Towards improving the efficiency of ICN packet-caches

Yannis Thomas and George Xylomenos Mobile Multimedia Laboratory, Department of Informatics School of Information Sciences and Technology Athens University of Economics and Business, Greece Email: thomasi,xgeorge@aueb.gr

Web caching in ICN

- ICN is a novel network architecture which offers innetwork packet-level caching as a native feature.
 - Data packets are self-verified (redundancy detection at packet level)
 - Routers exploit their queuing buffers as caching units (seamless in-network caching)
 - Receiver-driven communication model with one-to-one request-response correlation (supporting off-path and on-path caching)

A common packet-cache module

- Uses both the router's fast (SRAM) and slower memory of the device
- The lookup index is a HashTable stored in the SRAM with the:
 - *key* being the packet's identifier
 - value being a pointer to the actual data in the slower memory
- Usually exploit the LRU replacement policy at packet level

Issues of ICN packet-caches

- Huge lookup indexes (1 entry per packet)
 mitigate caching dynamic
 - Each entry in SRAM costs 48bytes and maps to just 9000bytes (Ethernet jumbo frame)
- Small cache size causes poor hit-ratio
 - The largest single-chip SRAM can hold 72Mbit, that is less than 300K packets (≈2.5Gbytes)

Object-oriented Packet Cache (OPC)

- OPC is a novel management policy for ICN packetcaches.
- Main design goal is the minimization of the indexing costs, that is shrink the lookup index
- OPC creates a object-level lookup index (1 entry per content) by deploying two layers of operation
 - L1: serves as lookup index for all the packets of a content
 - L2: allows access to specific packet of a content

OPC layers of operation

- OPC stores only a compact part of consequent packets of each file, ranging from the first packet to the *n*-th packet of that file.
 - The lookup index (L1) maps the content's name with the rank (sequence id) of the last stored packet for each file
 - The data storage (L2) stores in order the packets of each content

OPC lookup process

Upon the arrival of a request

- 1. OPC parses the content's identifier (c_id) and the packet's sequence id (seq_id).
- 2. inquires L1 using *c_id*.
- 3. If *rank* ≥ *seq_id* then the packet is stored in L2 at position L2_ptr * *seq_id* * *packet_size*

OPC replacement process

- Insertion policy
 - Insert an arrived packet only when
 - Its the **first** packet of the content, OR
 - The **previous** packet is also inserted
- Eviction policy
 - Remove the last packet of the least recently used* content

LRU management at content-level LIFO management at packet-level

*Currently using Least Recently Used (LRU) file organization but could be anything.

Thank you!