2-H1-W1)

Pantelis Frangoudis

	Services	Conclusion
	00000	
Evaluation		

Experimental methodology

Measure voice capacity of typical P2PWNC-enabled WLAN

- P2PWNC protocol, VPN gateway
- Major quality degradation factors?
- Security overhead?

Call quality estimation

- Reduction of ITU's E-model to delay, packet loss, jitter buffer loss
- Output: R-score (estimate of Mean Opinion Score)
- R-score $< 70 \Rightarrow$ unacceptable quality

Parameters

- G.729a codec (50 pps, 20 bytes audio payload), 60 msec jitter buffer
- OpenVPN for tunnels

Pantelis Frangoudis

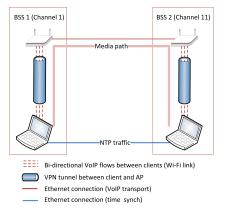
	Services	Conclusion
	000000	
Evaluation		

Testbed and results

HW and configuration

Linksys WRT54GL AP (200MHz CPU, 16Mb RAM)
 NTP sync over Ethernet

Degradation factors


- Wi-Fi PHY/MAC overhead for small packets
- 2.4× packet expansion due to VPN
- Crypto overhead

Supported simultaneous VoIP calls

Scenario	# calls	
Plain (11g)	30	
Plain (11b)	7	
VPN space overhead	21	
VPN space+crypto overhead	8	

P2PWNC RREQ frequency

- ECDSA RCPT verification time = 0.1 sec
- VPN+ECDSA: Support 8 calls w. 1 RREQ/10sec

Pantelis Frangoudis

Introduction 000000	Services ○○○○●○	Conclusion
Summary		

Summary

User-centric approach

- First to propose (2006) a tunneling-based communications solution for WCNs
- Runs purely on user equipment
- Solves important security and legal issues
- Only relies on central infrastructure for discovery
- Inherently low-cost: off-the-shelf hw

Results

- All-in-one home router capable of a few secure calls
- Important *processing* overhead due to VPN
- 2 wireless hops \Rightarrow increased per packet overhead due to IEEE 802.11 MAC/PHY

Pantelis Frangoudis

Introduction 000000	Access 0000	Services	Information 0000000000	Conclusion
Summary				

Related work

Efstathiou (2006, Ph.D. Dissertation) on P2P Wi-Fi sharing

• Underlying access scheme, requirements, assumptions

Tunneling-based approaches

- Sastry et al. (2007, ACM HotNets)
- Heer et al. (2008, IEEE P2P)

Signaling protocols

- SIP/H.323
- Need for (centralized) servers, proxies, registrars

P2PSIP (IETF WG, WiP)

- DHTs to distribute SIP core functionality
- Incompatible with P2PWNC

Pantelis Frangoudis

	Information	Conclusion

Crowdsourced Wi-Fi topology discovery

Pantelis Frangoudis

Introduction 000000		Information •000000000	Conclusion
Motivation			

Motivation

The problem

- Very high Wi-Fi density in cities
- Uncontrolled and anarchic deployment
- Need a mechanism to discover Wi-Fi topology

Pantelis Frangoudis

Introduction 000000		Information •000000000	Conclusion
Motivation			

Motivation

The problem

- Very high Wi-Fi density in cities
- Uncontrolled and anarchic deployment
- Need a mechanism to discover Wi-Fi topology

Use cases

- Detect cell overlaps and reconfigure...
 - ... via channel assignment or power control
- The case for Skyhook
 - Wi-Fi based positioning
 - Beacon DB built by war-driving

