Efficient Proactive Caching for Supporting Seamless Mobility

Vasilios Siris, Xenofon Vasilakos, George Polyzos
PhD student, AUEB, MMLAB
mm.aueb.gr/~xvas
xvas@aueb.gr
Problem

• Reduce propagation delay
 – \(f(\#\text{network hops}) \)
Approach (1/2)

- **Proactively** fetch data-objects to attachment points
- Is this a *typical* proactive caching approach?
Approach (2/2)

- Handoff mobility probabilities q_1, q_2
- Exploit **Individual** mobility & requests
 - *Not* data-popularities
Efficient Proactive Caching (EPC)

• Individual requests imply higher demand for cache space

• Congestion pricing for cache storage
 – Efficient cache utilization

 ➢ EPC trades cache space (price) for reduced delay (delay cost)
Outline

1. EPC in a flat cache structure
2. EPC in a two-level cache hierarchy
3. Evaluation
Flat cache structure

- Decision Rule:

\[
\begin{cases}
1 & \text{if } q \ (D_R - D_L) \geq p_l \\
0 & \text{if } q \ (D_R - D_L) < p_l
\end{cases}
\]

➢ Autonomous prefetching/caching
Flat cache structure

• Step-wise decision procedure
 – Optimal selection of cached objects?
Flat cache structure

- **Optimal** selection of cached objects?

 1. **Objects with different sizes**
 - Optimization is identical to 0/1 Knapsack Problem
 - NP-hard problem

 2. **Optimal for equal-size objects**
 - For each cache and each request, order by $q \cdot (D_R - D_L)$
Hierarchical cache structure
Hierarchical cache structure

- Leaf nodes solve 2 flat cache problems:
 1. Delay D_R
 2. Delay D_M

- Requires cooperation

Xenofon Vasilakos - xvas@aueb.gr
Finding an optimal solution?

• Data Placement Problem
 – Different object sizes => \textbf{NP-complete}
 – Equal size objects => high polynomial degree time
Evaluation

Comparison with a naive, an optimal, and an oracle scheme
Evaluation

Comparison with a naive, an optimal, and an oracle scheme
Evaluation

Comparison with a naive, an optimal, and an oracle scheme
Evaluation

(a) $D_M / D_L = 5$

(b) $D_M / D_L = 2$
Comparison with a naive, an optimal, and an oracle scheme
A distributed mobility support solution tailored to individual user mobility/requests that exploits user mobility and uses congestion pricing