
PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 1

Evaluation and selection criteria for software
requirements specification standards

E.A. Giakoumakis and G. Xylomenos

Abstract— Various organisations have published proposals to
prescribe the form and content of software requirements speci-
fication documents; the standards were designed to support the
specific needs of these organisations and the intricacies of their de-
velopment projects. To help third parties in taking advantage of
this body of work, a set of criteria are proposed and discussed that
can be used to evaluate such standards, according to the unique
characteristics of specific combinations of organisations and soft-
ware development projects, and then the question of how the crite-
ria can be applied in an evaluation, selection and tailoring process,
depending on the circumstances, is discussed. Finally, the criteria
are demonstrated by applying them on some published standards,
to help interested organisations to preselect those that seem most
appropriate for their needs.

I. I NTRODUCTION

Irrespective of the development process that an organisation
follows while building a computerised system, the specification
of the requirements for the software component of the system
always stands out as a distinct and important task. By applying
common industrial practice, software development is a process
that consists of a number of phases that construct and refine
the final product. One definition for the software requirements
specification phase in particular is that it is a procedure of de-
tailed specification of the functions that the software is to per-
form in the system, as well as the constraints under which it will
operate [1]. Even though the importance of this phase has been
proven in many cases where insufficient efforts dramatically in-
creased development costs [1] or has even led to the abandon-
ment of projects [2], requirements engineering still seems to be
considered by practitioners as more or less an art form.

This paper divides the software requirements analysis phase
into the activities of gathering and recording requirements,
more commonly called analysis and specification, concentrat-
ing on the development and application of engineering prin-
ciples and methods to the latter task. It is motivated by the
proliferation of standards for writing a software requirements
specification document (SRSD) published by various organisa-
tions. Our goal is to help other organisations evaluate, select
and customise one of these standards and then use it in sup-
port of their individual projects and needs. In the following we
will see that there is no overall winner in the standards arena,
as the needs of organisations working on different projects can,
and do, vary. Thus, selection and application of a documenta-
tion standard remains a challenging but, as we will also show,
important task.

E.A. Giakoumakis is with the Department of Informatics at the Athens Uni-
versity of Economics and Business, Patission 76, Athens 10434, Greece; G.
Xylomenos is with the Department of Computer Science and Engineering at the
University of California, San Diego, La Jolla, California, 92092-0114, USA.

II. SOFTWARE REQUIREMENTS SPECIFICATION

DOCUMENTS

A. Nature and uses of specifications

The requirements stated in the SRSD pertain only to the soft-
ware part of a system; in a preceding phase, requirements for
the system as a whole have been specified, with some of these
requirements having been allocated to the software. These
system-wide specifications are the first input for the software
requirements specification phase; the second input is informa-
tion gathered from the future users of the system under devel-
opment. Using the latter, the requirements stated at the sys-
tem level are elaborated to become a description of software
behaviour and constraints on its operation. This elaboration
process is the requirements analysis part of the phase; these
requirements are recorded on some appropriate form, in the re-
quirements specification part of the phase.

To see why each software requirement is so important, we
should further clarify what it is. An appropriate definition
from [3] is that it is ‘a software capability that must be met
or possessed by a system or system component to satisfy a con-
tract, standard, specification, or other formally imposed docu-
ment’. The essence of the definition is that a requirement is
a contract among the various parties involved in development:
if the software behaves according to the requirements specified
in the SRSD, then it should be acceptable to its users. Natu-
rally, the users will not accept that the software satisfies their
needs simply because it does what the SRSD says, but the li-
ability of the developer stops there: it is the responsibility of
the user organisation to ensure that the SRSD actually specifies
software that will be acceptable to its users, a difficult and time
consuming task. At the same time, early agreement between
specified and actual requirements results in fast development,
while late reconciliation of discrepancies among them not only
slows down development, but also immensely raises its costs.

The importance of the SRSD arises from the fact that it is
the first document to describe the software under development
in detail. As such, it is used in practically every subsequent
activity, being at the same time a statement of the user’s needs,
a statement of the requirements for the implementation and a
reference point during maintenance [4]. A similar view is that
it is an agreement on the requirements, a basis for design and a
reference point during validation [5]. Thus, the SRSD is both
an agreement among users and developers, as it is used to check
whether the software behaves as requested, and a common point
of reference between analysts, designers, implementers, testers
and maintainers working on the project. Even very small in-
house development projects will have to refer to the SRSD long



2 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

after it has been written, due to future needs for maintenance,
optimisation and capability extensions.

The importance of software requirements is stressed even in
basic software engineering textbooks [1], [6]; there is also con-
siderable work especially on requirements gathering and speci-
fication, both practically [7] and theoretically [8] oriented. Still,
requirements analysis remains an activity that needs skill and
experience, hence the ‘art form’ characterisation in Section I.
As requirements are eventually recorded in the SRSD, it is more
accurate to think of the problems of composing an SRSD as
dealing with both its content and its form; that is, the informa-
tion contained in the document and the organisation and pre-
sentation style of this information.

B. Form, content and standardisation of specifications

Consider what happens when the requirements engineers
have formed an idea of the software requirements. The opti-
mal way to record this information, will generally depend on
its content. If the project is large, this information may have to
be organised hierarchically and split into modules that commu-
nicate using strict interfaces, to ease the understanding, use and
maintainance of the SRSD. This activity may also be required if
the development proceeds in multiple design phases or if many
subcontractors are developing parts of the software. In contrast,
the overheads imposed by this distributed organisation would
be redundant for a small project, messing up rather than im-
proving the requirements. Depending on the backgrounds and
roles of its users, the structure and presentation of the SRSD
may need to accommodate different conventions, jargons and
standards; thus, organisations involved in development are an-
other factor to be considered.

As a concrete example of the difficulties involved in com-
posing an SRSD under different circumstances, consider first
a comprehensive accounting system developed outside the user
organisation: the SRSD should describe accurately the func-
tional aspect of the software, while paying less attention to
non-functional requirements such as performance goals. The
format and content of the SRSD should suit the needs of both
users and developers, with appropriate parts of the document
following the established conventions of each party. Contrast
this with a small real-time software component developed in-
house: there non-functional requirements such as timing con-
straints and response pairs would take up most of the SRSD to
ensure that the software will correctly interact with other com-
ponents of the system, while the language and conventions used
in the document would certainly be understandable to all people
involved. These observations imply that the project, the devel-
opment process, the organisations involved, and generally the
required content of the SRSD as determined by these factors,
should influence the form of the SRSD to maximise its effec-
tiveness.

A standard is an ‘approved, documented and available set of
criteria used to determine the adequacy of an action or an ob-
ject’ [9]; this definition does not help us much, though, since
an optimal way to perform requirements analysis and specifica-
tion has not yet emerged. A standard for an SRSD lies some-
where between the definition above and a guide for specifying
requirements. Its usual form is a content outline, annotated so

that its authors will be able to find where to record each kind
of requirement and, conversely, its users will be able to find
where these requirements are. Rigidity in the outline varies
considerably among standards, providing more or less flexibil-
ity. On the other hand, the annotations for the contents are usu-
ally just guidelines of what should be included in each section,
and sometimes how to present it. Note that some standards are
parts of complete frameworks for all development phases, cov-
ering anything from documentation to development processes
and procedures.