Pantelis Frangoudis

Introduction 000000		Information ●0000000000	Conclusion
Motivation			

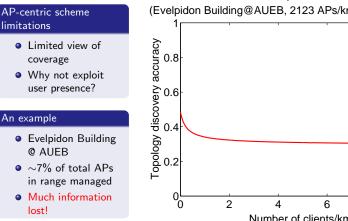
Motivation

The problem

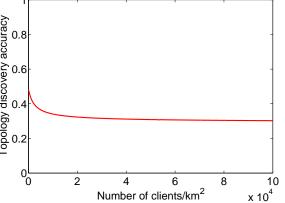
- Very high Wi-Fi density in cities
- Uncontrolled and anarchic deployment
- Need a mechanism to discover Wi-Fi topology

Use cases

- Detect cell overlaps and reconfigure...
 - ... via channel assignment or power control
- The case for Skyhook
 - Wi-Fi based positioning
 - Beacon DB built by war-driving


A user-centric scheme

- Crowdsource the task to users
- Users with Wi-Fi capable devices (and maybe GPS...)
- Robustness issues emerge
 - Are users trustworthy?
 - How about faulty equipment?


Pantelis Frangoudis

		Information	Conclusion
		0000000000	
Motivation			

The need for a user-centric scheme

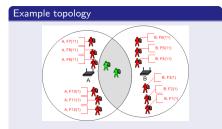
Performance of a pure AP-centric scheme (Evelpidon Building@AUEB, 2123 APs/km², 7% managed APs)

Pantelis Frangoudis

		Information	Conclusion
		0000 000000	
Motivation			

How about security and robustness?

Fake reporting

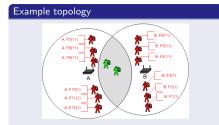

- The infrastructure is trusted
- Users are not
- User-provided information may not be valid!

Significance

- Affect spectrum sharing mechanisms
 - Lead to suboptimal channel selection or tx power assignment
- Wi-Fi-based positioning systems based on crowdsourcing

Pantelis Frangoudis

		Information	Conclusion
		0000000000	
Motivation			

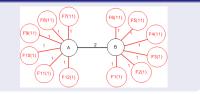

 Attackers report fake < ID, Channel > pairs

CA based on graph coloring

- Channel ⇔ color (3 for 11b/g)
- Conflict edges between vertices of the same color
- Select colors to minimize interference (sum of weights of conflict edges)

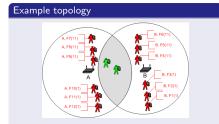
Pantelis Frangoudis

		Information	Conclusion
		000000000	
Motivation			



 Attackers report fake < ID, Channel > pairs

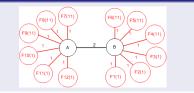
CA based on graph coloring


- Channel ⇔ color (3 for 11b/g)
- Conflict edges between vertices of the same color
- Select colors to minimize interference (sum of weights of conflict edges)

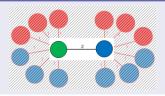
Reported Coverage Graph

Pantelis Frangoudis

		Information	Conclusion
		000000000	
Motivation			

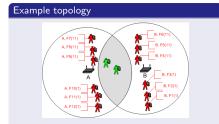


 Attackers report fake < ID, Channel > pairs


CA based on graph coloring

- Channel ⇔ color (3 for 11b/g)
- Conflict edges between vertices of the same color
- Select colors to minimize interference (sum of weights of conflict edges)

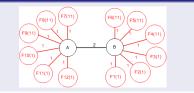
Reported Coverage Graph



Optimal channel assignment

Pantelis Frangoudis

		Information	Conclusion
		000000000	
Motivation			

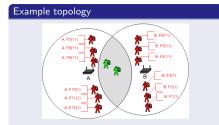


 Attackers report fake < ID, Channel > pairs

CA based on graph coloring

- Channel ⇔ color (3 for 11b/g)
- Conflict edges between vertices of the same color
- Select colors to minimize interference (sum of weights of conflict edges)

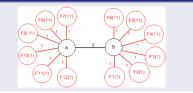
Reported Coverage Graph



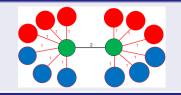
Resulting channel assignment!

