Towards improving the efficiency of ICN packet-caches

Yannis Thomas and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business, Greece
Email: thomasi,xgeorge@aueb.gr
Web caching in ICN

• ICN is a novel network architecture which offers in-network packet-level caching as a native feature.
 – Data packets are self-verified (redundancy detection at packet level)
 – Routers exploit their queuing buffers as caching units (seamless in-network caching)
 – Receiver-driven communication model with one-to-one request-response correlation (supporting off-path and on-path caching)
A common packet-cache module

- Uses both the router's fast (SRAM) and slower memory of the device
- The lookup index is a HashTable stored in the SRAM with the:
 - *key* being the packet's identifier
 - *value* being a pointer to the actual data in the slower memory
- Usually exploit the LRU replacement policy at packet level
Issues of ICN packet-caches

• Huge lookup indexes (1 entry per packet) mitigate caching dynamic
 – Each entry in SRAM costs 48 bytes and maps to just 9000 bytes (Ethernet jumbo frame)

• Small cache size causes poor hit-ratio
 – The largest single-chip SRAM can hold 72 Mbit, that is less than 300 K packets (≈2.5 Gbytes)
Object-oriented Packet Cache (OPC)

- OPC is a novel management policy for ICN packet-caches.
- Main design goal is the minimization of the indexing costs, that is **shrink the lookup index**
- OPC creates a object-level lookup index (1 entry per content) by deploying two layers of operation
 - L1: serves as lookup index for all the packets of a content
 - L2: allows access to specific packet of a content
OPC layers of operation

- OPC stores only a **compact** part of **consequent** packets of each file, ranging from the **first** packet to the **n-th** packet of that file.
 - The lookup index (L1) maps the content's name with the rank (sequence id) of the **last stored** packet for each file
 - The data storage (L2) stores in order the packets of each content

<table>
<thead>
<tr>
<th>Key</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>rank</td>
</tr>
<tr>
<td>File name</td>
<td>rank</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>File name</td>
<td>rank</td>
</tr>
</tbody>
</table>

![Diagram showing OPC layers](image-url)
OPC lookup process

Upon the arrival of a request

1. OPC parses the content's identifier (c_id) and the packet's sequence id (seq_id).

2. inquires L1 using c_id.

3. If $rank \geq seq_id$ then the packet is stored in L2 at position $L2_ptr \times seq_id \times packet_size$
OPC replacement process

• Insertion policy
 – Insert an arrived packet only when
 • Its the first packet of the content, OR
 • The previous packet is also inserted

• Eviction policy
 – Remove the last packet of the least recently used*
 content

LRU management at content-level
LIFO management at packet-level

*Currently using Least Recently Used (LRU) file organization but could be anything.
Thank you!