

Towards an Error Control Scheme for a Publish/Subscribe Network

Charilaos Stais, Alexios Voulimeneas and <u>G. Xylomenos</u> xgeorge@aueb.gr Mobile Multimedia Laboratory Department of Informatics Athens University of Economics and Business

> IEEE ICC NGN Symposium Budapest, June 12, 2013

Outline

- Motivation
- Background
- Operation
- Simulator setup
- Performance
- Conclusions

Motivation

- ICN: Information Centric Networking
 - Focuses on information rather than on endpoints
 - Most importantly, it supports native multicast
- Reliable multicast transport over ICN
 - Some multicast applications do not require reliability
 - Example: Multimedia streaming
 - But others really depend on it
 - Example: Software updates, sensor readings
 - Lots of work on reliable IP multicast, e.g. PGM
 - We adapt these ideas to the ICN case
 - Specifically, over the PSI architecture

Background

- Publish Subscribe Internet (PSI) architecture
 - Publishers advertise available data
 - Subscribers express interest in data
 - The Topology Manager creates paths between them
- Stateless forwarding in PSI
 - Paths are encoded as source routes
 - A Bloom filter includes the corresponding links
- Relay points used for forwarding scalability
 - Bloom filters cannot cover large trees
 - So we break them into connected subtrees
 - Relay points used to switch Bloom filters

Operation

- NACK based protocol
 - Only missing packets are NACKed
 - Relay points serve as NACK aggregation points
- Reverse Bloom filters used for the NACKs
 - Simply use the reverse links of the subtree
- Phase 1: Setup
 - Calculation of necessary Bloom filters
 - Both forward and reverse, for each subtree
 - Initial message from publisher
 - Propagates downstream
 - Relay points store Bloom filters

Operation

- Phase 2: Initial content distribution
 - Publisher sends entire content
 - Receivers send NACKs for missing packets
- Phase 3: Recovery
 - Repeats Phases 1 and 2
 - Some subscribers leave at the end of each cycle
 - Eventually no subscribers left
- NACK aggregation
 - Relay points receive NACKs
 - Wait to get more NACKs for a little while
 - Then, received NACKs are merged and propagated

Simulator setup

NS-3 based simulations

- Entire PSI architecture implemented
- Relaying and transport protocol added
- Single publisher transmits 20 MB
- Scale free topologies with 200 and 500 routers
- 50 and 100 subscribers randomly attached to routers
- 3% of the packets are reported lost in first round
 - Random loss model used
 - Roughly 600 packets need to be retransmitted
 - Manual setting of link loss to achieve target rate

Performance: aggregation rate

- Aggregation rate of NACKs
 - Fraction of NACKs not reaching the publisher
 - Grows with larger topology
 - More opportunities for aggregation
 - Slightly lower in bytes

Performance: NACKs handled

Number of NACKs handled by each entity

- Similar number of original NACKs
 - Both topologies start with the same loss rate
- More NACKs handled by relays with larger topology
- But, more aggregation overall with larger topology

Performance: Uni vs. Multicast

Unicast - 200 routers
Unicast - 500 routers
Multicast - 200 routers
Multicast - 500 routers

- Unicast vs. Multicast recovery
 - NACKs and retransmissions
 - Calculated over all network elements
 - Left: Number of NACK transmissions
 - Right: Number of packet retransmissions

Conclusions

- Reliable multicast transport in PSI
 - Takes advantage of relay points
 - Very good feedback aggregation
 - Beats unicast by a wide margin
- Ongoing work
 - Detailed comparison with PGM
 - PGM exploits unidirectional multicast
 - Relay point multicasts NACK confirm
 - Good for "correlated" losses
 - We exploit reverse Bloom filters
 - Relay point just aggregates NACKs
 - Good for "uncorrelated" losses