Scalability Issues in ICN

Christos Tsilopoulos, Xenofon Vasilakos and George Xylomenos

Mobile Multimedia Laboratory
Department of Informatics
AUEB, Greece

PURSUIT: Publish Subscribe Internet Technology - http://www.fp7-pursuit.eu
Motivation

- ICN involves named data
 - Names may be hierarchical or flat
 - But they are definitely too many!
 - Orders of magnitude more than hosts
 - How can we handle such numbers?
- At least two issues need work
 - Name resolution scalability
 - Forwarding scalability
- Discussion starter presentation
 - Problems & some ideas
Name resolution

• Obvious problem: the namespace is huge
 – Trillions of named items to begin with
 – Plus tons of data from the Internet of Things
 – Can we maintain huge PITs?
 – Can we maintain huge DHTs?

• Less obvious problem: the names are also huge
 – Simply because there are too many
 – Can we use huge names in packets?
 – Can we survive with shorter versions?
Name resolution

- DNS relies on locality and caching
 - Similar names lead to similar name servers
 - Name server addresses can be cached
- CCN/NDN names are hierarchical, but different
 - Prefixes do not lead to unique locations
 - Caching pointers based on prefixes does not work
- Are name prefixes expected to be controlled?
 - For example, /aueb is assigned to, well, AUEB
 - If they are, maybe the problem is tractable
 - But this is a back door for location/identity binding!
Name resolution

- DHTs scale well and distribute load, but...
 - They assign names to potentially unwanted servers
 - They violate routing policies
 - They stretch resolution paths
 - Hierarchical DHTs only partially help
 - Caching not nearly as effective as in DNS
- DONA-like solutions work better than we thought
 - Huge amounts of storage are needed at the top
 - But, we do have huge server farms
 - We may be able to throw hardware at this problem
Forwarding

- The actual packet transfer is also problematic
 - Assume that we aim for native transfers
 - Otherwise we are passing the problem to IP!
- We use single-source multicast as an example
 - Multicast is supposed to be an ICN strength
 - Single-source is commercially more interesting
- Two general options
 - Hop-by-hop (as in CCN/NDN)
 - Source routing (as in PSIRP/PURSUIT)
Forwarding

- Hop-by-hop forwarding (CCN)
 - Forwarding state distributed to routers
 - Fast join/leave for multicast
 - Large forwarding table (PIT) size
 - Especially with very fast routers
 - Trickier with variable-length names
 - State compression ideas need to be evaluated
- Strictly symmetrical paths only
 - The resolution part fixes the forwarding part
 - Can be either a feature or a bug
Forwarding

- Source-routing (PSIRP)
 + Flexible path selection
 - Content/cache awareness
 - Steiner tree multicast
 + Stateless router operation
 - Large multicast trees hard to handle
 - Processing delay at the path computation engine
 - Slow join/leave for multicast
 - Forwarding inefficiencies due to false positives
 - Bigger problem with larger groups
 - Solutions for large trees need to be evaluated