Pantelis Frangoudis

		Information	Conclusion
		000000000	
Motivation			



 Attackers report fake < ID, Channel > pairs


CA based on graph coloring

- Channel ⇔ color (3 for 11b/g)
- Conflict edges between vertices of the same color
- Select colors to minimize interference (sum of weights of conflict edges)

Reported Coverage Graph

Resulting channel assignment!

Performance effects

Simulations show dramatic throughput reduction

Pantelis Frangoudis

		Information	Conclusion
		000000000000000000000000000000000000000	
Design and implementa	ation		

Our approach

Networking environment

- Managed Wi-Fi deployments
- Centralized AAA
- Examples: Corporate/Campus Wi-Fi, WISP aggregator

Authenticated users report wireless coverage at their spot

- IEEE 802.11i for security/authentication, IEEE 802.11k for reports
- When requested, each user reports about the APs is range (ESSID, channel, ...)
- Managed APs provide trusted info
- Coverage Graph is built

User reputations and consensus-based report evaluation

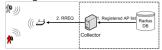
- Sum of reports about overlapping coverage between 2 APs should exceed a threshold
- Report weighted based on user reputation
- User score = $\frac{\text{validated info}}{\text{reported info}}$
- Reputation updates: $r_i = \beta r_{i-1} + (1 \beta) score_i$

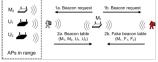
Pantelis Frangoudis

		Information	Conclusion
		0000000000	
Design and implementation			

Pantelis Frangoudis

			Information	Conclusion
000000	0000	000000	00000000	
Design and implementation				


A. Collector requests for reports from managed $\ensuremath{\mathsf{APs}}$


Pantelis Frangoudis

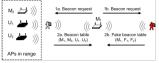
Introduction 000000		Information ○○○○○●○○○○○	Conclusion
Design and implementation			

A. Collector requests for reports from managed APs


B. AP collects reports from clients using IEEE 802.11k

Pantelis Frangoudis

Introduction 000000		Information	Conclusion
Design and implementation			


A. Collector requests for reports from managed APs

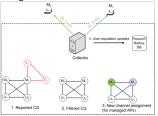
C. AP sends report batch to collector

B. AP collects reports from clients using IEEE 802.11k

Pantelis Frangoudis

Introduction 000000		Information ○○○○○●○○○○○	Conclusion
Design and implementation			


A. Collector requests for reports from managed APs


C. AP sends report batch to collector

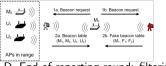
B. AP collects reports from clients using IEEE 802.11k

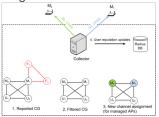
D. End of reporting round: filtering, reputation updates, new channel assignment

Pantelis Frangoudis

Introduction 000000		Information 0000000000	Conclusion
Design and implementation			

A. Collector requests for reports from managed APs


C. AP sends report batch to collector


Implementation

- Subset of IEEE 802.11k (mac80211, Linux Kernel 2.6.38) and reporting attacks
- Radius auth, EAP-PEAP, WPA2-AES
- Atheros AR5213 Wi-Fi cards (MadWifi)

B. AP collects reports from clients using IEEE 802.11k

D. End of reporting round: filtering, reputation updates, new channel assignment

			Information	Conclusion	
			0000000000		
Attacker model and countermeasures					

Attacks and countermeasures

Attacker model

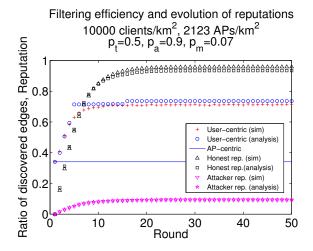
- Independent attackers
- Each submits a random fake set of AP IDs
- Fake CG edge weight = user reputation (< 1.0)
- Some users always truthful, some potential attackers (with prob. p_a)

Countermeasures

- Users begin with zero reputation (untrusted by default)
- AP-based measurements help audit user reports
- Edges with weight $< {\cal T} = 1.0$ are filtered \Rightarrow all fake edges removed

