Fighting phishing the information-centric way

Nikos Fotiou, Giannis F. Marias and George C. Polyzos
Mobile Multimedia Laboratory,
Athens University of Economics and Business
Fighting phishing the traditional way

- Blacklist-based
 - Their performance is affected by the source of the (blacklisted) URL and its freshness
 - Cannot prevent all attacks
- Usage of host features (IP, WHOIS)
 - Can be bypassed using dynamic DNS or hosting services with high reputation
 - Often leads to false positives
Fighting phishing the traditional way (cont’d)

- Proactively by examining URL features (dots, length,...)
 - Can be bypassed using URL re-write, IFRAMES
- Proactively by examining content and by detecting “suspicious” terms
 - Can be bypassed using code obfuscation, images instead of text

```javascript
<script language="javascript">($==$=[[]][__=!$+$]+$)[__=-~~~~$]+($)+$)+($[$=(!$+$)+$]+$)+($)+$)+($)+$)+($)+$)+($)+"hello world"
</script>
```
And all these in order to...

- Decide that the site of the right image (phishing site) imitates the site of the left image (original)
- ... and this is not coincidence, it has to be like that in order to mislead users!
An information-centric approach

- **Step 1**: Capture a screenshot of the site that the user visits (optim. if contains password field)
 - Easy in Chrome: `chrome.tabs.captureVisibleTab`
- **Step 2**: Store it in a *meaningful* way
 - Small in size
 - Allow comparisons between two images
 - -> Perceptual hashing
- **Step 3**: Decide if it is “similar enough” to an already stored image but from a different URL
 - In that case possible phishing
Perceptual hashing (PH)

- Let $H(x) = y$, then if x' is similar to x then $H(x') = y$ or “close” to y
- It is impossible to construct a x' perpetual similar to x with $H(x')$ (very different) to y
- When it comes to images y is some bytes
- 3 hash functions of the phash library are considered:
 - Discrete Cosine Transform based hash (DCT) 64bits
 - Marr-Hildreth Operator based hash(MH) 576bits
 - Radial Variance based hash(RAD) 320bits
Dissimilarity

- The normalized hamming distance of two hashes
 - 0.0 = absolute the same, 1.0 = completely different

Similarity Threshold:
A dissimilarity value s.t. if two screenshots dissimilarity is less than that, they belong to the same site

<table>
<thead>
<tr>
<th>Difference</th>
<th>DCT</th>
<th>MH</th>
<th>RAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original in Chinese</td>
<td>0.23</td>
<td>0.28</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without area 1</td>
<td>0.13</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without area 2</td>
<td>0.1</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without area 3</td>
<td>0.1</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without area 4</td>
<td>0.13</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without areas 1 and 2</td>
<td>0.13</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>Original without areas 1 and 3</td>
<td>0.2</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>Original without areas 1 and 4</td>
<td>0.46</td>
<td>0.11</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Phishing detection

- Phishtank, 100 unique phishing sites, in isolated server:
 - Chrome 12, IE 9, Netcraft anti-phishing tool bar: no detection
False positives

- Top 100 most visited sites in U.S (Google)
Cumulative performance

- Set the similarity threshold for each mechanism to the value that achieves the desired false positive probability
What went wrong?

- Some web sites change the login page every day (login form in main page, ads in login page)

- Multiple login pages, login pages in case of wrong username or password much different than the original pages

- Fake OpenID, Facebook Connect,.., sites
Thank you

fotiou@aueb.gr