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Abstract

The relative performance of di�erent data collection meth�
ods in the assessment of various tra�c parameters is sig�
ni�cant when the amount of data generated by a complete
trace of a tra�c interval is computationally overwhelming�
and even capturing summary statistics for all tra�c is im�
practical� This paper presents a study of the performance
of various methods of sampling in answering questions re�
lated to wide area network tra�c characterization� Using
a packet trace from a network environment that aggre�
gates tra�c from a large number of sources� we simulate
various sampling approaches� including time�driven and
event�driven methods� with both random and determin�
istic selection patterns� at a variety of granularities� Using
several metrics which indicate the similarity between two
distributions� we then compare the sampled traces to the
parent population� Our results revealed that the time�
triggered techniques did not perform as well as the packet�
triggered ones� Furthermore� the performance di�erences
within each class �packet�based or time�based techniques�
are small�

� Introduction

Statistics collection in modern networking environments
involves cost�bene�t tradeo�s� Traditionally� characteriz�
ing certain aspects of tra�c on wide area networks has
been possible by simply maintaining arrays for the distri�
bution of various metrics� packet size� interarrival time�
packet type� and geographic 	ow information� Recent
dramatic increases in the speed of wide area backbones
pose obstacles to complete statistics collection
 managers
of high�speed networks are under tremendous pressure to
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optimize resource usage to ful�ll the data collection objec�
tive� Sampling o�ers a strategy to alleviate these pressures�

Implementing sampling techniques in an operational en�
vironment requires a concerted investigation into the e�ect
of sampling on network analysis� This paper presents a de�
tailed study of how accurately various methods of sampling
can answer questions related to wide area network tra�c
characteristics� In Section � we present an example of an
operational statistics collection mechanism on the current
NSFNET that recently resorted to sampling in order to
maintain the integrity of its collection� This example il�
lustrates the importance of sampling for networking envi�
ronments� and provides a rationale for our investigation of
sampling methodology�

We then describe an experiment we conducted at an en�
trance point into the NSFNET backbone environment at
which we were able to gather packet traces� These packet
traces allowed us to explore the e�ect of di�erent parame�
ters of sampling� such as� ��� time�driven vs� event�driven
methods
 ��� random vs� deterministic selection patterns

�
� the granularity� or sampling fraction
 ��� the interval�
or length of time over which we sample� We use as assess�
ment targets in this study the distribution of packet sizes
and packet interarrival times�

� NSFNET statistics collection

We describe the current implementation of one of the sta�
tistics collection processes for the T
 NSFNET backbone�
to illustrate an example of a wide area environment faced
with data collection demands that have forced the imple�
mentation of sampling�

The principal sources of information for the T

NSFNET backbone come from programs using the Sim�
ple Network Management Protocol �SNMP� ��� for sim�
ple interface statistics� and specialized software packages
for more comprehensive tra�c characterization based on
tra�c type and source�destination� For the T� backbone�
Merit used a modi�ed version of the NNStat �
� package
for tra�c characterization� Advanced Network Services
�ANS� now performs the network operations center �NOC�
services for the T
 NSFNET backbone� and designed the



ARTS �ANSnet Router Tra�c Statistics� package ���� for
tra�c characterization� Cla�y et al ��� ��� provide de�
tailed overviews of statistics collection on the T� and T

NSFNET backbones� respectively� We describe here only
the speci�c mechanisms� NNStat on the T� backbone and
ARTS on the T
 backbone� which rely on sampling for
tra�c characterization�

Each T� backbone node �NSS� was implemented as a
dual token ring interconnecting multiple� typically nine�
IBM RT�PC processors� To categorize IP packets enter�
ing the backbone based on information contained in packet
headers� one RT processor within each NSS was dedicated
to examining the header of every packet traversing this
intra�NSS processor interconnection facility� This dedi�
cated processor utilized the NNStat package �
� to build
statistical objects based on the collected information�

The design of the T
 backbone required signi�cant
modi�cation to the statistics collection mechanism� The
T
 network design o�oaded the packet forwarding process
onto intelligent subsystems� consisting of Intel ��� proces�
sors with their own memory and �rmware� The subsystems
can communicate with each other directly via an RS�����
microchannel bus� allowing them to forward packets with�
out intervention from the main CPU� Because the packet
forwarding does not necessarily involve the main processor�
accommodating the statistics collection required placing
the software which selects IP packets for tra�c charac�
terization into the �rmware of the subsystems themselves�
Each subsystem forwards its selected packets� currently
every �ftieth� to the main CPU� where the ARTS soft�
ware package performs the tra�c characterization based
on these sampled packets� Note that multiple subsystems�
including those connected to T
� Ethernet� and FDDI ex�
ternal interfaces� forward to the RS����� processor in par�
allel�

Although the packet categorization mechanism at each
node di�ers on the two backbones� the backbone�wide cen�
tralized collection of the data is the same� Every �fteen
minutes� the central agent at the NOC running the collec�
tion software queries each of the backbone nodes� which
report and then reset their object counters� The collection
host is an IBM RS����� at the ANS NOC� which during
mid�February ���
 was collecting around �� MB of ARTS
tra�c characterization data on a typical workday�� Table �
illustrates the tra�c characterization objects collected on
the T� and T
 backbones� Note that the T
 backbone
only supports collection of the �rst three objects�

When the collection mechanism maintains sophisticated
aggregate objects� even dedicated processors can begin to
su�er degradation in the quality of collection under high
load� For example� during the early years of the T� back�
bone� the utilization was not high enough to strain the

�On the T� backbone� the packet categorization collectionmech�
anism uses a more e
cient binary format than that used on the T�
backbone	
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Figure �� T� backbone packet totals �billions of packets��
as reported independently by SNMP and NNStat� indicate
a discrepancy between the two collection processes�

capacity of this dedicated processor� By mid������ how�
ever� the discrepancies between the SNMP based tra�c
counts and those derived by means of NNStat had grown
to a signi�cant fraction of the total tra�c count� as shown
in Figure �� It became clear that the processor collect�
ing the NNStat data was unable to keep up with the total
nodal tra�c 	ow��

In September ����� responding to concerns over the in�
tegrity of the data� the operator of the T� NSFNET back�
bone deployed a sampling technique which captures only
one out of �fty packet headers for tra�c characterization
purposes� The result was a signi�cant reduction in the
discrepancies� Although the sampling imposes a cost of
inaccuracies of the tra�c signatures� there is no longer
complete loss of statistical information during periods of
high utilization�

Because each T� backbone node facility had a processor
dedicated to statistics collection� the collection mechanism
never imposed a burden on the packet forwarding capac�
ity of the node� although heavy network utilization may
have rendered the statistics collecting processor unable to
capture all the tra�c� In contrast� some components of
statistics collection in the T
 architecture are integral to
the forwarding process� and therefore may potentially im�
pact the switching capacity� Minimizing overhead in the
statistics collection mechanism is essential to the high per�
formance of the T
 backbone�

Although the motivation is di�erent for the T� and T

architectures� both statistics collection mechanisms force
the consideration of sampling� Future gigabit networks
will only intensify the problems� As loads in these envi�

�Because the SNMP statistics are incremented in the mainstream
of packet forwarding� they are more reliable	 It is the tra
c catego�
rization information� speci�cally the net matrix� protocol� and port
data� which is subject to losses during periods of high utilization	



Table �� Packet categorization objects on T� and T
 backbone nodes
Object T� T�

relative to exterior nodal interface

source�destination tra�c volume matrix by network number �packets�bytes� Y Y
TCP�UDP port distribution� well�known subset �packets�bytes� Y Y
distribution of protocol over IP �e�g�� TCP� UDP� ICMP� �packets�bytes� Y Y
packet�length histogram at a ���byte granularity Y N�A
packet volume going out of backbone node Y N�A