Evaluation metric

- % discovered CG edges
- We only face false negatives (missed real edges)


Pantelis Frangoudis

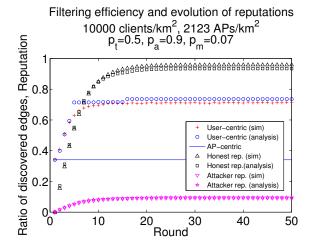
Introduction 000000		Information ○○○○○●○○○	Conclusion
Evaluation			

Performance

User- vs AP-centric schemes

- AP-centric scheme: lower bound
- Improved accuracy even in the presence of many attackers

Introduction 000000		Information ○○○○○●●○○○	Conclusion
Evaluation			


Performance

User- vs AP-centric schemes

- AP-centric scheme: lower bound
- Improved accuracy even in the presence of many attackers

Evolution of reputations

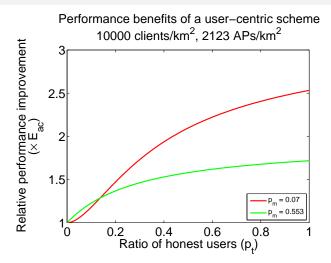
- Honest users are "promoted"
- Attacker reputation is bounded

Introduction 000000		Information ○○○○○●●○○○	Conclusion
Evaluation			

Performance

User- vs AP-centric schemes

- AP-centric scheme: lower bound
- Improved accuracy even in the presence of many attackers


Evolution of reputations

- Honest users are "promoted"
- Attacker reputation is bounded

		Information	Conclusion
		000000000000000000000000000000000000000	
Evaluation			

Relative efficiency

Pantelis Frangoudis

Introduction 000000		Information ○○○○○○○●○	Conclusion
Summary			

Summary

User-centric approach

- Reduce monitoring infrastructure cost by crowdsourcing
- Tackle attacks by untrusted users
- Decentralization by default
- Open participation: Users may or may not contribute
 - Enforcing participation could be tackled at another layer

Summary of results

- User-centrism offers increased topology discovery accuracy
 - $\bullet \ > 2 \times$ improvement in realistic settings...
 - …even with > 50% attackers
- Simple but realistic attacks are countered
 - Consistent attackers achieve low reputation
 - Without collusion, all fake reports are filtered

Introduction	Access	Services	Information	Conclusion
Summary				

Related work

Wireless topology models

• Graph representation of cell overlap for channel assignment (Mishra et al., ACM MC2R 2005)

Wi-Fi-based positioning

- Crowdsourcing helps (Skyhook, Google, Apple, MS already do it!)
- Tippenhauer et al. identify the effects of fake reporting (2009, ACM Mobisys)

Distributed spectrum sensing for Cognitive Radio Networks

- Purpose: Detect primary user presence
- Chen et al. on PU emulation and fake reporting (2008, IEEE Communications Magazine)
- Similar motivation, different context

IEEE 802.11k

- IEEE std for radio resource measurements
- Does not address security issues

		Conclusion

Conclusion

Pantelis Frangoudis

		Conclusion

Conclusion

User-centric approach to wireless networking

- Reconsidered the role of users as consumers
- User empowerment
- Exploited centralized schemes to offer decentralized solutions
- Tackled security, reliability and performance challenges

		Conclusion

Future work

Wireless Community Networks

- Structure characterization using empirical data
- Realistic topology generators

P2P multimedia services

- Performance optimizations
- Dealing with user mobility

Crowdsourced topology discovery

- More sophisticated attacks and countermeasures
- Effects on Wi-Fi-based postitioning
- Alternative uses of topology info (handover planning, and more...)

Coupling access, service and feedback provision

- High reputations \Rightarrow QoS, better access opportunities
- Incentives for participation and honest behavior

Pantelis Frangoudis

		Conclusion

Thank you!

