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Abstract

We present the architecture for data collection for
the T� NSFNET backbone service� and di�culties
with using the collected statistics for long�term net�
work forecasting of certain tra�c aspects� We de�
scribe relevant aspects of the T� backbone archi�
tecture� describe the instrumentation for the sta�
tistics collection process� and how it di�ers from
that on the T� backbone� We then present long�
term NSFNET data to elucidate long term trends
in both the reachability of Internet components via
the NSFNET as well as the growing cross�section
of tra�c� We focus on the di�culties of forecast�
ing and planning for these two tra�c aspects in an
infrastructure whose protocol architecture and in�
strumentation for data collection was not designed
to support such objectives�

I� Introduction

NSFNET� the National Science Foundation
Network� is a general purpose packet�switching
network supporting access to scienti�c comput�
ing resources� data� and interpersonal electronic
communications�� Cla�y et al� ��� present a de�
scription of the national backbone networking envi�
ronment and the instrumentation for the data col�
lection process for the now dismantled T� NSFNET
backbone� Evolved from a 	
kbps network among
NSF�funded supercomputer centers in the mid�
����s to today
s �	Mbps network which serves
a much broader clientele� The current larger
NSFNET encompasses not only the transcontinen�
tal backbone connecting the NSF�funded super�
computer centers and mid�level networks� but also

� This research is supported by a grant of the National
Science Foundation �NCR���������� and a joint study
agreement with the International Business Machines�
Inc	
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Figure �� ���� NSFNET T� Backbone Service Log�
ical Topology

mid�level networks themselves� and campus net�
works� The hierarchical structure includes a large
fraction of the research and educational commu�
nity� and even extends into a global arena via in�
ternational connections� Figure � shows the logical
topology of the backbone�

Since July ����� Merit Network� Inc� has ad�
ministered and managed the T� NSFNET back�
bone� and in late ����� in conjunction with its part�
ners IBM and MCI� began to deploy in parallel a
replacement T� network� The T� network provides
a ���fold increase in raw capacity over the T� net�
work �from ��	�� Mb�sec to �����
 Mb�sec�� and
by November ���� had completely replaced the T�
network�

In the interim� the status of the NSFNET has
shifted through organizational restructuring among
original participants in the backbone project� In
����� Advanced Network Services �ANS� began of�
�cial operation and management of the national
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T� backbone described above� Merit Network�
Inc� still holds a cooperative agreement with NSF
to provide NSFNET backbone services� although
Merit no longer provides these services via a dedi�
cated infrastructure� Merit now subcontracts these
services to ANS� who provides them over ANSnet�
their own backbone infrastructure� The �NSFNET
backbone� now refers to a virtual backbone service�
i�e�� a set of services provided across the ANSnet
physical backbone� In this paper we refer to the
�T� NSFNET backbone� with the understanding
that we are referring to a service provided to NSF�
not a dedicated physical network�

The purpose of this paper is to present the ar�
chitecture for data collection for the T� NSFNET
backbone service� and di�culties with using the
collected statistics for long�term forecasting of cer�
tain tra�c aspects� In the next section we describe
relevant aspects of the T� backbone architecture�
Section III describes the instrumentation for the
statistics collection process on T� backbone� and
how it di�ers from that on the T� backbone� Sec�
tion IV presents a discussion of the IP network ad�
dress structure� and how the status of an IP ad�
dress relates to the evolution of available Internet
network numbering space� In Section V we discuss
the growth in application�service diversity on the
Internet as measured by TCP�UDP port numbers�

Our statistics re�ect operational collection of
tra�c and network registration statistics� IP net�
work number growth� which provides a metric for
the increasing geographic and administrative scope
of the Internet� and port numbers� which provide
a metric for planning for the growing cross�section
of tra�c�� We focus on the limitations of these
two methodologies� both of which were initially de�
signed to support short term engineering and plan�
ning needs� such as routing and tracking the rough
cross�section of tra�c� Suboptimalities in their ar�
chitecture and implementation prevent their e�ec�
tive usage for some long�term forecasting and plan�
ning objectives� For example� the Internet archi�
tecture makes it inherently di�cult to track many
applications by TCP�IP port number� The situa�
tion will pose a serious obstacle to long�term plan�
ning with the growth of continuous real�time media
applications� which are able to continuously block
signi�cant fractions of the available bandwidth�

� The data for the statistics presented in this report were
gathered by an NSFNET NSS software package which
aggregates information using the ARTS software pack�
age	 This compilation� greatly assisted by ANS� Merit
Network� Inc	� and other installations� re�ects an e�ort
to capture as much and as accurate data as possible	
However� no guarantee is given for the completeness of
the data or its accuracy	
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Figure �� T� NSS architecture