NSS�centric �entire node�
per second histogram of packet arrival rates ��� pps granularity� Y N�A
NSS �intra�NSFNET� transit tra�c volume Y N�A

ronments outstrip the ability of even dedicated statistics
processors to monitor the tra�c� sampling will become es�
sential to the integrity of sophisticated data objects which
can re	ect network usage and behavior�

� Measurement methodology

We now describe the environment in which we collected
the data for our study� The nature of our investigation
demands detailed insight into tra�c behavior� which re�
quires evaluating each packet traversing the environment�
Because NSFNET backbone core nodes typically cannot
support the collection of traces capturing all packets over
long periods of time� we collected packet traces at a sin�
gle entrance interface into the backbone� Speci�cally� we
collected a ���hour trace of packets sent from the SDSC
environment to the NSFNET San Diego E�NSS via the
FDDI interface� This kind of environment is more con�
ducive to tra�c capture than many other points� while
still exhibiting a reasonable level of aggregation of tra�c�
We did not investigate the tra�c back from the E�NSS�
nor did we investigate the tra�c in or out of the E�NSS
Ethernet interface�

The �� hour trace is more than ���MByte long and
started at shortly after �����PST on the �� March ���
�
Of the �� hours we created a subset of about one hour�
from �
��� to ����� for the �
 March ���
�� We then
performed sampling simulations on this one�hour trace�
Table � quanti�es the statistics of the per�second packet�
byte� and mean packet size distributions for the the data
set�

�Preliminary experiments for this study used data from the FIX�
West interexchange point in Mo�et Field� CA	 The results of the
two data sets were quite similar� but the ENSS data set we use
here is more relevant to the current NSFNET statistics collection
situation	

� Sampling mechanisms

Developing a sampling methodology requires an evalua�
tion of the cost and bene�t of sampling in the particular
domain of study� Our goal is to evaluate the e�ects of cer�
tain sampling parameters on the integrity of the resulting
samples� In general� a larger sample can more closely re�
	ect the true parent population� but each instance of sam�
pling imposes a cost� in terms of CPU time� bu�er space�
and sampling interval� or amount of calendar time one can
devote to deriving a particular estimate� The sampling
frequency must therefore be weighed against the accuracy
requirements and complexity of a given object�

The one�hour packet trace we collected for our experi�
ments represents only a brief interval� indeed itself a sam�
ple from the ongoing population of network tra�c� For
the purposes of our study we treat this packet trace as the
true parent population� and the subpopulations drawn by
our various sampling techniques as the samples� Standard
statistical formulas generally rely on estimates of parame�
ters of the parent population for the default case where the
parent population is not known� Because we have access
to the actual parameters of this parent population� we use
them rather than estimates of them� Our goal is then to
assess how close each sample is to its parent population for
several key measurements�

Figure � illustrates an abstraction of the three main
classes of sampling schemes we used in the study� sys�
tematic sampling
 strati�ed random sampling
 and simple
random sampling� For each class� one can implement� or
approximate� any particular method via either event�based
or timer�based mechanisms� That is� one can use packet
counts or timers to trigger the selection of a packet for
inclusion in a sample� Implementing these methods at a
variety of granularities allows a range of sampling frac�
tions� Furthermore� one can vary the interval over which
one samples� for a minute� �� minutes� an hour� a day�
etc� Since the processes are not time�homogeneous� it is
not clear that spreading the same number of samples over
longer intervals will generate the same result�



Table �� Summary statistics for distribution of per�second packet and byte volume� and average packet size
Distribution Min� ��� Median ��� Max� Mean StdDev� Skew Kurtosis

Monday� 

 March ���� ��	��� million packets during hour�
Packet arrivals �packets�s� ��� ��� ��
 ��� ��� �
�	
 ��	� �	�� �	��
Byte arrivals �kB�s� 
�	��� ��	� ��	� ���	� ���	� ��	� ��	� �	
 �	