Pantelis Frangoudis

Publications (I)

Wi-Fi sharing & service architectures

- E. Dimopoulos, P.A. Frangoudis, and G.C. Polyzos, "Exploiting super peers for large-scale peer-to-peer Wi-Fi roaming," Proc. IEEE Globecom 2010 Workshop on Advances in Communications and Networks (User-Provided Networking session), 2010.
- E.C. Efstahiou, P.A. Frangoudis, and G.C. Polyzos, "Controlled Wi-Fi Sharing in Cities: a Decentralized Approach Relying on Indirect Reciprocity," IEEE Transactions on Mobile Computing, vol. 9, no. 8, pp. 1147-1160, August 2010.
- P.A. Frangoudis and G.C. Polyzos, "Coupling QoS Provision with Interference Reporting in WLAN sharing Communities," Proc. IEEE PIMRC 2008 Workshops, Cannes, France, September 2008.
- P.A. Frangoudis, V.P. Kemerlis, D.C. Paraskevaidis, E.C. Efstathiou, and G.C. Polyzos, "Experimental Evaluation of Community-based WLAN Voice and Data Services," Proc. ACM/ICST MobiMedia 2007, Nafpaktos, Greece, August 2007.
- P.A. Frangoudis and G.C. Polyzos, "Peer-to-Peer Secure and Private Community Based Multimedia Communications," Proc. 2nd IEEE International Workshop on Security and Pervasive Multimedia Environments (MultiSec 2006), San Diego, CA, December 2006.
- E.C. Efstathiou, F.A. Elianos, P.A. Frangoudis, V.P. Kemerlis, D.C. Paraskevaidis, E.C. Stefanis, and G.C. Polyzos, "Public Infrastructures for Internet Access in Metropolitan Areas," Proc. 1st International Conference on Access Networks (AccessNets 2006), Athens, Greece, September 2006.
- E. C. Efstathiou, F. A. Elianos, P. A. Frangoudis, V. P. Kemerlis, D. C. Paraskevaidis, G. C. Polyzos, and E. C. Stefanis, "Practical Incentive Techniques for Wireless Community Networks," Proc. ACM MobiSys 2006 Demo Session, Uppsala, Sweden, June 2006.
- E.C. Efstathiou, F.A. Elianos, P.A. Frangoudis, V.P. Kemerlis, D.C. Paraskevaidis, G.C. Polyzos, and E.C. Stefanis, "Building Secure Media Applications over Wireless Community Networks," Proc. 13th Annual Workshop of the HP Openview University Association (HP-OVUA) Poster/Demo Session, May 2006.
- E.C. Efstathiou, P.A. Frangoudis, and G.C. Polyzos, "Stimulating Participation in Wireless Community Networks," Proc. IEEE INFOCOM 2006, Barcelona, Spain, April 2006.
- E.C. Efstathiou, F.A. Elianos, P.A. Frangoudis, V.P. Kemerlis, D.C. Paraskevaidis, G.C. Polyzos, and E.C. Stefanis, "The Peer-to-Peer Wireless Confederation Scheme," IEEE INFOCOM 2006 Demo Session, Barcelona, Spain, April 2006.
- E.C. Efstathiou, F.A. Elianos, P.A. Frangoudis, V.P. Kemerlis, D.C. Paraskevaidis, G.C. Polyzos, and E.C. Stefanis, "The Peer-to-Peer Vireless Confederation Scheme: Protocols, Algorithms, and Services," Proc. IEEE/CreateNet TridentCom 2006 Demo Session, Barcelona, Spain, March 2006.
- P.A. Frangoudis, E.C. Efstathiou, and G.C. Polyzos, "Reducing Management Complexity through Pure Exchange Economies: A Prototype System for Next Generation Wireless/Mobile Network Operators," 12th Annual Workshop of the HP Openview University Association (HP-OVUA), Porto, Portugal, July 2005.