By applying a documentation standard while composing an
SRSD, its authors can increase their productivity by follow-
ing a familiar outline, using it as a checklist during require-
ments analysis to see what should be considered for inclusion,
while users of the SRSD will be able to find directly what they
need once they have become familiar with the outline. It can
also serve as a checklist for those responsible for reviewing the
SRSD for completeness; even managers allocating tasks to de-
velopment teams and monitoring their progress can base such
activities on this checklist. Thus, a documentation standard is
both a guide and an interface among the various parties involved
in the creation, use and maintenance of the SRSD. Not all inter-
faces are of the same value though, as it is not enough to define
any strict interface, as is done with other artefacts: the guide-
book aspect of a standard for a process as challenging as re-
quirements analysis highlights the importance of the interface’s
quality.

Since adoption of a standard can have such beneficial results,
the question is what it should look like. We saw that the content
of a document influences its optimal form, and this is partic-
ularly true for different projects involving different organisa-
tions, but customising an SRSD is not easy when a standard
must be adhered to. In fact, the adoption of a specific docu-
mentation standard establishes an influence from the form of
the SRSD to its content: the standard at least imposes a struc-
ture on requirements and it may also prioritise their importance,
by including more or less detail about some aspects of the soft-
ware. This is a direct consequence of using the standard as both
a content and a structure guide. Once a standard has been cho-
sen for one or many projects, this interface, for the most part,
must freeze. If we deviate significantly from the standard with
the intention of optimising a specific SRSD, we lose the bene-
fits of the standardised interface. Standardisation thus comes at
a cost, not related to its application, an activity requiring only
staff training, but caused by enforcement of the standard on di-
verse projects.

This reverse influence from form to content seems undesir-
able, since it should be the content that matters and imposes
an optimal structure on the presentation. However, for a docu-
ment used by so many people and at so many different times,
the benefits from standardisation are too important to be ne-
glected: communication among people at different times is
eased tremendously, and the burden of structuring the SRSD is
removed from the requirements engineers. The proliferation of
such standards, coming from quite diverse organisations, shows
clearly that these benefits are understood, but an examination
of them (as we make in Section IV reveals that the diversity in
their sources is distinctly reflected on the standards themselves.



PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 3

Our purpose in this paper is not only to point out the pitfalls
of standardisation and provide general guidelines for avoiding
them; we intend to demonstrate how an organisation can evalu-
ate an available documentation standard according to its needs,
using a set of well defined criteria in a disciplined way, and then
further tailor it to best serve its goals.

III. E VALUATION AND SELECTION CRITERIA

A. Design Principles

An organisation may use a standard either because it is re-
quired by other involved parties or because it believes that it
is beneficial for development. In some cases, the standard to
be used will be enforced; this applies to contractors of the US
Department of Defence. In most cases though, the organisation
will be free to choose the best standard for its specific needs.
One option is to develop a standard from scratch, taking into
account the given situation during design. Although this may
provide the best results in terms of quality and suitability for
both organisation and project, such a process requires extensive
experience, time and funds. Furthermore, deployment of the
standard will require training of all present and future person-
nel involved with development, even if some people have had
already experience of other standards.

As a case study in independent standards development con-
sider the US Department of Defence, one of the biggest soft-
ware consumers in the world. Its standards for automated infor-
mation systems have evolved from the 7935 standard in 1983,
through the 7935A [10] in 1988, culminating into the 498 [11],
[12], [13] standard in 1994. For its embedded systems on the
other hand, the original 2167 standard was published in 1985,
replaced by 2167A [14], [15], [16] in 1988, and was finally
merged with 7935A into the 498 proposal. This decision shows
the importance of using a single standard for all projects in an
organisation, despite their diversity. The comments accompa-
nying standard 498 [17] illustrate how difficult it is to design
and freeze a standard as needs change, projects evolve and tech-
nology advances, during a period of more than 10 years.

This example shows that for most organisations it will be un-
economical, or even impossible, to invest the time and money
required to design a standard from scratch. Considering the
plethora of available standards, we focus in this paper on how
an organisation should choose an existing standard for use. To
make an informed choice, an organisation must first understand
the intricacies of the proposed standards and evaluate them with
an eye on its needs and on the nature of the projects that it is in-
volved with. Then, it may select the most appropriate standard
for either a single or a set of projects, and finally, it can proceed
to tailor this standard, on a global or a case-by-case basis. We
emphasise tailoring following the 498 proposal [11] which ac-
cepts that no standard can be both rigid and appropriate for all
circumstances, either because standards are vague, or because
modifications make the standard more suitable for the projects
at hand. Tailoring will be facilitated by our criteria, since any
problems revealed while evaluating a standard will be the first
targets for modifications. This also implies that an evaluation
process can even help in cases where a standard has been exter-
nally enforced.

Our design principle in formulating a set of evaluation crite-
ria is that these criteria should be able to uncover all the relevant
advantages and disadvantages of a standard with respect to its
ability to serve as the basis of a good SRSD. An SRSD is good
if the quality of the requirements that it contains is high and
the way they are presented in the SRSD satisfies the needs of
its users. If we look at the qualities that a good SRSD should
possess [18], we will see that some of them relate directly to the
quality of the requirements and are relatively orthogonal to their
presentation; on the other hand, achieving some other qualities
can be facilitated by the use of an appropriate standard. As we
want the criteria to be helpful both for selection and tailoring in
any situation, we must try to cover as many aspects and views of
the SRSD as possible, understanding that not all of these details
will be relevant for all circumstances. We will defer the dis-
cussion on application of the criteria on specific organisation-
project combinations to Section III-J; each criterion includes in
its description comments on its applicability under different as-
sumptions, to ease selection of the appropriate set of criteria for
the circumstances at hand.

Although the SRSD’s users are our focal point, we must
not forget that their needs vary according to many factors: the
organisations involved, the people employed and the specific
details of projects under development, form a complex envi-
ronment for the evaluation criteria. Furthermore, the different
needs that the users of the SRSD have, depending on their roles
in its development and use, further increase the viewpoints from
which we should look at the standards. Some aspects of a stan-
dard, such as its completeness in coverage of all types of re-
quirements, inclusion of all software features [6], and explana-
tion of all concepts mentioned in the SRSD [4], [18], are inter-
esting in all cases, because they directly influence the quality
of the requirements. Other aspects can be more interesting in
some circumstances than in others: examples include adequate
coverage of the system of which the software is a component
and the operating environment of the software, easy handling
of modifications and additions, and low coupling of the SRSD’s
contents [19]; a form of presentation that conveys information
in layers of detail [6] to help its users locate fast what they need;
support for traceability of requirements in the SRSD [18]; defi-
nition of external software behaviour only, ease of use of the
SRSD for reference and having the same meaning to all its
users [1], [6].

In the following we define such a set of criteria, based on
the aspects examined above, the study of various existing stan-
dards and experience with application of these standards on real
projects. For each criterion we present a discussion on its na-
ture, its applicability and usefulness, show our motivations in
defining it, and then give a sample scale of evaluation for the
standards according to it. In Section IV we apply the criteria,
using the sample scales, to analyse and evaluate a set of existing
standards. Both presentation of the criteria and standards evalu-
ation try to capture as many views of the standards as possible.
We deal in Section III-J with the matter of using the criteria to
support selection and tailoring for specific circumstances.



