

Networked Music Performance over Information-Centric Networks

C. Stais, Y. Thomas, <u>G. Xylomenos</u> and C. Tsilopoulos xgeorge@aueb.gr Mobile Multimedia Laboratory Department of Informatics Athens University of Economics and Business

> IEEE ICC IIMC Workshop Budapest, June 13, 2013

Outline

- Motivation
- Background
 - NMP
 - ICN
- NMP over ICN
- Experimental setup
- Performance evaluation
 - Latency
 - Load
- Conclusions

Motivation

- NMP: Networked Music Performance
 - Stringent latency and reliability requirements
 - Quality of Experience (QoE) is paramount
- ICN: Information Centric Networking
 - Focuses on information rather than on endpoints
 - Most importantly, it supports native multicast
- NMP over ICN
 - Native multicast can be exploited
 - An MCU may not be needed
 - Reduced delay and network overhead

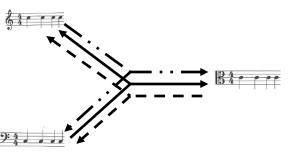
Background: NMP

- Delay and reliability requirements
 - Very low mouth-to-ear latency, as low as 25 ms
 - Consists of processing and transmission delays
 - Decoding/encoding require 8 ms at least
 - Reliability requires introducing redundancy
 - Important to select well-provisioned paths
- NMP is *not* conferencing!
 - In NMP we want all streams, not a single one
 - Live interaction requires very low delays
 - Multicast would allow bypassing the MCU

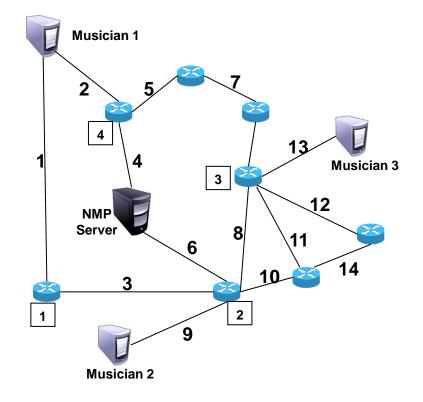
Background: ICN


- Publish Subscribe Internet (PSI) architecture
 - Publishers advertise available data
 - Subscribers express interest in data
 - A Rendezvous Network matches the two
 - The Topology Manager creates paths between them
- Stateless forwarding in PSI
 - Paths are encoded as source routes
 - Each path consists of a set of links
 - A Bloom filter includes the corresponding link tags
 - Routes are pre-selected and remain pinned

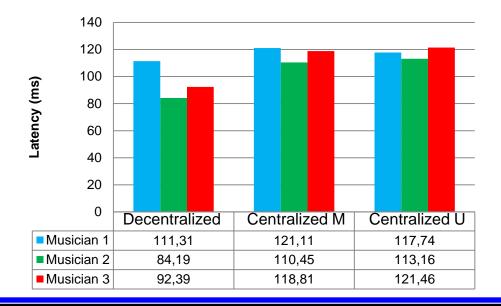
NMP over ICN


- Many ways to deploy NMP over ICN
 - Each musician publishes a media stream
 - Each musician subscribes to some media streams
 - Server-based or direct communication
 - a. A server may unicast all streams
 - b. A server may multicast all streams
 - c. Musicians may multicast all streams

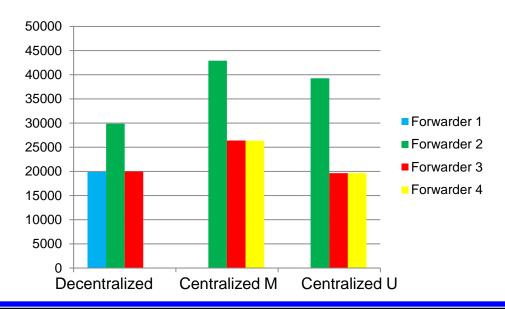
a. Centralized unicast


b. Centralized multicast

c. Decentralized multicast


Experimental setup

- Implementation of NMP over ICN
 - Based on PSI prototype
 - Based on VoPSI application
 - Server-based or serverless
- Deployed over PlanetLab
 - Three musicians involved
 - All on the same network
 - Routers around Europe
 - Shortest path multicast trees
 - Server at the "center"


Performance evaluation: latency

- Average latency seen by each musician
 - Across all sources (musicians)
 - Both server-based solutions are similar
 - Decentralized is clearly superior

Performance evaluation: load

- Number of packets in selected routers
 - Centralized multicast suffers from loopback
 - Centralized unicast suffers from duplication
 - Decentralized is again clearly superior

Conclusions

- ICN does have something to offer for NMP
 - Native multicast obviates the need for servers
 - Both delay and network load are reduced
- Future work in the MUSINET project
 - Include ultra low delay audio/video coding
 - Add loss tolerance mechanisms
 - Deploy over a real high-speed network
 - Perform experiments with live musicians