Publications (II)

Wireless Community Networks

- P.A. Frangoudis, G.C. Polyzos, and V.P. Kemerlis, "Wireless Community Networks: An Alternative Approach for Broadband Nomadic Network Access", IEEE Communications Magazine, vol. 49, no. 5, pp. 206-213, May 2011.
- F.A. Elianos, G. Plakia, P.A. Frangoudis, and G.C. Polyzos, "Structure and Evolution of a Large-Scale Wireless Community Network," Proc. IEEE WoWMoM 2009, Kos, Greece, June 2009.

Wi-Fi topology discovery

- P.A. Frangoudis and G.C. Polyzos, "Robust crowdsourcing for accurately determining Wi-Fi topology," in preparation, 2012.
- P.A. Frangoudis, D.I. Zografos, and G.C. Polyzos, "Robust client-based Wi-Fi topology discovery," Proc. IEEE CCNC 2011.
- P.A. Frangoudis and G.C. Polyzos, "Report-based topology discovery schemes for centrally-managed Wi-Fi deployments," Proc. NGI 2010, Paris, France, June 2010.
- P.A. Frangoudis, D.I. Zografos, and G.C. Polyzos, "Secure Interference Reporting for Dense Wi-Fi Deployments," Proc. ACM CoNEXT 2009 Student Workshop, Rome, Italy, December 2009.

Cognitive Radio security

- G.C. Polyzos, G.F. Marias, S. Arkoulis, P.A. Frangoudis, M. Fiedler, A. Popescu, H. de Meer, R. Herkenhöner, A. Fischer, and J.O. Oberender, "ASPECTS: Agile spectrum security," Proc. NGI 2011, Kaiserslautern, Germany, June 2011.
- S. Arkoulis, I. Marias, P.A. Frangoudis, J. Oberender, A. Popescu, M. Fiedler, H. de Meer, and G.C. Polyzos, "Misbehaviour Scenarios in Cognitive Radio Networks," *Future Internet*, vol. 2, no. 3, pp. 212-237, 2010.
- S. Arkoulis, M. Fiedler, P.A. Frangoudis, R. Herkenhoner, G.F. Marias, H. de Meer, and G.C. Polyzos, "Distributed Spectrum Sensing for Spectrum Agility: Incentives and Security Considerations," Proc. 1st Euro-NF Workshop on Future Internet Architectures, Paris, France, November 2008.
- P.A. Frangoudis, S. Arkoulis, G.F. Marias, and G.C. Polyzos, "Incentives and Security Considerations in Distributed Spectrum Sensing," Proc. 1st Euro-NF Socioeconomics Workshop, Athens, Greece, October 2008 (extended abstract).

Publications (III)

Misc	
٩	E.A. Panaousis, P.A. Frangoudis, C.N. Ververidis, and G.C. Polyzos, "Optimizing the Channel Load Reporting Process in IEEE 802.11k-enabled WLANs," Proc. IEEE LANMAN 2008, Cluj-Napoca, Transylvania, Romania, September 2008.
٩	K. Katsaros, P.A. Frangoudis, G.C. Polyzos, and G. Karlsson, "Design Challenges of Open Spectrum Access," Proc. IEEE PIMRC 2008 Workshops, Cannes, France, September 2008.
٩	V.G. Douros, P.A. Frangoudis, K. Katsaros, and G.C. Polyzos, "Power Control in WLANs for Optimization of Social Fairness," Proc. 12th Pan-Hellenic Conference on Informatics (PCI 2008), Samos, Greece, August 2008.
٩	N.N. Leontiadis, V.P. Kemerlis, P.A. Frangoudis, and G.C. Polyzos, "Secure Network Management Using a Key Distribution Center," Proc. 2007 Workshop of the HP Software University Association (HP-SUA) Poster Session, Garching/Munich, Germany, July 2007.