4 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

B. Independence

This criterion examines two related aspects of a standard:
whether it has been designed so that it can be used only in
conjunction with specific requirements analysis methodologies
and/or software life cycle models; the former is a local con-
straint for the analysis phase while the latter is a global con-
straint on the project as a whole. It may also be the case that a
standard not imposing the local constraint, indirectly enforces
the global one, because its use implies the adoption of other
standards that in turn enforce some development practices. We
should not confuse integration (see Section III-C) with inde-
pendence: a standard may belong to a complete series without
it having to be used in any specific way; restrictions lie in the
methods enforced, if any, and not in using other standards, since
a flexible series may be able to accommodate different method-
ologies in any case.

Such constraints are inherent in older standards [10], espe-
cially ones that were developed with a specific user commu-
nity in mind, which had somewhat stabilised around a set of
practices. Some standards mention that they are not suited for
specific models [18], but the trend seems to be towards accom-
modation of multiple methodologies and models using the same
standard [11], [17]. A standard depending on specific methods
of development could be frowned on, as there is still no method
widely accepted as the best for all circumstances. Thus, such
restrictions may lead to significant problems when the chosen
method is ill-suited to the projects at hand. As life cycle mod-
els emerge and requirements analysis methodologies evolve,
even a very good attempt to freeze a standard around a suc-
cessful combination of the two will soon be outdated and will
have to be replaced. The motivation for designing such a re-
stricted standard is the hope that by early adoption of a specific
set of methods, precision (see Section III-D will be enhanced
and documentation needs will be better supported; in contrast,
a standard designed to be applicable to many methods will un-
avoidably be more vague in many respects and will need to be
carefully customised in each case.

It should be clear then that accommodating widely differ-
ent methodologies comes at a price: the design and use of
a methodology independent standard should exercise extreme
care to avoid leaving the standard so vague that no two of its
users will agree on its correct use. Tailoring a standard to fit a
specific methodology is not only a challenging process, but it
may also lead to losing the benefits of standardisation due to ar-
bitrary modifications. A well-designed standard that was built
around a methodology closely matching an organisation-project
pair could, in principle, be a good idea when an organisation is
involved with fixed projects. In practice, such restrictions do
not seem to be justified, and only obsolete standards [10] seem
to advocate them.

An evaluation scale for independence could consist of three
ratings. High independence would be associated with standards
completely decoupled from specific methodologies, while low
independence would be associated with standards indirectly
tied to specific methodologies or directly built over a fixed set
of methods; such standards should be considered inappropriate
for use outside their intended field. The middle ground is cov-
ered by standards demonstrating medium independence: these

may have been influenced by a methodology or they may not be
able to co-exist with some methodologies at all, but they could
be modified in a straightforward manner to extend their scope,
if their other merits compensate for the risks associated with
tailoring.

C. Integration

The integration criterion examines whether the standard at
hand is part of a complete series of documentation standards,
covering all development phases. An organisation may favour
the adoption of a complete series, expecting enhanced unifor-
mity among documents and hoping that it may be used without
additional effort to make the different standards for each stage
co-exist with each other. Uniformity can lead to easier move-
ment among pieces of the project documentation, improving
traceability of requirements (see also Section III-I), but only if
similar design principles were used when composing the stan-
dards themselves. Besides expending significant resources to
reconcile differences among standards from various sources to
achieve the uniformity of an integrated series, an organisation
runs the risk of having the standards deviate so much from their
original definitions, that they are not standard any more. Of
course, even an integrated series is not guaranteed to be im-
mediately applicable to real projects, as the standards may be
too general (see Section III-D), to enhance independence (see
Section III-B).

Although decoupling the design of a specific standard from
that of a series may result to a optimisations, we do not have any
meaningful data to support such a thesis. Some organisations
may not be so sensitive to integration, however, either because
they are in any case performing a complete tailoring job to ac-
commodate their needs, with reconciliation changes being es-
sentially free, or because they just merely to replace their SRSD
standard alone; this may occur when an organisation switches
to a methodology not supported by its existing standard. An-
other case where integration is irrelevant arises when the other
standards of the series are inappropriate for the circumstances
and a decision against adopting the complete series has been
made.

A sample characterisation scale for integration could split
standards in those depicting high integration, by being part of
a complete series standards which is usable with minor modi-
fications; those that present low integration, by not being part
of any series of standards at all; and those that have medium
integration, with this latter case applying to standards that are
either part of an incomplete series, not covering some develop-
ment phases, or belong to a series of very vague standards that
need substantial customisation before use. Note that if tailoring
one standard is considered a difficult and risky task, modifica-
tion of a complete set of standards multiplies the costs and risks
accordingly (see Section III-D).

D. Precision

The precision criterion examines how concisely and thor-
oughly a standard describes the contents of the outline that it
proposes. Precision increases as descriptions become more ex-
act and ambiguities are resolved, so that there can be no dispute



PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 5

of where on the SRSD each kind of requirements should be and,
conversely, which requirement belongs to each section. Lack
of precision may lead to different interpretations of the SRSD
by its authors and users, hindering communication and causing
costly misunderstandings. An imprecise standard negates the
benefits of standardisation: it must be made more precise, with
different versions of it not being compatible, or else its users
will make their own assumptions while using it, causing chaos.

A standard usually lacks in precision because its creators
did not want to overconstrain its applicability. This can be a
valid worry for standards designers, since by being more spe-
cific in the description of a standard we may lose in flexibility;
past standards [10] indicate that enhanced precision and limited
scope of application can coexist. On the other hand, an impre-
cise standard would be fine [20] if the user organisation were to
accept modifications to it that would hardly leave it a standard
any more. Existing standards demonstrate that one can be pre-
cise enough to avoid ambiguities without overconstraining the
standard [11], provided that flexibility and precision are con-
sidered early on during design. Fortunately, it seems that the
adherence to precision even in early standards [18] has caught
on and this attribute is sufficiently valued to be a part of most
modern ones. A general method to make a standard be inter-
preted unambiguously is to provide examples to clarify the de-
scription; this does not constrain the standard as much as a rigid
and all-inclusive specification, but it still serves as an adequate
guideline for the users. Note that an organisation looking for a
base to develop its own standards would not at first care much
about precision, because heavy tailoring would be needed in
any case (see also Section III-B). On the other hand, using a
standard lacking in precision will certainly cause lots of prob-
lems; it seems strange, to say the least, that there are standards
that intend to be usable as they stand but have major shortcom-
ings in this area.

An evaluation scale for the precision criterion could consist
of three degrees. A standard has high precision when it is com-
pletely clear from its description where each requirement goes;
as mentioned above, this characterisation may be obtained ei-
ther by overconstraining the standard with rigid descriptions or
by providing adequate examples for a more flexible description.
Low precision is associated with standards that are so vague in
their descriptions that are practically impossible to use as they
stand. The, both costly and risky, solution of customising such
a standard to make it unambiguous would be acceptable only if
a decision to completely rebuild and use a nonstandard version
of it in the future has been made. Finally, medium precision
means that a standard needs minor clarifications, but they could
be made at a small cost and with reduced risks. When some
tailoring is unavoidable due to problems in other parts of the
standard, this type of standard is equivalent to a high precision
one.

E. Generality

The generality criterion examines how suitable a standard is
for different projects. Most standards have been designed for
specific types of projects, presumably the ones that their cre-
ators were involved with; use of such standards on projects

outside their original scope may cause problems. Many re-
marks made on the independence and precision criteria (see
Sections III-B and III-D) apply here as well; the most impor-
tant thing to remember, though, is that many organisations do
revolve around a fixed set of projects that are adequately served
by an inflexible and specialised standard. This criterion should
not be confused with the independence criterion, as it applies to
projects instead of methodologies.