Mean per�sec packet size �bytes� �
 ��� 
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Figure �� Schematic of Three Sampling Algorithms

We brie	y describe each method� �rst for packet�driven
and then timer�driven implementations� The �rst class
of methods� systematic sampling involves deterministically
selecting every kth element �packet� of the data set� Strati�
�ed random sampling is similar to systematic sampling� ex�
cept that rather than selecting the �rst packet from each
bucket� a packet is selected randomly from each bucket�
Although for both systematic and strati�ed random sam�
pling the bucket sizes do not necessarily have to be con�
stant� our experiments do use constant sizes� Finally� sim�
ple random sampling uniformly selects n packets from the
total population at random�

Timer�driven sampling methods use a timer rather than
a packet counter to trigger the selection of packets to in�
clude in the sample� When the timer expires� we select the
next packet to arrive� This is a necessary approximation
but seemingly inconsequential� As with granularities for
packet�based sampling� one selects various time intervals
to implement a desired range of sampling fractions�

We implemented all three of the above methods for
packet�based sampling� and the �rst two methods for
timer�based sampling� for a total of �ve basic methods�
For each sampling method we selected� we were motivated
by an interest in the e�ects of patterns in the data� We
also wanted to determine whether the method currently
employed for data collection on the T
 ANSnet backbone�
systematically sampling every �ftieth packet� provided sig�
ni�cantly di�erent results from simple random sampling�
Because preliminary experiments with timer�based sam�
pling were not encouraging� as we explain in Section ���

we do not devote much attention to timer methods in this
paper�

� Methodological background

Cochran ��� and Krishnaiah and Rao ���� provide some
comparative analyses of which sampling strategies o�er
lower variance under given conditions� These analyses use
the variance of the estimate of the mean as a metric for
the sampling method
 the lower the expected variance of
the estimate� the more e�cient the sampling method� In
our case we are more interested in assessment of the com�
plete distribution� Nonetheless we o�er some preliminary
insights based on this evaluation mechanism�

If the populations are randomly ordered� we expect
all three methods �systematic� strati�ed� and random� to
be equivalent� Systematic sampling spreads the samples
more evenly over the population� which can potentially
yield greater precision than strati�ed random sampling�
In general� systematic sampling is more precise than sim�
ple random sampling if the variance within the systematic
samples is larger than the population variance as a whole�
If there is positive correlation between pairs of elements
within the systematic sample� however� then strati�ed or
simple random sampling will be more e�cient�

For populations with a linear trend� strati�ed random
sampling will be more e�cient than systematic sampling�
Intuitively� one can imagine how if the sample from the
�rst bucket were too low� the sample from each subsequent
bucket would also be too low� Strati�ed random sampling
would alleviate this di�culty� Interestingly enough� simple
random sampling is less e�cient than either systematic or
strati�ed random sampling in this situation �����

��� Theoretical sample size for means

Cochran ��� provides a detailed explanation of the statis�
tical determination of the appropriate random sample size
for estimating a given parameter of a population� such as
the mean or proportion� We provide an illustration of the
appropriate sample sizes to estimate the mean for given
con�dence levels on the two metrics we selected as analy�
sis targets� As an example we will specify an accuracy of
r � ��� and a con�dence level of ����� � ��� � ����
which implies z�value of ���� in the following formula for



the appropriate sample size n�

n � �
���z�

r�
��

where � is the population mean and � is the population
standard deviation�

For our data set �of approximately ��� million packets��
the packet size distribution had population mean � � �
�
bytes and population standard deviation � � �
�� These
values yield as the appropriate sample size� ����� Note
that these formulas assume sampling from an in�nite pop�
ulation� while we are actually using a population of about
��� million packets� of which ����� constitutes a sampling
fraction of around ������ Note that the mean is not a
particularly indicative description of the packet size dis�
tribution� which is bimodal around ���byte and ����byte
packets� An accuracy of r � �� would require 
�����
samples from the same data set�

For the interarrival time distribution of this data set
the population mean is � � �
�� �sec and the standard
deviation is � � ��
�� These values yield the appropriate
sample size� ����� An accuracy of r � �� would require
������ samples from this data set�

��� Metrics of disparity between distributions

Since both of our characterization targets �and most oth�
ers� come from distributions for which the mean is not such
a helpful description� such estimates are of limited value to
us� We seek a more sophisticated assessment of the vari�
ous metrics� usually obtained through more comprehensive
descriptions of the distribution�

Perhaps the best known metric is Pearson�s �� statistic�
which compares the observed and expected counts within
a set of bins which span the range of the data�

�
� �

BX
i��

�Oi � Ei�
�

Ei

where B is the number of bins� Oi is the number of obser�
vations found in the ith bin of the sample� and Ei is the
number of observations expected in the ith bin based on
the parent population model� The sampling distribution of
�� is approximately the �� distribution where the number
of degrees of freedom equals the number of bins minus the
number of independent parameters �tted minus one� This
approximation improves as the number of counts in each
cell increases� and is generally adequate if each cell has at
least �ve expected counts� This statistic is the basis of the
�� test� which uses the �� distribution to test hypothe�
ses at speci�ed signi�cance levels about the goodness of �t
between a model and a data set�

We performed �� tests for our two target distributions
on some of our samples varying several parameters� The

results were remarkably compatible with statistical the�
ory� For example� in our experiments for systematically
sampling every �ftieth packet� only two or three out of the
�fty possible replications produced �� values that would
convince a statistician to reject the hypothesis that they
were produced by the original distribution at the ���� con�
�dence level�

Unfortunately� the �� statistic is sensitive to the size
of the data set� making it di�cult to compare samples
of varying sizes� Therefore� it cannot quantify signi�cant
trends when varying the sampling fraction� one of our pri�
mary concerns� Goodman and Kruskal ���� note that al�
though useful as a test for the signi�cance of the associa�
tion between two data sets� the �� statistic� or any simple
function of it �e�g�� the signi�cance level�� cannot serve as
a measure of degree of association between two sets� On
the other hand� we did �nd signi�cantly higher �� values
for the timer�based methods� which motivated us to drop
them from the primary focus of our investigation� How�
ever� reasonable di�erentiation among the other methods
was not possible with the traditional �� goodness�of��t
testing methods�

Other sophisticated goodness�of��t tests� such as the
Kolmogorov�Smirnov ��� or Anderson�Darling A� ��� tests�
have proven di�cult to apply to wide�area network tra�c
data ����� Another disparity metric� which we refer to as
cost� measures the absolute distance� or l� norm� between
the expected and observed bin counts�

PB

i�� jOi �Eij�
Consider the following example use of the cost metric�
Imagine a network service provider who uses tra�c�based
charging trying to convince his customers that sampling
does not adversely a�ect their charges� He can o�er to re�
imburse his customers for the di�erence between their real
�if accessible� and observed �i�e�� estimated via sampling�
tra�c� The provider would also like to avoid losing rev�
enue through samples that underestimate the transmitted
tra�c� If Xi is the number of packets which the network
provider attributes to his client based on his sampling� and
Yi is the number of packets which the client actually sent�
then there are two possibilities�

� Xi � Yi� in which case client i may express dissatis�
faction at being overcharged� or

� Yi � Xi� in which case the service provider loses
earned revenue to client i

Note that the actual di�erence in the number of packets
is important here� rather than metrics that compare the
general shapes of distributions� Therefore� the provider
should use a feasible sampling mechanism that minimizes
the l� norm� By feasible we assume the comparison of sam�
pling techniques with comparable cost� A service provider
might also want a relative cost measure� for example the
product of l� with the sampling fraction� to account for
the resource savings of sampling less often�



All these metrics are still subject to the in	uence of the
sample size� Fleiss ��� o�ers another alternative metric to
measure the degree of similarity between two distributions
which is free of the in	uence of the sample size� the � �phi�
coe�cient� This metric is derived from the �� metric as

follows� � �

q
��

n
� where n �

PB

i���Ei � Oi�� Unlike the

�� statistic� which uses the associated �� distribution for
hypothesis testing� we are aware of no such corresponding
distribution for the � metric�

Paxson ���� considers another ���inspired metric which
remains invariant with increasing sample sizes� X� �PB

i��
�Oi�Ei�

�

�Ei��
and which allows one to compute the �av�

erage normalized deviation� across all bins� k �

q
X�

B
�

In the next section we illustrate the application of sev�
eral of these metrics with an example from our data set�
and then select one metric to apply to our data from the
domain of interest� a high speed wide area network�

� Empirical evaluation

For the following example we use a single approximately
half�hour ����� second� interval of packet trace data and
sample at exponentially coarser granularities� Figure 

plots as a function of sampling granularity �inverse of the
sampling fraction� the various metrics we described above
which indicate the degree of disparity between the sample
and the population� the �� metric
 the �� signi�cance level
�for ease of comparison we plot �� � the signi�cance level�
in the �gure�
 the cost and relative cost �rcost�metrics
 the
X� metric
 and the � metric� Each metric in the �gure at�
tempts to measure the goodness of �t of a model to a data
set� where in this case our subsamples are the model of the
original �in the real world� unknown� data set� According
to this �gure the cost�X�� and � metrics all exhibit similar
behavior� Because the � metric is well established in the
statistical literature� we chose this metric for use in our
investigation�

We will present results in terms of the range of ��values
for a given analysis target� and how these ��values change
as we vary one dimension of the parameter space hold�
ing the other dimensions constant� A ��value of � is con�
sistent with a sample which perfectly re	ects the parent
population� In general� larger ��values will correspond to
poorer samples� i�e�� those that diverge more widely from
the sampled population� When a network operator selects
a sampling method� with an associated sampling fraction
and interval� he buys a certain range of ��values which will
characterize his samples� Although we do not o�er a pre�
cise threshold below which all ��values are acceptable� we
do o�er suggestions for how the ��value scale can guide a
sampling methodology�

A complication in our experiment is the fact that some
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Figure 
� Various metrics of disparity for samples as a
function of exponentially increasing sampling granularities

of the samples share members with other samples� and thus
there is correlation among the samples� This correlation
inhibits statistically precise statements about the superi�
ority of one sampling method over another� On the other
hand this approach does allow us to easily order sampling
methods based on their performance�

� Application of methodology

Now that we have presented our methodology for scoring
the samples for each target� we concentrate on the e�ects
of the various sampling parameters in isolation� Our ex�
periment consists of a large number of samples exploring
the domain based on�

�� class of sampling method �systematic� strati�ed ran�
dom� simple random�

�� time�driven vs� event�driven methods


� granularity� or sampling fraction

�� the interval� or length of time over which we sample

The �rst two dimensions cover the range of sampling meth�
ods which we employ� The latter two dimensions allow
further subdivisions to the parameter space� We ran �ve
replications for each method to avoid misleading outlying
samples�

We apply our evaluation methodology to the analysis of
two distributions� packet size and interarrival times� We
show samples which re	ect the true population to varying
degrees� We then provide graphs which show the e�ect of
varying a single parameter on the range of scores� The
objective is to provide a framework for evaluating what
count as good or bad ��value scores� and to demonstrate
our analysis for the selected targets�

In our sampling simulations we use an exponentially
increasing time window relative to the beginning of the



full population (phi = 0.000)
every 8th packet (phi = 0.004)
every 128th packet (phi = 0.017)
every 1024th packet (phi = 0.024)
every 8192nd packet (phi = 0.021)
every 32768th packet (phi = 0.226)
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Figure �� Distribution of packet sizes as a function of �ve
sampling granularities ����� second interval� systematic
sampling�

hour�long trace� To modulate both the time windows as
well as the sampling interval� we also ran samples at expo�
nentially decreasing sampling fractions� starting at every
other packet� and decreasing the fraction down to one in