Preliminaries (I)

Assumptions

- Homogeneous PPP distribution of APs/users
- Some APs are managed (pm)
- AP coverage: Disk of fixed radius (R)
- A(x): area of overlap between d-distance APs

- Isolated users: no edges to report
- Two types of users
 - Always honest: pt
 - Potential attackers: p_a
- Managed APs always honest

Evaluation metric

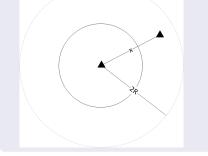
$$\mathcal{E} = rac{N_d^{(1)} + N_d^{(2)}}{N_e^{(1)} + N_e^{(2)}}$$

N_d^(*): Discovered Type-* edges
 N_e^(*): Existing Type-* edges
 *={1,2}

Number of CG edges

$$N_e^{(1)} = N_{pe}F_X(R)$$

•
$$N_e^{(2)} = N_{pe} \int_R^{2R} f(x)(1 - e^{-(\lambda_c + \lambda_{AP})A(x)}) dx$$


N_{pe}: # potential edges (cell overlap involving managed AP)

Preliminaries (II)

Distance distributions

F_X(x): distance between an AP and a random neighbor

• *L_X(x)*: distance between two APs in range of a client

Performance of an AP-centric scheme

Only managed APs report

- Type-1 edges always reported by at least one mAP
- Type-2 edges w/o a mAP located there: missed

Discovery probability for a Type-2 x-distance edge

$$P_d^{(2)}(x) = 1 - (1 - e^{-(\lambda_u + \lambda_c)A(x)})e^{-\lambda_m A(x)}$$

Number of discovered Type-2 edges

$$N_d^{(2)} = N_{pe} \int_R^{2R} f(x) P_d(x) dx$$

Number of discovered Type-2 edges

 $N_d^{(2)} = N_{pe} \int_R^{2R} f(x) P_d^{(i)}(x) dx$

Performance of a user-centric scheme

Edge discovery conditions

- At least 1 mAP in the overlapping region, or
- Sum of client report weights meets threshold

Contribution to the weight of an edge

A: # mAP, X: # honest users, Y: # non-attacking potential attackers at round i

• If honest users contribute $j_{t_{t}}^{(i)} < T$, then $> T - j_{t}^{(i)}$ should be contributed by non-attackers

• Success when
$$k \geq \frac{T - jr_t^{(i)}}{r_s^{(i)}}$$

Discovery probability for a Type-2 x-distance edge

$$P_{d}^{(i)}(x) = 1 - \sum_{j=0}^{\left\lfloor \frac{T}{r_{t}^{(i)}} \right\rfloor} \sum_{k=0}^{\left\lfloor \frac{T-jr_{t}^{(i)}}{r_{a}^{(i)}} \right\rfloor} Pr\{A=0\}Pr\{X=j\}Pr\{Y=k\}$$

Reputation updates

Honest users

- Reputation updated based on score
- Isolated users (prob. p_i) do not get reputation update

$$\overline{r_t^{(i+1)}} = p_i \overline{r_t^{(i)}} + (1-p_i) (b \overline{r_t^{(i)}} + (1-b) \overline{s_t^{(i)}})$$

Potential attackers

- Attackers get zero score, reputation discounted
- Those who cooperate contribute to the avg attacker reputation

$$\overline{r_{a}^{(i+1)}} = p_{i}\overline{r_{a}^{(i)}} + (1-p_{i})\{p_{a}b\overline{r_{a}^{(i)}} + (1-p_{a})\left[b\overline{r_{a}^{(i)}} + (1-b)\overline{s_{a}^{(i)}}\right]\}$$

Score calculation

Focus on average score of honest users, with r_a⁽ⁱ⁾ reputation
 Use L_X(x)

Define the following events:

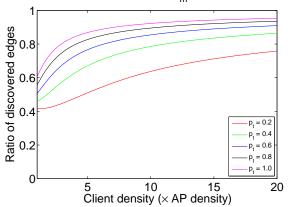
- D: x-distance edge discovered.
- B: x-distance edge reported by ≥ 1 honest user (X > 0)