A project has numerous attributes that could be considered as
characteristic of its nature: we must first choose some of these
as most relevant and then apply the criterion on them. A com-
mon classification of projects is based on their scale. As the size
of a project grows, it is helpful if a standard supports division of
requirements to volumes with each set of requirements commu-
nicating with other sets through a set of well-defined interfaces,
possibly specified separately too. This division of requirements
to internal for a module and external among modules not only
eases managing large sets of requirements, but is also useful
when development proceeds in builds [11], with each build de-
livering a part of the final product or with subcontractors im-
plementing the separate modules. To co-ordinate the require-
ments, provisions for global cross-referencing should also be
made, something eased by extensive use of configuration man-
agement information. In contrast, a standard designed for large
projects may impose excessive bookkeeping for a small project
that does not need all this information. For this aspect of gen-
erality, we can separately characterise standards according to
their applicability to large and small projects. However, the
characterisation of projects as large or small is difficult, so we
will have to work backwards and accept a division based on
whether a project needs the extra flexibility provided by multi-
ple volumes of requirements or not. This results in the charac-
terisation of an intuitively small application as large, if due to
security reasons it must be built by separate contractors com-
municating through interface specifications. We nevertheless
believe that this categorisation is useful, even though it is not
always accurate in characterising the scale of a project, because
it draws attention to this aspect of existing standards.

Another characterisation attribute is the nature of the work
that the software accomplishes. Such characterisations can be
even more controversial than those based on scale, but we be-
lieve that this aspect is too important to be overlooked; again,
it is considered here because many existing standards were
designed with specific types of applications in mind, a good
example being the previous US Department of Defence stan-
dards [10], [14]. We will follow the division of projects into
two categories according to these standards: embedded and au-
tomated information system development projects. Embedded
systems are integrated hardware/software systems, with clear
and measurable requirements, special attention to nonfunc-
tional requirements and strict interfaces with hardware and the
external environment. Automated information systems are usu-
ally software-only systems performing data processing tasks;
their functional requirements are expected to change during de-
velopment, as users test the system prototypes, with nonfunc-
tional requirements having a secondary role, supporting deploy-
ment of the software to a permissive environment. Evaluation
here considers the intended use of a standard, with some stan-



6 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

dards being easily applicable to both types of projects and some
not. Note that even though specialisation to a specific type of
project could in principle make a standard better, experience
shows that it is possible to have the best of both worlds [11],
[17].

As a last word here, we stress that these aspects are not the
only relevant ones for any case. An organisation should se-
lect categorisation aspects that split all projects to those that
are interesting for it and those that are not. By using a binary
scale (applicable/not applicable) for each one of these aspects,
evaluating a standard under this criterion reduces to filling in a
checklist that should reveal the applicability of a standard for
the circumstances. The aspects presented here are just two ex-
amples of how generality can be applied and are motivated by
similar distinctions that are made in published standards and
experience which shows that they are quite relevant in practice.

F. Organisation

The organisation criterion indirectly characterises the under-
standability and ease of use of SRSDs produced using a stan-
dard, by examining if the information in the SRSD can be pre-
sented in layers of detail, and if the outline is flexible enough to
fit different situations without deviating from the core standard.
Both aspects are influenced by the organisation of the proposed
outline, hence the name of the criterion. Owing to the use of
the SRSD in various times during development by people with
different needs, it is a challenging task to organise the informa-
tion contained in it so as to make it easily accessible to the user.
As the SRSD will need to be complete to be an adequate basis
for development it must contain a wealth of information, even
though a given user would like to deal with the needed subset
of the requirements only. Its authors should try to keep require-
ments in context, giving users an overall view of the system and
the way that each requirement fits in, while at the same time
helping users to locate quickly what they need. In essence, the
authors should maintain clean paths from a software overview
to the detailed requirements, separating different aspects of the
specification in an intuitive manner.

To achieve these goals, some standards include introduc-
tory sections in the SRSD, containing overviews of the require-
ments, and sections describing the layout of requirements on
the specific document. Requirements may be presented in lay-
ers of detail, starting from the overview and proceeding to low-
est level. The organisation of the SRSD should reflect the in-
tricacies of the specific project, especially in the way that the
aspects of the requirements are tied together and in the weight
placed on each category. Understandability and ease of use of
the SRSD have more important roles as development, operation
and maintenance proceed, because as time passes, people using
the SRSD will be less familiar with the context and the inter-
nals of the software. To ease the job of these users, we consider
support for layering of the requirements advantageous; to ac-
commodate the specific needs of a project we would like the
standard to provide flexibility in the SRSD structure. Note the
relation of this criterion with the generality criterion presented
in Section III-E: generality refers to applicability of a standard
for categories of projects in a general sense, and organisation

concentrates on its flexibility with respect to project-specific
tailoring of the SRSD.

To develop an evaluation scale, we should first prioritise our
interests among these distinct but logically related concepts. In
our view, layering is a widely applicable criterion, being more
important when maintenance is anticipated to be substantial,
but relevant for any other project too; so it should be considered
as more essential than flexibility, which may not be as impor-
tant in some cases, for example when an organisation deals with
fixed projects which can be accommodated by a single SRSD
layout. Thus, a standard would rate as high in the organisation
scale if it provides both flexibility and layering. Flexibility may
be provided either by multiple supported layouts [18] or by spe-
cific provisions for tailoring [11]; to take advantage of flexibil-
ity, the SRSD should contain a section describing the organisa-
tion of the specific document at hand. The most important pro-
vision for layering is support for presenting the requirements in
layers of detail. On the other end of the scale, a standard would
rate as low in organisational matters, if it does not support any
kind of layering or alternative organisations, but simply bundles
requirements into a given set of categories; such a standard re-
quires a lot of work from the authors to relate requirements with
each other, and its maintenance can become exceedingly costly
because it will be difficult to understand. Nevertheless, it can
still serve as a checklist for requirements and as an easy to use
guide during verification and validation, as discussed in Sec-
tion III-H on view completeness. Following our prioritisation,
a standard ranks medium in organisation if it supports layer-
ing, but the structure of the SRSD is static, hindering flexibility.
Note that flexibility can be dangerous; multiple outlines do not
seem to be a problem if their number is limited and their or-
ganisation is based on the same ideas; tailored standards on the
other hand can become non-standard, and care should be taken
not to stray away from the basic philosophy of the standard and
the its guidelines for tailoring.

G. Content Completeness

The first aspect of completeness is the inclusion of all re-
quirements pertaining to software development; this is exam-
ined by the content completeness criterion. Although a standard
cannot enforce content completeness, it can help by including
in its content outline all categories of requirements that form
an adequate SRSD. This view of completeness is relevant when
the standard is used as a guide for analysis and as a checklist
for reviewing the SRSD. The criterion does not examine com-
pleteness in coverage of the requirements in the SRSD: a care-
ful analysis process is the only way to include all the software
requirements.

