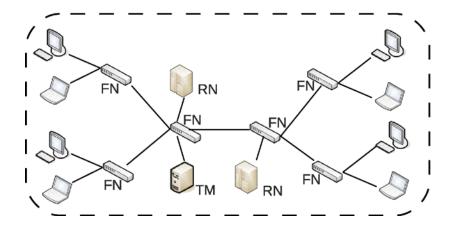


Accelerating File Downloads in Pub/Sub Internetworking with Multisource/Multipath Transfers

I. Thomas, C. Tsilopoulos, G. Xylomenos, G.C. Polyzos

Mobile Multimedia Laboratory,
Athens University of Economics and Business

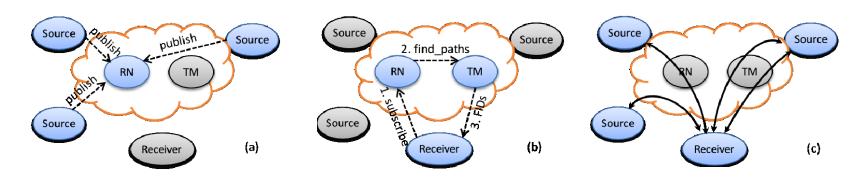

Outline

- Motivation
- PSI Basics
- Design Choices
- Route Setup and Protocol Operation
- PlanetLab Results
 - Multisource/multipath gains, resilience
- Conclusions and Future Work

Motivation

- Information-Centric Networking (ICN)
 - Emphasis on named content, not endpoints
 - Designed for content distribution
- MMTP: multisource/multipath transport
 - Designed for PSI (PSIRP/PURSUIT)
 - Exploits centralized routing and explicit forwarding
 - Implemented in the PSI prototype
 - Tested over PlanetLab

PSI Basics

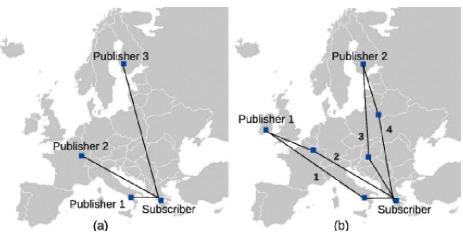


- Rendezvous function (RN nodes)
 - Matches publishers and subscribers
- Topology Manager (TM node)
 - Calculates routes between endpoints
- Forwarding (FN node)
 - In-packet Bloom filter with link labels

Design Choices

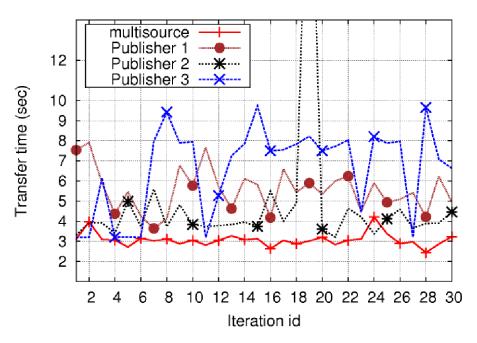
- Receiver-driven operation
 - Subscriber requests packets from publisher
- Multisource downloads
 - File retrieved from multiple publishers
- Multipath delivery
 - Uses multiple paths to each source
- Centralized path selection
 - PSI TM selects paths to sources

Route Setup

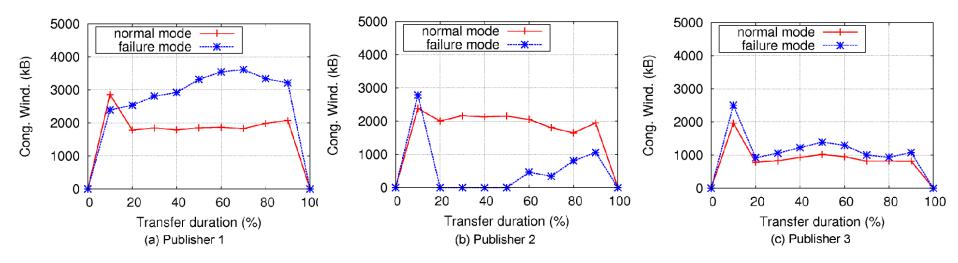


- RN matches subscription to publications
- TM computes paths to publisher(s)
 - Many pairs of forward/reverse paths
 - May use multipath and/or multisource
 - Path pairs are sent to subscriber

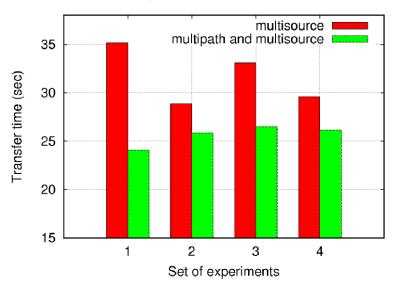
Protocol Operation


- Subscriber requests individual packets
 - Each request carries reverse path
 - May be served by on-path caches
 - Retransmission after a timeout
- Congestion control
 - Different sub-flow over each path pair
 - TCP-like congestion control over disjoint paths
 - Less aggressive behavior over shared paths

PlanetLab Topology


- PSI prototype over UDP tunnels
 - Multipath topology
 - Paths to three different publishers
 - Multisource topology
 - Two paths to each of two publishers

Multisource Gains


- Topology 1: Three publishers, one path each
 - Single: 3.9 MB/s (average), Multisource: 4.8 MB/s
 - Multisource has much lower variance

Resilience to Failures

- Topology 1: Three publishers, one path each
 - Publisher 2 stops responding for 7 s
 - No failures: 4.09 MB/s
 - With failures: 3.49 MB/s
 - Automatic switch from Publisher 2 to Publisher 1

Multipath Gains

- Topology 2: Two publishers, two paths each
 - Multisource: one path per publisher
 - Multipath: two paths per publisher
 - 17% average gain over four experiments

Conclusions and Future Work

- mmTP: multisource and multipath transport
 - Implemented for the PSI prototype
 - Relies on centralized path computation
 - Exploits explicit packet forwarding
- What next?
 - Congestion algorithm depends on paths
 - Are they disjoint or shared?
 - Experiments with competing TCP flows
 - Fine-tune TCP friendliness

Thank you

xgeorge@aueb.gr