Reducing Forwarding State in Content-Centric Networks with Semi-Stateless Forwarding

Christos Tsilopoulos, George Xylomenos, Yannis Thomas

Mobile Multimedia Laboratory,
Athens University of Economics and Business
Outline

• The problem: Does the PIT scale in CCN?
 – As is, very unlikely!

• A semi-stateless forwarding scheme
 – Interest tracking
 – Bloom filter-based Data forwarding

• Evaluation
 – Unicast & Multicast

• Conclusions
A CCN Primer

- Hop-by-hop Interest forwarding (FIB)
- Pending Interests Table (PIT)
- Stateful forwarding advantages
PIT Scalability

• # entries: bandwidth x RTT / packet
 – Example: 40 Gbps, 80 ms, 1 Kbyte
 – 400K PIT entries, longer than IP addresses
 – Even more in live streaming and pub/sub
 – Realistic estimates indicate millions of entries

• Large memory requirements for PIT
 – Does not fit in on-chip memory
 – Bad performance with main memory
Reducing PIT size

• DiPIT: combine entries with Bloom filters
 – Drops per Interest information
• ENPT: uses a trie to encode Interests
 – Lookup time depends on name size
• CONET: Interests accumulate source routes
 – Drops all benefits of stateful forwarding
 – No multicast or adaptive forwarding
 – No dropping of unwanted Data
Semi-Stateless Forwarding

• Track Interests at *some* on-path routers
 – On average, every d hops
 – For N-hop paths, Interest tracked at N/d routers

• Stateless forwarding between stateful routers
 – Using in-packet Bloom filters
Interest Tracking: Requirements

- Spread state across routers
 - Avoid bottleneck points
 - Routers should track $1/d$ of forwarded Interests
- Efficient multicast rendezvous
 - Aggregate Interests for the Same Data
1. Probabilistic Tracking

- Router tracks Interest with probability $1/d$
 - Interest aggregation: check if entry exists
 - Upper bound on stateless hops
 - Avoid large stateless parts
 - Uses hop counter in Interests
1. Probabilistic Tracking

- Router tracks Interest with probability $1/d$
 - Interest aggregation: check if entry exists
 - Upper bound on stateless hops
 - Avoid large stateless parts
 - Uses hop counter in Interests
2. Hash-based Tracking

- Router tracks Interest of $h \mod d == 0$
 - $h = \text{hash} (\text{content_name} + \text{router_suffix})$
 - Deterministic selection of storage points
 - Also needs upper bound on stateless hops
3. Hop Counter-based Tracking

• Both previous policies require hop counters
• Why not use only the hop counters?
 – Much simpler to implement
 – Stateless paths never get long
• Select initial value randomly in [0, d-1]
 – Spread state across routers
• Check PIT for pre-existing entry
 – Aggregate entries as soon as possible
Data Forwarding: Bloom filters

- Track reverse path information in routers
 - Each link has a random ID (LID)
 - Add (OR) reverse LID at each hop
 - Store the Bloom filter (BF) in the PIT
 - Add (OR) the BF to aggregate paths
Data Forwarding: Bloom filters

• Track reverse path information in routers
 – Each link has a random ID (LID)
 – Add (OR) reverse LID at each hop
 – Store the Bloom filter (BF) in the PIT
 – Add (OR) the BFs to aggregate paths
Tradeoffs

• Larger Interest & Data packets
 – Need to carry BFs in headers

• Additional Interests with multicast
 – Aggregation beyond first common router
 – Does not influence Data transmissions

• Additional Data
 – False positives in BFs

• Fewer but larger PIT entries
Evaluation

• Simulations using AS 224
 – Similar results with other ASes
 – 500 hosts distributed to access routers
 – 128 bit Bloom filters for forwarding

• Metrics
 – Reduction in PIT entries
 – Reduction in PIT size (bytes)
 – Additional Interests and Data
• Simple file transfer
 – 66% reduction in PIT entries (HC, d=3)
 – 54-61% reduction in PIT size (HC, d=3, small/large)
Multicast: PIT entries

- Live media streaming
 - 1000 groups, Zipf distribution of sizes
 - 52% reduction in PIT entries (HC, d=3)
• Live media streaming
 – 34% smaller PIT size (5k groups, d=3, small names)
 – 45% smaller PIT size (5k groups, d=3, large names)
• **Live media streaming**
 – 25% additional Interests (HC, d=3)
 – 5% additional Data (HC, d=3)
Multicast: Total Overhead

- Live media streaming
 - 9% more bandwidth (5K groups, d=3, 1.5K pkt)
 - 6% more bandwidth (5K groups, d=3, 8K pkt)
Evaluation overview

• Significant PIT size reduction achieved
 – 54-61% compared to CCN for unicast
 – 34-45% compared to CCN for unicast

• Small bandwidth penalty
 – No penalty at all for unicast
 – 6-9% extra bandwidth on multicast

• The HC policy works best with $d=3$ or 4
 – d trades off PIT size against bandwidth overhead
Conclusion

• Semi-stateful forwarding reduces PIT size
• Qualitative aspects of CCN are maintained
 – Multicast, dropping unwanted packets
• Only Interest & Data processing changes
 – LIDs are constructed autonomously
• Future work
 – Resort to semi-stateless only as PIT fills up
 – Vary d per router to minimize overhead
Thank you

xgeorge@aueb.gr