Inspection of existing standards indicates that more variety
is encountered in nonfunctional requirements, where most out-
lines spend more time. This does not mean that functional re-
quirements are easier to analyse and specify or less important;
it is an acceptance of the fact that nonfunctional requirements
are easier to overlook, as they do not relate to the main goals of
the software but to peripheral, but nevertheless important, de-
tails. More elaborate categorisations of such requirements are
encountered in the military standards, especially those designed
for development of embedded systems. In contrast, software



PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 7

developed for data processing is generally more permissive,
and in many cases some categories of nonfunctional require-
ments are completely irrelevant. An interesting relationship ex-
ists with the precision criterion (see Section III-D): whenever
a standard bundles multiple categories of requirements under
general headings, it is important to describe each category of re-
quirements adequately to avoid misunderstandings; at the same
time, the simple provision of many headings that cover separate
categories of requirements is useless without a clear definition
of what is meant by each one, because many types of nonfunc-
tional requirements emerge under various names due to the fact
that the terminology for nonfunctional requirements is not itself
standardised.

An evaluation scale divides the standards in three categories.
High content completeness means that a standard covers all
types of requirements and in unique sections of the SRSD.
These standards may seem too loaded for projects that do not
require that much detail, but leaving sections blank is easy and
unambiguous. On the other hand, a standard with low content
completeness either completely overlooks some requirements,
or it mentions them in multiple locations; such a standard may
be the product of an organisation that rarely deals with such
requirements, thus ignoring them or just referring to them in
notes. A standard with medium content completeness makes
an effort to cover all types of requirements, not suffering from
many omissions, but it bundles many requirements together in
a counter-intuitive manner. Tailoring here could simply consist
of elaborating the outline to eliminate inconsistencies and am-
biguities, although for many cases simple deletion of unused
sections would be enough.

H. View Completeness

View completeness examines the ability of a standard to
serve as the basis for SRSDs satisfying the needs of their di-
verse users. This is a second form of completeness; an ex-
ternal, or user-oriented, point of view, in contrast to the in-
ternal, or content-oriented, view of the content completeness
criterion (see Section III-G). This is an important concern be-
cause users with different needs and backgrounds are involved
with the SRSD, interacting with it throughout development and
maintenance; a standard may thus try to help some users at the
expense of inconveniencing others, as it is very difficult, if not
impossible, to cater for everyone without overloading the docu-
ment and thus hindering its maintenance. We were motivated in
defining this criterion by an apparent orientation of some pub-
lished standards towards specific user needs; it seems that this
preference is embedded in the design and tailoring the standard
to rectify it can be extremely hard, so exposing this aspect of a
standard seems to be beneficial in assessing its applicability to
different user populations.

To define an evaluation scale for this criterion, we must first
define a categorisation of users of the SRSD. Instead of concen-
trating on user background, such as technical, nontechnical and
managerial, we prefer to base our categorisation on the roles of
the users during development; this distinction allows people to
assume multiple roles. We assume that any usable SRSD will
somehow cater for the needs of all of its users, or else it will not
be adequate for development anyway; what we examine here is

how easy a standard makes the job of specific users. We do not
try to compare the standards according to how well they satisfy
the needs of their users: this criterion reveals the general orien-
tation of a standard towards some users and not how well the
standard performs compared to others. Alternatively, this crite-
rion examines how well a standard is balanced. The evaluation
here will actually be just a list of the categories of users that are
favoured more than others by a specific standard and it should
be taken as a characterisation of a standard in isolation instead
of as a comparative measure.

The users that we will consider here are restricted to those
recognised as distinct parties in any set of circumstances. The
software users are the sources for the requirements and the
SRSD should be checked against them to verify that it is accu-
rate; they would like it to be understandable, easy to follow and
simply organised. The analysts gather requirements and write
the SRSD, so they would prefer a logical and complete SRSD
outline to guide them during analysis and specification. The de-
signers use the SRSD to develop the software, and they would
like a complete picture of it in adequate detail, in a document
that is understandable and layered so that they receive only what
they need. The testers verify and validate both the SRSD and
the software against users and the SRSD, so they would like an
SRSD that is easy to use for reference, is verifiable, is complete
and is traceable. Finally, the maintainers would like an easily
understood SRSD which is concise, detailed and easy to mod-
ify. As in the generality criterion in Section III-E, our results
are based on inspection and the stated goals of standards.

I. Modifiability

The modifiability criterion examines how easy it is to mod-
ify the SRSD’s contents without deterioration in its quality.
Note that modifiability refers to changes in the content of the
SRSD and not in changes to the outline proposed by the stan-
dard, an aspect covered by the flexibility part of the organisa-
tion criterion (see Section III-F). In practically all situations,
requirements are analysed and specified in an overlapped fash-
ion, as requirements engineers elaborate on the system level
requirements. This process of analysing, recording, verifying
and modifying requirements is even more pronounced on evo-
lutionary and prototyping models, or when the project is car-
ried out in phases in which requirements are developed sepa-
rately. Such modifications may be continued during subsequent
phases, and major revisions may be made even during mainte-
nance, especially if the functionality of the software is going to
be extended. We emphasise the modifiability of the SRSD dur-
ing maintenance, as it is likely that at this point people dealing
with requirements may have had no previous experience with
the them.

We have already seen some criteria related to modifiability:
organisation (see Section III-F) examines the ease of locating
requirements, but not the ease with which these modifications
can be made; view completeness (see Section III-H) considers
the orientation of a standard towards various users, including
those that make changes to it; this criterion deals only with ori-
entation and not with adequate coverage of specific needs. To
place modifiability into perspective, we must gather under it all
qualities that help SRSD modifications. To ease modifications



8 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

without adverse effects on the quality of the SRSD, the stan-
dard should promote a clear structure that isolates different re-
quirements modules from each other, helping the users to find
their way around the document, encourage the SRSD authors
to group-related requirements together in meaningful modules
that present low coupling among themselves to localise the ef-
fects of changes, and promote traceability of requirements both
backwards, from software to system requirements, and for-
wards, from software requirements to design, implementation
and testing.

An evaluation scale for the modifiability criterion would split
the standards into two categories. Standards depicting adequate
modifiability logically distribute the requirements into modules
that demonstrate low coupling with each other, and encourage
traceability through a structure that clearly shows how require-
ments evolve. Traceability is aided by mandatory numbering
and cross-referencing of requirements through unique identi-
fiers. Even though traceability in particular can only be encour-
aged by a standard, a modular structure to ease clean modifica-
tions can be enforced by the outline. Inadequate modifiability
refers to all other standards; it basically means that there is no
significant provision for structuring requirements into concep-
tual modules or explicit support for traceability information. As
modifications to the requirements are the rule rather than the ex-
ception, modifiability should be an essential concern in all but
the smallest, simplest and most short-lived of projects.

J. Applying the Criteria

As mentioned in Section III-A, the criteria intend to cover all
aspects of a standard, to reveal as much of its nature as possi-
ble. In addition, the evaluation scales presented in the preced-
ing sections may not be adequate for specific combinations of
projects and organisations. In this Section we discuss the selec-
tion of the most appropriate criteria for any given case and their
subsequent application for tailoring purposes. We consider ap-
plication of all criteria using our sample scales as a very useful
starting point in any case; when an organisation is selecting a
standard for use in all of its projects in the future, application
of all the criteria is highly recommended, because by applying
more of the criteria, more details are revealed about the possi-
ble shortcomings of a standard. When a complete set of stan-
dards is adopted, the tailoring that will follow selection will be
greatly eased by a thorough understanding of the situation, with
the cost for this study amortised among all subsequent projects.
Owing to their help with tailoring, the criteria are useful even
when a standard has been externally enforced on the organisa-
tion.

