Mobility Support in Information Centric Networking (ICN)

Vasilios A. Siris

Mobile Multimedia Laboratory

Athens University of Economics and Business

Greece

vsiris@aueb.gr

http://mm.aueb.gr

COST WiNeMo & IEEE/IFIP Wireless Days 2012 Dublin, Ireland, 21 Nov 2012

Contents

- Information Centric Networking (ICN):
 - Motivation
 - Principles
 - Key features and differences
- Mobility support in ICN
 - Receiver mobility
 - Source mobility
- Conclusions

Three network generations

Telephony: Inter-connected **wires**

Internet: Inter-connect **hosts**

ICN: Inter-connect **information**

vsiris@aueb.gr

Problems with Current Internet

- End-to-end semantics is not the prevailing usage paradigm
 - Information-centricity: focus on information itself not where it resides
 - Overlay content delivery structures (CDNs, P2P): ignore network topology and requester/data location
 - Firewalls, NATs, proxy servers
 - ISPs: costly (Deep Packet Inspection-DPI) to find type of information
- Mobility support not seamless
 - IP addresses used both as host and location identifiers

Problems with Current Internet (cont.)

• Security and trust

- Sender controlled transport facilitates DoS attacks
- Focus on communication security, but information security can be more important

• Run-time tussles between various players

- Imbalance of power functions not separated when they should be (e.g. well-known port numbers and applications)
- Ossification of architecture with point solutions/patches

• Congestion control

- End-to-end semantics not appropriate when links have different and variable network conditions
- flash crowds

Principles of Information-Centric Networking (ICN)

- Naming of content rather than hosts/interfaces
 - Departs from host-to-host communication model
 - Content independent of devices that store it
 - Names are location independent
- Receivers (subscribers) request content
 - Receiver control
- Sources (publishers) advertise content
 - Need to **match** requests to advertised content
- Receivers and senders
 - do not have to be aware of each other, and
 - are decoupled in time

Basic Functions of ICN

- Name resolution: Match requests to content advertisements
- **Routing (topology formation):** Determine path from source (publisher) to receiver (subscriber)
- Forwarding: Transfer content from source to receiver

... but isn't previous picture an IP network ?

ICN principles make the difference:

- Naming of content rather than hosts/interfaces
 - DNS: location-dependent names
 - IP: location-dependent addresses used as both host & location identifiers
- Receivers (subscribers) request content
 - IP: sender has all power
- Sources (publishers) advertise content and network matches requests to content advertisements
 - IP: user needs to know or find out where to get content
- Receivers & senders don't have to be aware of each other
 - IP: both sides of a connection know other side's locationdependent address

Key Advantages & Features of ICN

- Receiver mobility support
- In-network caching
- **Content-aware** traffic management
- Hop-by-hop transport & congestion control
- One-to-many/any and many/any-to-one communication modes
- ICN architecture proposals differ in degree of coupling between
 - name resolution & data transfer
 - data routing & forwarding

Name Resolution and Data Transfer

Different degree of coupling between resolution & data transfer

- Decoupled: different nodes perform resolution & data transfer (similar to DNS)
- Coupled: nodes perform resolution and data transfer vsiris@aueb.gr

Decoupled Resolution & Data Transfer

- Resolution function matches requests to sources or caches (in-network caches)
- Data path independent of request (control) path

Coupled Resolution & Data Transfer

- Nodes route information requests to source or cache (in-network caching)
- Data path inverse of request (control) path

Examples: CCN/NDN, DONA,

Tradeoffs from different coupling of Name Resolution & Data Transfer

- Coupled
 - Data path reverse of request (control) path
 - In-network caching simpler through local mechanisms for routing requests
- Decoupled
 - Support for advanced policies (e.g. QoS, interconnection agreements)
 - Implemented by one function without affecting the other
 - Exploitation of different paths for control & data (e.g. lowdelay path for control and high bandwidth path for data)
 - Separation of functions addresses tussles & allows competition
 - More choices for supporting source mobility

Receiver mobility

Receiver mobility supported by design:

- Receiver-driven content request model
- No end-to-end session establishment such as TCP
- Individual chunks/packets are named hence can be requested individually

Receiver mobility and caching

- In-network caching can assist receiver mobility
- Caches along path followed by request can provide data
 - Possible with naming of content chunks/packets
- Further optimization: use caches proactively