Edge discovered given that it is reported by the user

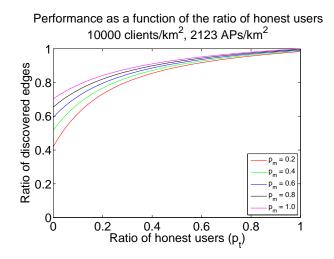
$$P_s(x) = Pr\{D|B\} = \frac{Pr\{D \cap B\}}{Pr\{B\}}$$

- Pr{B} follows from Poisson distribution
- Pr{C}: Similar approach as with P⁽ⁱ⁾_d(x)

$Pr\{D \cap B\}$ calculation


Reported by mAP (⇒ discovered) AND reported by user, or

Reported by 0 mAP AND by many clients (discovered), at least least 1 of them truthful...


 $Pr\{D \cap B\} = Pr\{A > 0\}Pr\{B\} + Pr\{A = 0\}Pr\{B \cap C\}$

Dependence on client density

Performance as a function of the relative client/AP density 2123 APs/km², $p_{m}^{}$ = 0.07

Dependence on the ratio of honest users

Upper bounds on VoWLAN capacity (I)

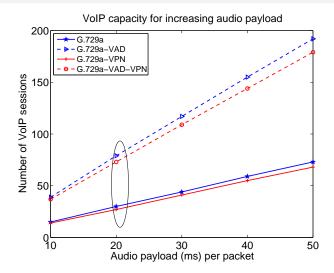
Configuration and assumptions

- Both call endpoints over IEEE 802.11g
- Assume no collisions, $T_{DCF} \approx \frac{CW_{min}}{2} \times T_{SLOT} = 8 \times T_{SLOT}$
- G.729a, 20 bytes audio pld, R_a = 16Kbps

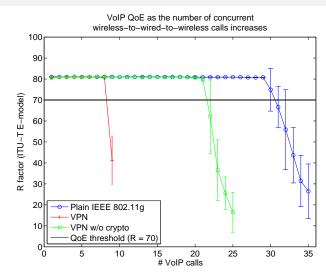
Throughput model

$$S = \frac{T_P}{T_P + T_{Overhead}} \times R$$

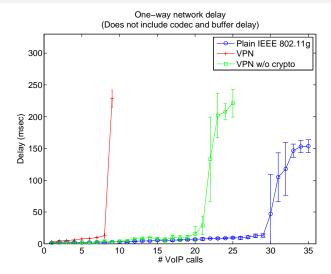
Number of VoIP calls

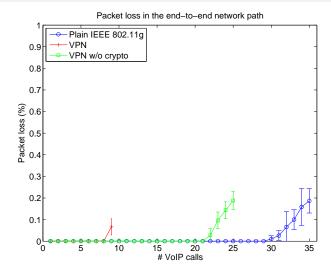

$$n_{max} = \left\lfloor \frac{T_P \times R}{(T_P + T_{Overhead}) \times R_a} \right\rfloor,$$

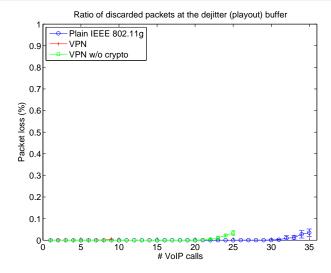
where


$$T_{Overhead} = 2 \times (T_{DIFS} + T_{DCF} + T_{SIFS} + T_{ACK} + T_{Headers}) + T_P.$$

	Time (IEEE 802.11g @54Mbps)
Slot time (T _{SLOT})	9 µsec
Backoff time (T _{DCF})	72 µsec
Audio payload (T _P)	3 µsec
Overhead (T _{Overhead})	329 µsec
Overhead (T _{Overhead}) w. OpenVPN	354 μsec


Upper bounds on VoWLAN capacity (II)


R-score


One-way network delay

Network packet loss

Dejitter buffer loss