A more difficult situation arises when the effort to be spent
on selection and tailoring should be restricted, either due to time
constraints or because the standard will be used sparsely. There,
only a subset of the criteria can be used, chosen so as to reveal
the most relevant characteristics of the standards under exami-
nation. We have previously given guidelines on the applicabil-
ity of the criteria along with their definitions; in the following
we summarise these guidelines and split the criteria into three
categories depending on their general applicability. The first
group of criteria is those that are relevant in practically all situ-
ations:

• precision assures that the proposed standard outline is
clear and unambiguous.

• organisation examines whether the SRSD is easy to under-
stand and use in a project.

• content completeness looks at how comprehensive the
standard is in covering requirement types.

Together, these criteria examine whether a standard can be
used more or less as is, without grave shortcomings. The second
set of criteria are relevant in all situations, at least as viewpoints,
because they show the orientation of a standard; they do not
need to be used to examine the applicability of a standard for
all uses, as they can simply be used to assess its performance
for a specific situation:
• generality reveals the applicability of a standard for spe-

cific projects; it can also be used to examine how the stan-
dard performs under different circumstances.

• view completeness should be looked at when attention is
paid to some classes of users; it is also useful for revealing
the attitude towards all other users too.

The last set of criteria are completely situation-dependent,
and they should be used only when the corresponding view-
points are considered essential by the organisation;
• independence is relevant when multiple development

methods or standards from other sources are used.
• integration is relevant when a complete series of standards

is being adopted for all development phases.
• modifiability is relevant when SRSD changes are expected

to be intense during and after development.
With this categorisation in mind, an organisation should use

all criteria from the first group, some viewpoints from the crite-
ria in the second group, and any relevant criteria from the third
group.

After selecting the most appropriate criteria for the circum-
stances, it is advisable to prioritise the criteria, so that resolution
of conflicts will be eased in the final selection phase. We do not
expect a single standard to perform excellently under all of the
chosen criteria; instead, we suggest that all criteria should be
applied to reveal a standard’s deficiencies, and performance un-
der each criterion should be weighed appropriately to make the
final decision. As this process becomes more and more com-
plicated as the number of candidates increases, the organisation
may begin its search by a preselection phase using the tables
presented in Section IV to eliminate some candidates, and then
apply the chosen criteria more carefully to the remaining ones;
the evaluation scales defined and the evaluation of the standards
presented here were designed to facilitate such a process.

To actually apply the criteria, the organisation should cus-
tomise the evaluation scales. The sample scales given here
are for demonstration and preselection purposes only. For any
given set of circumstances, these scales may not be sufficiently
fine-grained or they may put in the same category standards
with differences considered important for the project. There
are two ways of customising the scales: for some criteria, the
performance of the standard under different circumstances is
examined; there, it is essential to determine what circumstances
are relevant for the organisation, and then define an evaluation
scale that distinguishes between different applicability levels
for these circumstances. For other criteria, the organisation may



PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 9

accept more or forever risks; accordingly, the evaluation scales
should distinguish between standards that are satisfactory and
those that are not, distinguishing between different performance
levels for the former. In essence, the definition of a scale is
equivalent to focusing a generic viewpoint into an adequate de-
tail level, so that unusable standards are thrown away and usable
ones are differentiated.

The last part of the process is tailoring. Application of the
standards should have produced a list of problem points in the
final winner; this list, along with other tailoring requirements
necessary to adopt the standard to organisational practices, is
the basis for an organisation-wide tailoring process that would
restandardise the documents for use in all relevant projects.
Tailoring should follow a set of general guidelines, so that no
confusion will arise during deployment of the standard; these
should be available to users of the tailored standard, so that
project-specific tailoring can also take place without creating
inconsistencies. A set of clear guidelines will also be helpful
for people that are familiar with other variants of a standard.
Many useful guidelines and ideas for tailoring can be found in
the DoD Military Standard [17].

IV. EVALUATION OF EXISTING STANDARDS

A. Scope and Purpose

In the following sections we briefly comment on published
standards; our purpose is not to give an introduction to the stan-
dards, nor find the best one for all or given circumstances. We
restrict ourselves in brief overviews of the standards of present-
ing our conclusions after applying to them our proposed crite-
ria (see Section III). To make our results clearer, we grade the
standards according to the sample scales developed during the
presentation of the criteria. Our goals in this are multiple:
• Demonstrate that the criteria are relevant for an organi-

sation, because they cover standards from enough view-
points to be sufficient for most circumstances, whereas
their use can aid in discovering the essential aspects of a
standard, making an informed choice among them easier.

• Give specific examples of applying the criteria and the
sample scales to real standards, to further clarify the views
expressed in the preceding sections and help organisations
relate our conceptual criteria to the real-life concerns that
motivated their development.

• Provide a simple knowledge base for an organisation that
is looking for a standard, so that it will be able to examine
only the relevant ones during a customised evaluation and
selection process (see Section III-J).

For all these reasons, our evaluation applies all criteria to
each standard, even though it is highly unlikely that all of them
would be used in any specific case. In addition, we do not place
any significant value on our sample scales, other than that they
are illustrative enough for our purposes as outlined above, and
they can serve as a basis for preliminary selection of standards.

In the following, we look at five standards, covering more
than a decade of development. They were published by the
Institute of Electrical and Electronics Engineers (IEEE) [18],
the European Space Agency (ESA) [20], the National Aero-
nautics and Space Agency (NASA) [21], [22], the Jet Propul-

sion Laboratory (JPL) [23] and the US Department of De-
fence (DoD) [11], [12], [13], [17]; the now obsolete DoD stan-
dards [10], [14], [15], [16] are also mentioned to compare ap-
proaches and illustrate their historical development. We will re-
strict our comments to the parts dealing with software require-
ments, adding only enough information to justify some evalua-
tions and general comments that we consider important.

B. IEEE Standard

The Institute of Electrical and Electronics Engineers (IEEE)
has published standards for many activities and deliverable
products of the software life cycle; its 1984 SRSD standard [18]
was also adopted by the American National Standards Insti-
tute. This standard has been very influential, not only because
it originated from an independent organisation which explic-
itly attempted to accommodate as many different situations as
possible, but also because its presentation is readable, concise
and instructive. An outstanding characteristic of this standard
is the provision for multiple SRSD outlines which structure the
requirements to best serve different projects or organisations.
This has generally positive repercussions on nearly all of the
criteria, so it is surprising that subsequent standards have not
adopted this feature.

On a more detailed level (see Table I), the standard shows
medium independence as it was designed for waterfall models,
stating that it cannot be used for rapid prototyping, even though
it does not enforce any method of work or even the adoption
of other IEEE standards; such standards exist for many, but
not all, development phases, having been designed by different
groups, and thus not depicting the uniformity of other series;
thus medium integration applies. Its high precision is exem-
plary, being a consequence of informative examples rather than
restrictive definitions. Concerning generality, the standard can
support any type of application without problems, but it will
have trouble with projects that need externally segmented re-
quirements due to size of subcontracting, because there is no
special provision for division of requirements to multiple vol-
umes.

The multiple outlines provided, indirectly affect all the re-
maining criteria. They provide cheap but restricted flexibil-
ity, being uniform enough to avoid creating misunderstandings;
layered specifications are supported and enhanced by the choice
of the appropriate outline, so the standard shows high organ-
isation. High content completeness applies because all types
of requirements are included and the required emphasis can be
placed on each one depending on the chosen outline. Each user
of the SRSD will be covered adequately by any outline, with
second-order trade-offs possible, so we have high view com-
pleteness. Finally, modifiability is adequate because a modular
structure of requirements is supported within the SRSD, with
varying coupling according to the outline chosen; traceability
is eased by subdivision of requirement types inside the mod-
ules, if needed.