Receiver mobility and proactive caching

- Transfer content requests to one-hop neighbors
 - Prefetch content at neighbors when mobile disconnects
- Wasted resources if we prefetch content to all neighbors

Receiver

Receiver mobility and proactive caching

- Transfer content requests to one-hop neighbors
 - Prefetch content at neighbors when mobile disconnects
- Wasted resources if we prefetch content to all neighbors
- Select subset of neighbors based on transition probability ⇒ Selective Neighbor Caching (SNC)

Source mobility

- Not as straightforward as receiver mobility
 - Receiver-driven (pull) model helps receiver mobility
 - Requests need to be "matched" to sources
 - Requests contain location-independent names
- Two problems need to be addressed
 - Find source's new location: to forward content requests
 - Achieve session continuity: reduce or avoid service disruption and data loss/delay

Source mobility approaches

• Routing-based approach

- Routing tables updated when source moves
- Only solution if no location-dependent addresses
- Indirection approach
 - Agents at home and visited network
 - Need location-dependent addresses
- **Resolution** approach
 - Requires separate resolution function

Source mobility: routing-based

- Requests forwarded using routing tables
- Routing tables populated based on content advertisements
- Source mobility would trigger new content advertisements. Issues:
 - Convergence time
 - Routing table scalability
 - Smaller problem in case of micromobility
- Optimization: Proactive content advertisements
- How data is forwarded from source to receiver depends on specific architecture

Source mobility: indirection approach

- Home agent forwards requests to new source location
 - Requires location-dependent identifiers
 - Similarities with Mobile IP

Source mobility: indirection approach

- Home agent forwards requests to new source location
 - Requires location-dependent identifiers
 - Similarities with Mobile IP
- Agents in visited network can help transparency
 - Automatically add location prefixes
- Disadvantages:
 - Communication goes through home agent

Source mobility: resolution approach

- Resolution function already exists when resolution and data transfer decoupled
- Resolution table updated with current location ⇒ need location-dependent ids
- Separation of identitylocator not new: Host Identity Protocol (HIP), Identifier-Locator Network Protocol (ILNP)

Source mobility: resolution approach (2)

- Resolution function can be provided by
 - Independent resolution network
 - Home agent
- Issue: Resolution overhead, only for first communication
- How data is forwarded from source to receiver depends on specific architecture

Source mobility: resolution approach based on home agent

- Home agent: binding between name and location
 - Location id: PoA prefix+name
 - Updated when source moves
- Request for content n1 routed to home agent
- Home agent responds with PoA/n1

Source mobility: resolution approach based on home agent

- Home agent: binding between name and location
 - Location id: PoA prefix+name
 - Updated when source moves
- Request for content n1 routed to home agent
- Home agent responds with PoA/n1
- Receiver requests PoA/n1

Source mobility: session continuity

- Mechanisms at mobile nodes help
 - Moving node informs other side that it will move and possibly where it will move
- Home/visited agents can help achieve transparency
 - Automatically add PoA prefix
 - No changes to mobile nodes

Conclusions

- **Receiver mobility** supported by **design** in ICN
 - Optimizations are possible by exploiting caches
- Source mobility is more difficult in ICN
 - With location-independent names only routing-based approach is possible
 - Convergence time and routing table scalability issues
 - Location-dependent identifiers necessary to support efficient source mobility in the general case
- Both location-independent names and locationdependent addresses have a role in future networks
- Flexible/dynamic mapping and usage of names and addresses to find & transfer information is key

Acknowledgements

- Projects @ AUEB's Mobile Multimedia Lab - http://www.mm.aueb.gr/
 - FP7 ICT PURSUIT (Publish-Subscribe Internet Technology) - http://www.fp7pursuit.eu
- *GSAT*
- ESA (European Space Agency) φSAT (The role of satellite in Future Internet architectures)

 COST WiNeMo supported visit to Univ. of Bern (Prof. Torsten Braun)

Thank You

Mobility Support in Information Centric Networking (ICN)

Vasilios A. Siris

Mobile Multimedia Laboratory

Athens University of Economics and Business

Greece

vsiris@aueb.gr http://mm.aueb.gr

Jeb.gr

COST WiNeMo & IEEE/IFIP Wireless Days 2012 Dublin, Ireland, 21 Nov 2012