II� Architecture of the T� backbone

We review a few of the network parameters that
a�ect tra�c �ow in the current T� backbone� Chi�
noy and Smith �
� present details of the T� net�
work architecture� which evolved from the experi�
ence of managing the T� network� Backbone nodes�
the core packet switches in the T� infrastructure�
are designated as either Exterior Nodal Switch�
ing Subsystems �ENSSs� or Core Nodal Switch�
ing Subsystems �CNSSs�� ENSSs are located on
the client network premises and CNSSs are co�
located at carrier switching centers which are also
known as �points�of�presence� �POPs� or �junc�
tion points�� Co�location of the core cloud packet
switches within POPs provides several advantages�
First� since these locations are major carrier cir�
cuit switching centers they are sta�ed around the
clock� and have full backup power which is essen�
tial to the stability of the network� Second� this
co�location allows the addition of new clients �e�g�
ENSS nodes� to the network by connecting them
to a CNSS with minimal� or no service disruption
to other CNSS�ENSS clients� Colocation also al�
lows network designers to more closely align the
carrier�provided circuit�switched network topology
with the packet�switched backbone topology� facil�
itating path redundancy�

The serial line interfaces to each node on the
T� backbone are of �T��� or DS� speed� �����
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Mbits�second�� The DS� circuits are not subchan�
neled� so the full �	 Mbits�second� less framing
and carrier management overhead� is available for
user tra�c� The physical and electrical interfac�
ing to these lines is handled by a Data Service
Unit �DSU�� Nearly all of the DS� circuits are
terrestrial �ber�optic lines� other possible media
are microwave and copper �
�� To access external
client networks� the T� backbone nodes currently
use Ethernet and FDDI interfaces� with packet size
limits of ��	 and � kilobytes� respectively� Each
packet is also embedded within an Ethernet or
FDDI frame� which the LAN drivers at the end�
points append and remove�

The T� routing technology and architecture is
functionally equivalent to that on the T� network�
Packets travel through the network individually
and are passed from node to node aided by an
adaptive� distributed routing procedure based on
the standard IS�IS protocol ����� Bu�ering on the
output queues of the nodes contributes to the la�
tency of the delivery of packets to the destination�
On the T� backbone� the number and size of bu�ers
in each node depends on the interface type and op�
erating system version�

Figures � and � illustrate the Nodal Switching
Subsystem �NSS� architectures for the core back�
bone nodes on the T� and T� backbones� respec�

� There are T� backup links as well� we will not focus on
these backup links in our discussion of the architecture	

tively� The T� NSS architecture consisted of mul�
tiple� typically nine� IBM PC�RT processors con�
nected by a common token ring� In contrast� the
T� backbone packet forwarding routers are based
on the IBM RISC System�
���� architecture� with
special modi�cations including high performance
adapter cards and software� Initially� the interfaces
to this uniprocessor architecture switched packets
through to the outgoing interfaces via the main
CPU� In the current implementation� the packet
forwarding process is o�oaded onto intelligent sub�
systems� Each external interface� including T� se�
rial lines� as well as connected Ethernet and FDDI
LANs� lies on such a dedicated subsystem card�
These cards have a built�in ���bit Intel �
� micro�
controller on board� and have local access to all
information needed to switch a packet� including
routing tables and relevant code� The cards can
thus exchange packets among each other directly
via the IBM Microchannel� bus� without the inter�
vention of the main processor�

III� Statistics collection mechanisms

In this section we describe the mechanisms for
data collection on the T� backbone� and how they
di�er from those used on the T� backbone� The
principal sources of information about the T� back�
bone come from routine collection of three classes
of network statistics� interface statistics� packet
categorization� and internodal delays� Interface
statistics derive from programs using the Simple
Network Management Protocol �SNMP� ���� Spe�
cialized software packages perform packet catego�
rization� the T� backbone utilized the NNStat ���
package for collection� the T� backbone utilizes the
ARTS �ANSnet Router Tra�c Statistics� ��� pack�
age� which encompasses similar functionality�

III�A� Interface performance

The mechanism for collecting interface perfor�
mance statistics did not change from the T� to the
T� backbone� To maintain data regarding pack�
ets and bytes transmitted and received� errors� de�
lay times� and down times� all backbone nodes
record statistics about the packets which traverse
each of their interfaces� Each backbone node runs
SNMP servers which respond to queries regard�
ing SNMP Management Information Base �MIB�
variables� Centralized collection of the data from
each backbone interface on each NSS occurs once
every �	 minutes� The counters are cleared in
only two cases� when the machine is restarted�
and when the �� bit counters overrun� Cumulative
counters� retrieved using SNMP� include those for

� RISC System����� is a trademark of IBM Corporation	
� Microchannel is a trademark of IBM Corporation	