C. ESA Standard

The European Space Agency (ESA) published a complete se-
ries of standards [20] in 1987, dealing with both processes and



10 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

Criterion Evaluation
Independence Medium
Integration Medium
Precision High
Generality Not for large projects
Organisation High
Content completeness High
View completeness Satisfies all users
Modifiability Adequate

TABLE I
EVALUATION OF THE IEEE STANDARD.

products of the software life cycle. Unfortunately, the cover-
age remains at the textbook level, with the SRSD description
in particular being incomplete, vague and even ambiguous at
times. This is surprising considering that ESA deals with spe-
cific kinds of projects and has even adopted a life cycle model;
the standard is full of advice on many aspects of development,
including documentation, but is far from a practical proposal
for application. Another major shortcoming of the standard is
its distribution of different types of requirements in completely
separate sections, in a checklist-like manner.

Concerning the criteria (see TableII), the adoption of a wa-
terfall model has influenced the design of the standard, but the
presentation is too high level to actually constrain the SRSD, so
we have medium independence. Medium also applies to inte-
gration, since the series is complete but inappropriate for use as
is, with intense tailoring needed. Precision is low, maybe ex-
ceedingly so, and this is the first reason for problems with the
standard. Concerning generality, the standard can be used in
any type of project, adopting a neutral position, but it does not
support segmentation of requirements into volumes.

Organisation rates low, because the standard is inflexible,
having no provisions for alternate presentation styles, and does
not support any type of layering of requirements; additionally,
its checklist-like outline does not seem to be appropriate for any
non trivial project. This is the second reason for problems with
the standard. Content completeness is medium, as most require-
ments are covered, but their distribution to sections is some-
what imprecise. View completeness suffers for nearly all users
due to the precision problems of the standard and its organisa-
tion; however, testers of the software will probably appreciate
the presentation of requirements in lists that facilitate separate
checking. Finally, modifiability is inadequate since there is no
support for modular requirements, with the separation of types
of requirements to distinct sections, hindering safe modifica-
tions.

D. NASA Standard

The National Aeronautics and Space Administration
(NASA) published its own series of standards in 1989, cover-
ing all development activities and products. It supports both
monolithic and subcontracted or phased, development, either
before requirements analysis or before implementation. The
outlines are short and concise and they concentrate on docu-

Criterion Evaluation
Independence Medium
Integration Medium
Precision Low
Generality Not for large projects
Organisation Low
Content completeness Medium
View completeness Satisfies only testers
Modifiability Inadequate

TABLE II
EVALUATION OF THE ESA STANDARD.

mentation only. There are actually two standards, one for the re-
quirements proper [21] and one for documenting interfaces [22]
among pieces of the system; the latter documents are used when
requirements are distributed in multiple SRSDs. As expected,
nonfunctional requirements are emphasised, and configuration
management and traceability information are included. An no-
table characteristic of the standard is its complete lack of sup-
port for modularisation within one SRSD, indicating a prefer-
ence for segmenting requirements in volumes; this can impose
premature design constraints on development though. Thus, in-
terface documents will be needed even for small projects, mak-
ing documentation maintenance harder.

On specific criteria (see Table III), the standard shows high
independence, because it accommodates multiple life cycle
models in its basic design. Integration is also high as the stan-
dard is part of a very comprehensive series; the uniformity
among documents is also high. Precision is high, with clear
descriptions and short examples provided. For generality, all
types of applications are supported, even data-intensive ones
like commercial applications; in terms of scale, small projects
will suffer from excessive support information and premature
design constraints due to the unavoidable segmentation of re-
quirements.

Organisation is low: no layering is supported, and flexibil-
ity is provided only in segmenting requirements and not in or-
ganising them within a single SRSD. Content completeness is
high, since all types of requirements are covered with detailed
descriptions in the standards. Examining view completeness
we see that the standard best serves testers and designers with
its flat outline; analysts and application users will find it hard to
compose and understand the SRSD due to its nonmodular struc-
ture. Finally, modifiability is inadequate, even though there is
support for traceability, because there is no support for a struc-
ture that isolates requirements within modules; for this reason,
maintainers are not well served by this standard.

E. JPL Standard

The Jet Propulsion Laboratory (JPL) published in 1988 its
series of standards for activities and deliverables of software
development. The series is based on a life cycle model that
segments the system before requirements analysis. Neverthe-
less, the standards for the SRSD [23] can be used either with
or without segmentation; the standard includes interface doc-
uments for the former case. Although JPL is associated with



PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319 11

Criterion Evaluation
Independence High
Integration High
Precision High
Generality Not for small projects
Organisation Low
Content completeness High
View completeness Satisfies designers and testers
Modifiability Inadequate

TABLE III
EVALUATION OF THE NASA STANDARD.

Criterion Evaluation
Independence High
Integration High
Precision High
Generality Suits all projects
Organisation Medium
Content completeness High
View completeness Satisfies all users
Modifiability Adequate

TABLE IV
EVALUATION OF THE JPL STANDARD.

large engineering projects, the standard is applicable to a wide
variety of situations, avoiding the trap of being simply a check-
list, by encouraging a modular structure. The standard is an
attractive overall proposal for direct use without tailoring.

Considering the criteria (see Table IV), independence is high,
despite JPL’s adherence to a fixed life cycle model. Integra-
tion is also high, with a complete set of standards available that
can be used, as is in most cases. The standard’s precision is
high, with clear descriptions supported by examples. General-
ity is surprisingly wide, with all types of applications catered
for and both small and large projects possible; interface docu-
ments exist but the modularity provided within the requirements
can eliminated them in small projects.

The organisation of the standard is medium, since layering
and modularity are supported with sections describing the form
of the SRSD, but there is no real provision for alternative docu-
ment outlines. Content completeness is high, with many aspects
that are usually overlooked being present. The insistence of
the standard on traceability and configuration management in-
formation helps maintainers and testers, modularity helps users
and designers and precision eases the job of analysts; thus, we
have excellent behaviour in all aspects of view completeness.
Last, modifiability is adequate with support for both modular-
ity and traceability.

F. DoD Standard

The US Department of Defence has a long history in the
area: until recently, DoD supported two different series of stan-
dards, the 7935A for automated information systems [10] and

the 2167A for embedded systems [14], [15], [16]. At the end
of 1994 the 498 series of standards replaced these documents,
merging them into a single proposal that is intended to sup-
port all development projects of the DoD. For this attempt to
succeed, the 498 standard should present additional flexibility
without being too generalised to serve as a basis for develop-
ment. To keep the standard’s size within reasonable limits, the
basic document [11] is supplemented by descriptions for the
SRSD proper [12] and the interface requirements [13]; an addi-
tional guidebook [17] explains the design rationale of the stan-
dard and shows how it can be used, replacing the previous ones.
The guidebook exposes many of the shortcomings of the previ-
ous standards and explains the solutions adopted in 498.