����� packets� We then binned the interarrival time and
packet length distributions for use in our �� based statistic
calculation� as we describe below�

��� Bin selection

Calculation of the ���based metric that scores our indi�
vidual samples requires the selection of bins� or ranges� in
which to group the data sets� In this section we present the
ranges that we used for our two targets� and histograms
which illustrate the distributions over these ranges� Ta�
ble 
 provides summary statistics for the full population
for both the packet size and interarrival time distributions�

����� Packet size distribution

To compare the packet size distributions� i�e�� the number
of bytes per packet� we compared the proportion of pack�
ets within the following three ranges �in bytes�� less than
��
 between �� and ���
 and greater than ���� We chose
these bins based on our knowledge of the typical packet
size distribution of network tra�c� We experimented with
bin sizes which accounted for a fairly large number of pack�
ets� and also which characterize certain protocols� ACKs�
character echos� transaction�oriented� bulk transfer� Fig�
ure � compares the distribution of packet sizes into these
bins at �ve sampling granularities�

����� Interarrival time distribution

For the packet interarrival time distribution� we used the
following bins �in �sec�� less than ��� �s
 between ���

full population (phi = 0.000)
every 8th packet (phi = 0.005)
every 128th packet (phi = 0.018)
every 1024th packet (phi = 0.063)
every 8192nd packet (phi = .161)
every 32768th packet (phi = .429)
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Figure �� Distribution of packet interarrival times as a
function of �ve systematic sampling granularities �����
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Figure �� Ranges of systematic sampling ��value scores for
packet size distribution as a function of sampling fraction
for ���� second interval ���x � bucket size�

and ���� �s
 between ���� and �
�� �s
 between ���� and

��� �s
 and greater than 
��� �s� We chose these bins to
achieve an relatively even distribution of data among them�
Figure � shows a histogram of several samples of packet
interarrival times dividing them into these ranges� The
increasing ��value scores shown in the legend re	ect the
divergence in the sample accuracy as the sampling fraction
decreases� We discuss these scores in detail in the next
section� Table 
 summarizes the parameters of the full
hour packet population� subject to the ��� microsecond
clock granularity described in Section 
�

��� Sampling fraction and method

Using these bins to base our scoring� we investigated the
variation of individual sampling parameters� To exam�
ine the e�ect of the sampling fraction� we �rst focused on
one method� systematic sampling� and ran several replica�
tions of this method at a range of sampling fractions� To
achieve a wider range of replications for systematic sam�



Table 
� Summary statistics for distribution of packet sizes and interarrival times
Min� �� ��� Median ��� 	�� Max� Mean Std�Dev�

Total Population � �	�� million packets
packet size
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Figure �� Means of systematic sampling ��value scores for
packet size as a function of sampling fraction for ���� sec�
ond interval ���x � bucket size�

ples� we varied the point within the data set at which to
begin the sampling procedure� The boxplots� in Figure �
show the range of ��value scores for each systematic sam�
ple for the packet size distribution assessment� The x�axis
corresponds to the sampling granularity� or the reciprocal
of the sampling fraction� The �rst box plot on the left
corresponds to every fourth packet� and most of the scores
are near perfect zeros� The �gure shows two clear e�ects
of decreasing the sampling fraction� and holds with other
methods as well� increasing values� which indicate poorer
snapshots of the parent population
 and increasing vari�
ance within the set of samples for each method� Figure �
shows the means of the boxplots in Figure ��

To illustrate the e�ect of the sampling method� we used
the �ve methods in our experiment to assess the packet
size distribution� Like the boxplots in Figure �� Figure �
indicates the e�ect of increasing the sampling fraction on
the ability of the sample to estimate the true population�

Figure � illustrates the same metric for the packet in�
terarrival time distribution� Figures � and � show for two
targets a general trend which we expect holds for other tar�
gets as well� there is little di�erence in performance among
the packet�based methods� and the timer�based methods
are uniformly worse� Timer�based sampling is particularly
bad for assessing interarrival times� since one tends to miss

�In a boxplot� the dotted lines �or �whiskers�� from the bottom
to the top of the box� extend to the extreme values of data or �	�
times the interquartile di�erence from the center� whichever is less	
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Figure �� Mean sample ��value scores as a function of
sampling fraction for packet interarrival time distribution

bursty periods with many packets of relatively small inter�
arrival times� and thus tends to skew the true interarrival
distribution toward the larger values� For the remainder of
the discussion� we thus restricted ourselves to only two of
the packet based methods� systematic and strati�ed ran�
dom sampling�

��� Length of interval

We have investigated how the sampling fraction a�ects the
sample size
 another way to increase the sample size� and
thus allow greater accuracy in any desired estimate of the
parent population� is the duration of the sampling interval�
However� network tra�c is typically non�stationary� and so
the e�ect of spreading the sampled packets over a longer
interval is not clear�

In order to experiment with the e�ect of the interval�
we chose one particular sampling method� systematic sam�
pling� and varied the interval during di�erent runs of that
method� Figures �� and �� show the resulting ��value
scores for the packet size and interarrival time distribu�
tions for our data set� Although the left side of these
�gures re	ect smaller time intervals and are noisier� one
can see general trends at later intervals� For all sampling
fractions the sampling scores improve with elapsed time�
as one might expect�
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Figure ��� Mean systematic sample ��value scores for
packet size distribution as a function of elapsed time �in
minutes�
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Figure ��� Mean systematic sample ��value scores for
packet interarrival time distribution as a function of
elapsed time �in minutes�



� Conclusions

We have presented a framework for the empirical evalua�
tion of sampling techniques for network tra�c character�
ization� We have then applied our methodology to two
target metrics� distribution of packet sizes� and distribu�
tion of packet interarrival times�

Our experimental data consisted of a packet trace ob�
tained from an entrance interface into the NSFNET na�
tional backbone� Because the characteristics of our popu�
lations of network data do not �t into any categories an�
alyzed in the literature� we o�er in this paper empirical
data on sampling simulations run on an isolated packet
trace while controlling various experimental parameters�

We have applied the traditional �� test to evaluate the
goodness of �t of the sampled distribution to the original
complete distribution� One important result is that the
current technique of systematic sampling used for statistics
collection on the NSFNET backbone provides samples that
are compatible with the original distribution of packet sizes
and interarrival times at the ���� signi�cance level�

Because the �� technique is sensitive to the sample size�
and therefore inappropriate for comparison of samples of
di�erent sizes� we have focused our evaluation on the �
metric which measures similar deviation but is not sensi�
tive to the size of the sample� Based on this metric� we
have considered systematic� strati�ed random� and random
sampling by packet or time and various sampling fractions
and sampling intervals�

Our results revealed that the time�triggered techniques
did not perform as well as the packet�triggered ones� Fur�
thermore� the performance di�erences within each class
�packet�based or time�based techniques� are small� The
�� metric characterizes the degree of association between
the sample distributions and the population� but it does
not provide absolute characterizations of sampling perfor�
mance and in particular it is not conducive to rigorous
hypothesis testing� However� it is a useful tool to demon�
strate that a technique is generally superior to another
across sampling fractions and sampling intervals�

Our methodology can be extended and applied to char�
acterizations of network tra�c that are based on propor�
tions� e�g�� TCP�UDP port distribution� More di�cult
would be to characterize the goodness of �t of the sam�
pled source�destination tra�c matrix� mainly because of
its large size and because many tra�c pairs generate small
amounts of tra�c during typical sampling intervals�
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