CBA��
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Table �� SNMP objects collected per node on T� and T� backbones
object description T� T�
ifOperStatus operational status Y N�A
sysUpTime system uptime Y Y
ifDescr interface descriptors Y Y
ipAdEntIfIndex IP address corresponding to interfaces Y Y
is�isIndex remote address to interface index mapping N�A Y
ifInErrors incoming errors occurring interface Y Y
ifOutErrors outgoing errors occurring on interface Y Y
ifInOctets bytes entering interface Y Y
ifOutOctets bytes exiting interface Y Y
ifInUcastPkts unicast packets entering interface Y Y
ifOutUcastPkts unicast packets exiting interface Y Y
ifInNUcastPkts non�unicast packets entering interface N�A Y
ifOutNUcastPkts non�unicast packets exiting interface N�A Y

packets� bytes� and errors transmitted in and out
of each interface�� Table � compares the SNMP
objects collected on the T� and T� backbones�
Among other changes� the T� backbone now sup�
ports counters of non�unicast packets��

III�B� Packet categorization

Unlike the SNMP statistics� the data collection
process for packet categorization was modi�ed with
the transition from the T� to the T� backbone� We
brie�y describe the process for both backbones�

As described above and depicted in Figure ��
each T� backbone node �NSS� was actually a set
of interconnected IBM RT�PC processors� one of
which was dedicated to statistics collection� To
categorize IP packets entering the T� backbone
based on information contained in packet headers�
this processor would examine the header of every
packet traversing the intra�NSS processor inter�
communication facility� and use a modi�ed version
of the NNStat package ��� to build statistical ob�
jects based on the collected information� Because
all packets traveled across the interconnection fa�
cility on their way through the node� the collec�
tion processor could passively collect data without
a�ecting switching throughput� Nonetheless� the
nodal transmission rate did eventually surpass the
capability to keep up with the statistics collection
in parallel� and this processor had to eventually re�
vert to sampling ����

The design of the T� backbone required signif�
icant modi�cation to this data collection mecha�

� Error conditions on the interface include HDLC check�
sum errors� invalid packet length� and queue over�ows
resulting in discards	 The single counter does not distin�
guish among these error conditions	

� Object de�nitions found in McCloghrie and Rose ���

���
	

nism� This modi�cation actually occurred in two
phases� In the �rst statistics collection design�
all forwarded packets had to traverse the main
RS�
��� processor itself� imposing a burden on the
single packet forwarding engine and impeding com�
prehensive statistics collection� Figure � illustrates
the current design of the backbone nodes� which
o�oads the forwarding capability to the cards as
described in Section II� Because the packets do not
necessarily traverse the main processor� accommo�
dating the statistics collection required moving the
software which selects IP packets for tra�c char�
acterization into the �rmware of the subsystems
themselves� Each subsystem forwards its selected
packets� currently every �ftieth�� to the main CPU�
where the collection software performs the traf�
�c characterization based on these sampled pack�
ets� Note that multiple subsystems� including those
connected to T�� Ethernet� and FDDI external in�
terfaces� forward to the RS�
��� processor in par�
allel�

Because the main CPU card performs the cat�
egorization� the statistics aggregation mechanism
does not a�ect switching throughput of the NSS�
The sampling can� however� impose a burden on
the subsystem�to�card bandwidth� and potentially
interfere with other critical responsibilities of that
bus� such as transferring routing information be�
tween the system and the card� Although the
packet categorization mechanism at each node dif�
fers on the two backbones� the centralized collec�
tion of the data is the same� Every �fteen min�
utes� a central agent queries each of the backbone
nodes� which report and then reset their object
counters� The collection host is an IBM RS�
���
at the ANS NOC� as an example of the memory re�
quirements� this machine collected approximately

� The sampling microcode in the subsystem does
not send the whole packet� but rather the �rst
min�packetsize� �
�� bytes of the packet� starting from
the beginning of the IP header �
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Table �� Packet categorization objects on T� and T� backbone nodes
Object T� T�

relative to exterior nodal interface
source�destination matrix by network number �packets�bytes� Y Y
TCP�UDP port distribution� well�known subset �packets�bytes� Y Y
distribution of protocol over IP �e�g�� TCP� UDP� ICMP� �packets�bytes� Y Y
Packet�length histogram at a 	��byte granularity Y N�A
packet volume going out of backbone node Y N�A

NSS�centric �entire node�
per second histogram of packet arrival rates Y N�A
NSS �intra�NSFNET� transit tra�c volume Y N�A

�	 MB of ARTS tra�c characterization data dur�
ing a typical workday in mid�February ������	 Ta�
ble � illustrates the tra�c characterization objects
collected on the T� and T� backbones� Note that
the T� backbone only supports collection of the
�rst three objects� The �rst item in the table�
the matrix of network�number�to�network�number
tra�c counts� forms the basis for the publicly avail�
able �les characterizing tra�c across the NSFNET
backbone in terms of both individual network num�
bers and countries� Both backbones also support
objects describing the distribution of packets ac�
cording to protocol �e�g�� TCP� UDP� ICMP�� and
TCP�UDP port �application��

III�C� Internodal latency

On the T� backbone� Merit used the ping utility
to perform internodal latency assessments� Ping
probes from one endpoint of the network to an�
other using the ICMP Echo functionality ���� to
record the round�trip times �RTT� between the two
endpoints� As of � February ����� ANS collects de�
lay data between nodes using the yet�another�ping
�yap� utility� which runs on each backbone node
and can measure delay to the microsecond level us�
ing the AIX system clock�

During the lifetime of the T� backbone� and cur�
rently on the T� backbone� the probe measurement
occurs �ve times at the beginning of every �fteen
minute interval between all pairs of backbone ac�
cess points� On the T� backbone� the architecture
includes both external and internal access points�
ENSSs and CNSSs as described in Section II� ANS
collects round�trip delay statistics between both
sets of access points�

Halving this value yields an approximate one�
way delay for the delay matrix among all the ac�
cess points� A backbone node temporarily stores
the delay data� transferring it routinely to a NOC
data collector� From these statistics Merit and

�� ANS is now using a more e�cient binary format to store
data than that used on the T� backbone	

ANS publish reports of quartile statistics on the
monthly internodal delay�

For the T� backbone� ANS has recently investi�
gated how to present the data to allow more insight
into average delay behavior� The new report for�
mat includes six tables� four matrices of delay data
between ENSSs and two matrices of delay data be�
tween CNSSs� The six tables present�

�� median delays between all pairs of ENSSs�
and the change in the median from the pre�
vious month�

�� a �ltered view of the above� the median
and di�erence appear only if there was some
change from last month�

�� median and interquartile di�erence �IQD�in
delays between all pairs of ENSSs� The in�
terquartile di�erences provide a measure of
the spread of the distribution of the data�

�� a �ltered view of the above� the median and
IQD appear only if the IQD is greater than �
millisecond� highlighting backbone links with
higher jitter�

	� median and interquartile di�erence in delays
between all pairs of CNSSs� This table du�
plicates the format of Table � above for the
CNSSs�


� a �ltered view of Table 	� duplicating the for�
mat of Table � above for the CNSSs�

IV� What�s in an IP address

In the Internet environment network clients
must acquire IP network number assignment�
These number assignments indicate to some de�
gree the growth in scope of the network� although
some network clients use multiple network num�
bers� Over the years the number of allocated net�

CBA�	
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work numbers has grown from below ��� to many
thousands�

Figure � shows the long term growth of
NSFNET backbone tra�c� in terms of both packets
and bytes� Both curves exhibit quadratic growth
during the last �ve years of the NSFNET back�
bone operation� The graph begins at the establish�
ment of the T� NSFNET backbone in mid������
the T� gradually replaced the T� during ����� and
as of November ���� assumed all NSFNET back�
bone tra�c forwarding responsibilities�

Each packet was generated at and destined to
speci�c IP host addresses� as speci�ed in the header
of each IP packet� Three commonly used classes
determine the size of the host address component
within the four byte IP address �elds� Class A�
B� and C networks with three� two� and one�byte
host �eld� allowing for a maximum of ���� ���� and
�� individual addresses or hosts� respectively� The
number of allocatable class A� B and C network

numbers is ��� ���� and ���� respectively �����

Figure 	 shows the long term growth of net�
work numbers con�gured for communication via
the NSFNET backbone ��
�� These con�gured
NSFNET numbers are the only destinations to
which the NSFNET backbone will route packets�
and also exhibits quadratic growth over the last
few years� including substantial increases in the in�
ternational area�

A visible jump in the total net number count
in early ���� re�ects a change in NSFNET treat�
ment of Arpanet routes� Since its introduction� the
T� NSFNET backbone had always retained full
routing knowledge in each backbone node rather
than relying on a default routing scheme� However
the NSFNET backbone nodes accepted all Arpanet
routes until early ���� even though they were not
included in the NSFNET policy routing database�
In early ���� the NSFNET explicitly con�gured
these Arpanet routes in order to be consistent with
the con�guration of all other NSFNET backbone
clients� This addition caused the visible jump in
the graph� but we note that the NSFNET knew
about and routed tra�c to many of those networks
before�

Figure 
 shows the long term growth of network
number assignments by class� As mentioned above�
Class A� B� and C networks di�er in the number of
host addresses they can support� Over the years the
Network Information Center has assigned IP net�
work numbers to clients according to the number
of hosts required� The growth of the Class B num�
ber space is of particular interest� about ��� of the
currently available space is assigned� The Class B
space is a very attractive one to use if one expects
to eventually use subnetting of IP network num�
bers� Anticipated depletion of the Class B address
space has led to signi�cant e�orts toward augment�
ing the IP architecture� including a methodology
to forestall depletion and routing table explosions
within the framework of the currently deployed ar�
chitecture� This methodology� called Classless In�
ter Domain Routing �CIDR�� uses clustered Class
C numbers as an alternative to Class B numbers�
with network masks allowing for a number aggre�
gation ����

Although these graphs give some sense of the
increasing geographic and administrative scope of
the NSFNET� a discussion of the signi�cance of the
IP addresses structure to the infrastructure will al�
low clearer understanding of the growth in service
reachability of the NSFNET� We present IP ad�
dresses as they are registered with the NSF Inter�
nic at the top level� and then delegated to other
authorities from there� Our primary focus here
is the distribution and registration of IP network
numbers� and not issues such as network classes�
multicasting� or CIDR ����

CBA�
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Figure 
� Long�term growth of assigned Class A� B�
and C IP network numbers �Data source	 Internic�
personal communication�

The IP address space architecture originated
with RFC ��� ����� the initial Internet Protocol
speci�cation that de�ned a pool of available net�
work numbers� Ignoring some special cases� such
as multicast addresses� every network number on
the Internet came from this pool of available net�
work numbers� A large subset� although not every
number in this pool� has been assigned to a re�
questor� typically on behalf of a company� univer�
sity or other institutions� for active duty� The In�
ternic Registrar� on behalf of the Internet commu�
nity� now formally registers these assigned network
numbers in a data base that also includes address
information of the institution responsible for the
network� and other attributes� With the advent of
RFC��

 ���� ���� in October ����� the Internic be�
gan to assign addresses according to the geographic
location of the requestor� with a strong preference
for assigning single or multiple class C addresses
rather than a Class B address� Since one or several
class C addresses are typically su�cient to ful�ll
the request of a single geographically de�ned net�
work domain� this methodology throttled the class
B depletion but accelerated the class C depletion�

The Internic also in certain cases delegates
blocks of class C IP network numbers to other au�
thorities for further assignment� For example� the
NIC assigned a large portion of the class C space to
Europe for further redistribution within their net�
work community� From the NIC
s point of view�
these delegated numbers are no longer available but
not yet formally assigned until the Europeans no�
tify them that they have really assigned those num�
bers to their �nal IP networks�

Networks that are NIC�assigned do not by de��
nition actively exchange tra�c on the Internet� In
fact� the set of communicating� or Internet active
network numbers� is not even necessarily a proper
subset of the set of assigned network numbers �al�

though in a frictionless world� it would be�� Some
organizations consider their local network environ�
ments wholly disconnected from the Internet� and
with no plans for future connection� they some�
times even choose their own IP network numbers�
independent of the NIC
s registry� to satisfy their
isolated TCP�IP protocol needs� Unfortunately�
experience has shown that such disconnected en�
vironments often turn out to be quite leaky� When
tra�c from these networks manages to �nd its way
into the Internet� often much to the surprise �or ig�
norance� of the local network administrators� these
network numbers join the set of leaky unassigned
numbers� Leaky unassigned numbers are members
of the active set of numbers that are not in the
assigned set�

An important component of the U�S� Internet
is the NSFNET and its backbone network� Pos�
session of an assigned network number is neces�
sary but not su�cient for communication across
the NSFNET backbone� The NSFNET backbone
uses a policy routing database as a truth �lter� to
ensure that it believes only the selected dynamic
routing informationwhich its backbone clients have
explicitly speci�ed��� This database represents the
set of NSFNET�con�gured network numbers which
the NSFNET serves� a proper subset of the assigned
network numbers� However� even though a network
may be in this NSFNET database� the backbone
still will not know about and thus be able to service
that network until it receives a dynamic announce�
ment from that network via a router of a directly
attached NSFNET client by means of an inter Ad�
ministrative Domain protocol such as BGP or EGP�
The announcement from an NSFNET client �either
a mid�level or some other network connected to the
backbone� reaches the NSS� which evaluates each
incoming announcement� accepting those for con�
�gured nets that come from appropriate peers in an
appropriate Administrative Domain �identi�ed by
its autonomous system number�� This action turns
an NSFNET�con�gured network into an NSFNET�
announced net� The con�guration database thus
serves to sanitize dynamically announced routing
information before the backbone actively utilizes it�
This �ltering is essential to the sanity of the larger
infrastructure� and other networks often use simi�
lar mechanisms to accomplish the same task�Upon
acceptance of the announcement� the NSS tags a
path priority value� or metric� to the network num�
ber� to enable comparison to other announcements
of the same network number�

Once a network is assigned� con�gured� and an�
nounced� it can both send and receive tra�c over
the NSFNET backbone as an active network� An

�� NSFNET operators routinely update �approximately
every two weeks� this database of mappings of network
numbers to Autonomous System numbers� with associ�
ated preference metrics	
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active network will remain active as long as connec�
tivity exists to the destination and the appropriate
service provider�s� announces the network directly
to the backbone�

As mentioned above� Internet reality is not en�
tirely faithful to this model� Theoretically� any
network which sends tra�c is active� even if it
is not assigned� con�gured� and announced� To
disambiguate the categories� we call an illegiti�
mately active network� i�e�� a network missing any
one or more of the three essential properties �as�
signed� con�gured� and announced� a leaky net�
work� Leaky networks� particularly from unas�
signed networks� pose di�culties for network op�
erators since they can inject bogus information
even into inter�administrative domain routing pro�
tocol exchanges� Operators such as those of the
NSFNET backbone must then undertake e�orts to
sanitize their network topology information� For
this reason� the Internet Assigned Numbers Au�
thority �IANA��� has since the beginning discour�
aged the TCP�IP community from using custom
design of network numbers� considering it uncivi�
lized behavior in an increasingly� and often seem�
ingly transparently� interconnected world�

Equally problematic is the case of silent net�
works� networks which are con�gured or even an�
nounced but did not send tra�c across the back�
bone during the month� The NSFNET project has
undertaken e�orts to analyze the NSFNET Policy
Routing Database �PRDB� and develop methods
of expediting the elimination of the silent nets in
order to prevent potential operational di�culties
due to routing table size� The problem of growth of
the silent networks has intensi�ed with the address�
ing guidelines of RFC��

 outlined above� Un�
der these guidelines service providers receive large
blocks of class C addresses in anticipation of and
aligned with CIDR requirements� and immediately
con�gure them in the policy routing database be�
fore actually assigning them to customers who will
announce them� The result is a substantial increase
in the number of silent networks in the NSFNET
backbone con�guration database� Eventual CIDR
deployment will rely on net masks to reduce such
blocks to a single entry in the routing table� but un�
til that time they still pose an obstacle to e�cient
con�guration�

Figure � presents a schematic of the categories
of network numbers we have discussed� Engineers
on operational networks must contend with these
issues in the design of their tra�c collection mech�
anisms� For example� each NSFNET T� backbone
router samples every �ftieth packet to build traf�
�c characterization objects� in particular to cre�
ate a source�destination matrix by network num�

�
 The IANA is currently represented by Jon Postel and
Joyce Reynolds of USC�ISI	

Legitimately
NSFNET

active

NSFNET announced

NSFNET configured

Assigned

Delegated

Unassigned

Available IP Network Number Space

Silent Leaky (illegitimately
NSFNET active)

Figure �� Descriptive categories of IP network num�
bers

ber� The router samples these packets before actu�
ally routing them� and thus it is conceivable that
the routers will capture packets from IP network
numbers which are not in the routing database� al�
though assigned by the NIC� or even from network
numbers which are neither in the routing topology
nor assigned by the NIC� We will call the latter set
unassigned networks� �although anarchically picked
network numbers may be a more �tting term��

Thus� the statistics which the NSFNET gen�
erates will include many unassigned or uncon�g�
ured networks� For the purpose of statistics analy�
sis� there are a variety of ways to treat inactive
networks� including treating them all as uncon�g�
ured� which risks not attributing what may be non�
negligible amounts of tra�c which they impart to
the backbone entry point�

As an example� we now discuss the month of De�
cember ���� on the NSFNET�ANSnet backbone�
During this month� the data collection mechanism
on the T� backbone nodes recorded tra�c from
more than ������ networks� This set included net�
works from the entire set of available network num�
bers� Of these� about ����� were networks which
were in the set of NIC�assigned network numbers�
The number of active networks that had also been
con�gured in the NSFNET�ANSnet topology data
base that month was about 
�����

To explain the large number of non�con�gured
networks represented in the collected tra�c matrix�
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we use the terminology outlined above to describe
several violations of our model� A non�con�gured
leaky network may source� or send� tra�c into the
NSFNET backbone� Those packets may actually
get delivered to the remote location� if the remote
location is assigned� con�gured and announced� but
tra�c for the return path to the original source will
not be delivered via the NSFNET�

Alternatively� a network could send tra�c to an�
other network which the NSFNET backbone does
not know about for a variety of possible reasons�
because the network is con�gured but not an�
nounced� because the network is assigned but not
con�gured� or because the network is not even as�
signed� The NSFNET may see such tra�c� for ex�
ample when network service providers use a default
route pointing to the NSFNET� However� since
routing information for these destinations will not
exist in the NSFNET forwarding tables� as soon
as such packets reach the NSFNET� the backbone
node will �lter them out during the routing deci�
sion�

V� What�s in a port number

Another increasing di�culty in characterizing
long�term trends in the tra�c on the NSFNET is
the wide cross�section of applications� whose pro�
�le is ever�increasing in diversity and scope� As�
sessment of this pro�le will be critical to network
service planning� e�g�� as continuous �ows such as
audio and video impact the performance of con�
ventional bursty tra�c� In this section we describe
how the collection methodology currently used to
track the tra�c cross�section is becoming increas�
ingly insu�cient�

The majority of applications on the NSFNET
are built on top of the Transmission Control Pro�
tocol �TCP�� and some on top of the User Data�
gram Protocol �UDP�� Both TCP and UDP pack�
ets use port numbers to identify the Internet ap�
plication that each packet supports� Each TCP or
UDP header has two �elds for the �
 bit values
identifying the source and destination ports of the
packet� Originally� the Internet Assigned Numbers
Authority��� on behalf of DARPA� administered a
space of � to �		 as the group of well known or as�
signed port numbers� reserved for speci�c applica�
tions� For example� telnet received port assignment
�� ����� To open a telnet connection to a remote
machine� the packet carries the destination IP ad�
dress of that machine in its destination IP address
�eld� and the value of �� in the destination port
�eld� �In the case of telnet� the packet uses some ar�
bitrarily assigned source port that has signi�cance
only to the originating host� Often these �return

�� ISI �Information Sciences Institute� University of South�
ern California� houses IANA�	

IANA registered

Available Port Number Space

Unassigned

Original
 Well Known Port 

Space

 IANA assigned (extended) 

Included in
 NSFNET statistics 

Figure �� Descriptive categories of port numbers

address ports� have values greater than ������

Although IANA administers the number range
for well known or assigned Port numbers� at some
point Unix developers injected a bit of anarchy into
the system by unilaterally assuming that numbers
below ���� identify speci�c applications� They
then began to use that numbering space as they
deployed applications� such as port 	�� for rlogin�
Eventually network users began to use numbers
even above ���� to specify further services� extend�
ing the lack of community coordination further�
Examples include XDR�NFS �port ������ and X�
Windows �port 
������ and port ���� for �some�
MBONE video multicasts� In July ���� ���� the
IANA extended the range of ports for which it man�
ages assignments to the ������ range� At this time
the IANA also began to track� to the best of its
ability� a set of registered ports within the full range
of �����
		�	� IANA does not attempt to control
the assignments of these ports� but only registers
uses of which is is aware as a convenience to the
community �����

These port numbers are the only mechanism
via which the NSFNET can monitor statistics on
the aggregated distribution of applications on the
backbone� Thus the proliferation of uncoordinated
number assignments imposes ambiguity into this
categorization of packets by application�

Figure � presents a schematic of the categories
of port numbers we have discussed� For NSFNET
statistics gathering on port distribution for the
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backbone� Merit �and now ANS� speci�cally col�
lects port�based information in the ranges �������
���� �for NFS� and 
����
��� �for X�window traf�
�c�� Merit�ANS categorizes packets into these
ports if either the source or destination port in a
given packet matched one of these numbers� How�
ever even within this range not all ports have a
generally known assignment� so packets using such
unde�ned ports go into an unknown port category
��
��

Figures � and �� use this collected data to cat�
egorize the proportion of tra�c on the network by
category since August ����� These �gures illus�
trate the di�culty of tracking changes in the cross�
section of tra�c on the backbone��� In this �g�
ure the �non�tcp services� category corresponds to
applications using a transport protocol other than
TCP or UDP� the �other tcp services� category to
non�standard or not well�de�ned ports� Both of
these categories have grown much larger over the
years� re�ecting in the �rst case an increasingly
multi�application environment� and in the second
the diminishing ability to track individual new ap�
plications which often use non�standard or not well�
de�ned ports� In fact� the �other tcp services� cat�
egory is� as of November ����� the largest single
category of tra�c �in packets� on the backbone�
exposing the trend of application developers arbi�
trarily choosing their own port numbers for appli�
cations that collectively utilize substantial band�
width� Since these port numbers are unde�ned to
anyone but the end site using them� the growth
of tra�c volume for such applications is di�cult
to track� most statistics collection mechanisms can
only attribute tra�c to well�known port numbers�
making attribution of more than the base services
�telnet� ftp� etc�� close to impossible�

�� The categories in these �gures correspond to�

� File exchange� ftp data and control �tcp ports 
��

��

� Mail� smtp� nntp� vmnet� uucp �tcp ports 
�� ����
���� ����

� Interactive� telnet� �nger� who� login �tcp ports

�� ��� ���� udp port ����

� Name lookup�dns� �udp port ��� tcp port ���

� Other TCP�UDP services all tcp�udp ports not
included above �e	g	 irc� talk� X�windows�

� Non�TCP�UDP services Internet protocols other
than tcp or udp �e	g	 icmp� igmp� egp� hmp�
ax	
�� etc	�

Note that Merit began to use sampling for this collection
on the backbone in September ����	 In November ����
tra�c migration to the T� backbone began� the majority
had migrated by May ���
 and in November ���
 the T�
backbone was dismantled	 For June to October ���
 no
data was available for either the T� or T� backbones	
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VI� Forecasting tra�c type