The standard is mainly a rework of 2167A, with added sec-
tions on environment requirements and data descriptions from
7935A. The organisation is more natural, precision has in-
creased, examples have been given in all cases, and the doc-
uments are more uniform and less loaded with bureaucratic in-
formation. The goals stated in the guidebook, which include
support for multiple models and methods, concentration on de-
velopment rather than paperwork, support for emerging ideas
and increased flexibility and generality, have been achieved to
a quite satisfactory degree, and only minor criticisms can be
made. Most of these goals are promoted by the provision of
a clear strategy for tailoring the documents to best serve the
needs at hand; the basic outlines are extremely comprehensive,
but tailoring out sections is accepted, encouraged and supported
by the documents.

Concerning the criteria (see Table V), independence is high,
this being one of the design goals of 498 and a radical depar-
ture from the data oriented 7935A. The standard supports but
does not enforce segmentation of the system before require-
ments analysis; the guidebook also shows the standard applied
to different development strategies. Integration is also high,
with 22 documents being specified, all of which have a uni-
form structure; the improved compatibility among the SRSD
and the interface requirements should be evident after a com-
parison with 2167A. Precision is high, having been vastly im-
proved compared to 7935A, with many examples provided in
all sections. Concerning generality, the standard supports all
types of projects, combining the elements of both previous pro-
posals; for project size, the provision for modular requirements
and internal interfaces makes the use of interface documents
optional; thus, large projects are catered for and small projects
are not impossible. Despite progress in this area though, the
standard is still loaded with bureaucratic information.

Organisation is medium to high, because even though multi-
ple layouts are not provided, substantial tailoring is supported
by the standard; this is eased by the comprehensive layouts that
can be cut down as required without altering the form of the
document, and the inclusion of information describing it. Lay-
ering is supported at both the overview and the requirement-
subrequirement levels. Content completeness is high, with all
types of requirement included in a natural organisation; func-
tional and nonfunctional requirements have been combined in
the specification of each module, with elements of the descrip-
tions coming from both previous standards. Examining view
completeness we see that the standard’s organisation helps all



12 PUBLISHED IN: IEE/BCS SOFTWARE ENGINEERING JOURNAL, VOLUME 11, NUMBER 5, 1996, PP. 307–319

Criterion Evaluation
Independence High
Integration High
Precision High
Generality Not for small projects
Organisation Medium to high
Content completeness High
View completeness Satisfies all users
Modifiability Adequate

TABLE V
EVALUATION OF THE DOD STANDARD.

users of the SRSD, being natural, easy to follow, comprehen-
sive and modifiable. Finally, modifiability is adequate, because
the structure of the requirements can be modular and traceabil-
ity information is explicitly included in the SRSD.

V. CONCLUSION

The proliferation of standards for software requirements
specification documents is a clear indication of the importance
of standardisation in this area; at the same time, the standards
are so many and differ so much that an organisation considering
adopting one may find itself facing a challenging task. We dis-
cussed the possible advantages and disadvantages of standard-
isation in Section II, concluding that it can be quite beneficial
for an organisation if performed wisely.

The most probable scenario is that no one standard will ex-
actly fit any given situation. Thus, barring the very costly solu-
tion of developing a customised standard from scratch, tailoring
an existing standard will be the best approach; considering the
associated risks, it is advantageous to select the standard that
best fits the circumstances. Our evaluation criteria presented
in Section III aim to help an organisation examine a candidate
from all relevant viewpoints, revealing its applicability for any
given case and pointing out its deficiencies to ease tailoring. We
also discussed the process of selection and customisation of the
criteria depending on the situation, as well as their application
for selecting and tailoring a standard for subsequent use.

The paper included in Section IV an examination of some
well known documentation standards under our proposed cri-
teria. This generic evaluation may not be adequate for actu-
ally selecting a standard for use, but it can be quite helpful
for understanding the criteria themselves, also serving as a first
step towards a more focused evaluation, selection and tailoring
process, that will concentrate on fewer, more appropriate stan-
dards, using customised and more detailed evaluation scales for
the most important of the proposed criteria. We believe that
our framework can significantly reduce the time and cost for
selection of a standard, because the criteria will help an organ-
isation concentrate on the more essential aspects, at the same
time leading to the selection of the best standard for the cir-
cumstances and easing considerably the final tailoring process.

REFERENCES

[1] I. Sommerville,Software engineering, Addison-Wesley, Reading, MA,
4th edition, 1992.

[2] B.W. Boehm,Software life cycle factors, in C. Vick and C.V. Ramamoor-
thy (Eds.),Handbook of software engineering, Van Nostrand Reinhold,
New York, NY, 1984.

[3] R.H. Thayer and M.C. Thayer,Glossary, in M. Dorfman and R.H. Thayer
(Eds.),Standards, guidelines, and examples on system and software re-
quirements engineering, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

[4] M. Jazayeri, C. Ghezzi and D. Mandrioli,Fundamentals of Software En-
gineering, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[5] J.W. Bracket,Software requirements, SEI curriculum module, SEI-CM-
19-1.2, Carnegie Mellon University, Software Engineering Institute,
1990.

[6] R.S. Pressman,Software engineering, a practitioner’s approach,
McGraw-Hill, 3rd edition, 1992.

[7] M. Dorfman and R.H. Thayer (Eds.),System and software requirements
engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990.

[8] A.M. Davis, Software requirements, analysis and specification, Prentice-
Hall, Englewood Cliffs, NJ, 1990,

[9] M. Dorfman and R.H. Thayer,Introduction to tutorial, in M. Dorfman
and R.H. Thayer (Eds.),Standards, guidelines, and examples on system
and software requirements engineering, IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[10] System/subsystem specification, DoD Military Standard DOD-STD-
7935A, US Department of Defence, 1988.

[11] Software development and documentation, DoD Military Standard MIL-
STD-498, US Department of Defence, Washington, DC, 1994.

[12] Software requirements specification DID, DoD Military Standard DI-
IPSC-81433, US Department of Defence, Washington, DC, 1995.

[13] Interface requirements specification DID, DoD Military Standard DI-
IPSC-81434, US Department of Defence, Washington, DC, 1995.

[14] Defence system software development, DoD Military Standard DOD-
STD-2167A, US Department of Defence, Washington, DC, 1988.

[15] Software requirements specification DID, DoD Military Standard DI-
MCCR-80025A, US Department of Defence, Washington, DC, 1988

[16] Interface requirements specification DID, DoD Military Standard DI-
MCCR-80026A, US Department of Defence, Washington, DC, 1988.

[17] Draft guidebook for MIL-STD-498, overview and tailoring, DoD Military
Standard, US Department of Defence, Washington, DC, 1995.

[18] IEEE guide to software requirements specifications, ANSI/IEEE Std 830-
1984, The Institute of Electrical and Electronics Engineers, New York,
NY, 1984.

[19] R. Balzer and N. Goldman,Principles of good specification and their
implications for specification languages, in N. Gehani and A. McGetrick
(Eds.),Software specification techniques, Addison-Wesley, Reading, MA,
1986.

[20] ESA software engineering standards, ESA PSS-05-0, Issue 1, European
Space Agency, ESA Publications Division, ESTEC, Noordwijk, The
Netherlands, 1987.

[21] Software requirements DID, SMAP-DID-P200-SW, Release 4.3, National
Aeronautics and Space Agency, 1989.

[22] External interface requirements DID, SMAP-DID-P210, Release 4.3, Na-
tional Aeronautics and Space Agency, 1989.

[23] T.J. Fouser,Software requirements analysis phase, JPL D-4005, Version
3.0, Jet Propulsion Laboratory, Pasadena, CA, 1989.