The issue of unknown applications is not by it�
self necessarily as disturbing as the dramatically
changing nature of the newly introduced tra�c�
The recent deployment of more widespread packet
video and audio applications bodes ominously for
an infrastructure not able to preferentially deal
with certain tra�c� In this section we describe the
dangers of our increasing inability to monitor tra�c
type in a �high�end� Internet�

Today
s Internet is inherently based on a data�
gram architecture with typically no admission con�
trol in packet forwarders� Most entrance points into
transit networks can not su�ciently provide back
pressure to other points of the network that inject
more tra�c than the network can handle� End sys�
tems can thus unfairly monopolize available band�
width and cause signi�cant congestion in the larger
network�

During the mid���s on the 	
kbps NSFNET
backbone� this state of congestion developed to a
dangerous degree� and in response the NSFNET en�
gineers deployed an emergency measure to provide
certain interactive network applications� speci��
cally Telnet� preferential treatment over other traf�
�c� The priority transit allowed interactive users
requiring better network responsiveness to continue
working under highly congested circumstances�

Since that time the principal means of address�
ing network congestion has been to increase net�
work capacity� However today software develop�
ers continue to build advanced network applica�
tions which can consume as much bandwidth as
network engineers provide� In particular� appli�
cations using packet audio and video do not ex�
hibit the same �burstiness� characteristics of more
conventional applications such as �le transfer and
electronic mail� but rather require continuous de�
livery of large amounts of tra�c in �real�time�� and
thus continuously consume signi�cant bandwidth�
Clearly usage of such applications will not scale in
the current Internet architecture� which may poten�
tially need to support many such continuous point�
to�point connections simultaneously�

It is di�cult to overestimate the dramatic im�
pact which digital continuous media will have on
the Internet fabric� No other phenomenon could
more strongly drive the research community to in�
strument the network for admission control and
multiple service levels� as well as accounting and
billing� Prerequisite to accounting and billing in�
strumentation is a more accurate model for the
attribution of resource consumption� derived from
how particular applications impact network per�
formance� Such a model may have to reliably at�
tribute applications� or tra�c pro�les� to the clients
if multiple levels of services exist�

VII� Summary

We have presented the architecture for data col�
lection for the T� NSFNET backbone service� and
limitations of the approach being used for long�
term network forecasting and planning� In partic�
ular� we discuss�

�� the IP address structure and its application
to NSFNET transit�

�� port numbers� the implementation limita�
tions of which prevent real tracking of service
diversity�

Our statistics re�ect operational collection of
tra�c and network registration statistics� both ini�
tially designed to support short term engineering
and planning needs� Traditionally� statistics used
in forecasting measure compounded tra�c volume
at network access points or individual network in�
terfaces� which network planners extrapolate for in�
dicators of future performance requirements� Al�
though such statistics allow some tracking of Inter�
net growth� they limit our ability to forecast capac�
ity requirements in a network with ever richer func�
tionality� Today
s Internet aggregates tra�c from
among many clients� with various applications with
various associated service qualities� To investigate
beyond such traditional metrics of network usage
we quantify for the current NSFNET environment
aspects of network ubiquity� as measured by IP net�
work numbers� and the multiplicity of services� as
measured by port usage statistics�

These statistics indicate superlinear growth of
IP network numbers� and therefore Internet clients�
over the last several years� The trend is clearly
continuing at a global scale� international clientele
now account for over ��� of the network num�
bers known to the U�S� infrastructure� As the
need to attribute network usage intensi�es� e�g��
for accounting and billing purposes� the currently
available data sets will seem even more inadequate�
Deployment of network number aggregation tech�
niques �e�g�� CIDR�� which hide the interior struc�
ture of a network cluster� will further aggravate the
situation�

We also investigated the growth in applica�
tion�service diversity on the Internet as measured
by TCP�UDP port numbers� The ever�increasing
diversity in Internet application pro�les� whose
complexity will increase further with the newer
continuous��ow multimedia applications� will re�
quire reassessment of network �ow mechanisms
such as queuing management in routers� Even
within the non�continuous �ow paradigm� subcate�
gories of tra�c such as interactive� transaction� or
bulk tra�c� may exhibit performance requirements
which are di�erent enough to justify adaptive queue
management�
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ANS has recently deployed software for the
NSFNET service that will allow more �exibility
with the port distribution assessments� though the
inherent di�culty with the Internet model of ap�
plication attribution remains� Furthermore� the
recently established Internic activity may allow
greater �exibility in maintaining accurate data�
bases of network number and port attribution sta�
tistics� Concerted attention to such activities will
help foster an Internet environment where network
planning and tra�c forecasting can rely on more
than traditional tra�c counters used in the past�
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