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Abstract— Traditional reliable link layer protocols set their
fixed retransmission timers under the assumption that they
operate in isolation over the link. Emerging wireless networks
however allow multiple link layer sessions to dynamically share
the link. To assess the impact of this development, we examine the
performance of Web Browsing over a Selective Repeat protocol
with fixed retransmission timers, showing that the optimal
retransmission timer values depend on the level of contention.
We therefore propose an adaptive Selective Repeat protocol that
modifies its retransmission timers based on prevailing conditions.
Our measurements show that this adaptive scheme provides
excellent Web Browsing performance regardless of the level of
contention, under two very different wireless error models.

I. I NTRODUCTION

Wireless networks are increasingly becoming an integral
part of the Internet, especially in the role of access networks
providing untethered connectivity to users. It is well known
however that the error prone nature of wireless links degrades
the performance of applications such as Web Browsing [10].
Reliable link layer protocols have been proposed as a way
to hide the deficiencies of wireless links, thus improving the
performance of the higher layer protocols and applications
used on the Internet; the results reported in the literature show
that reliable link layers do indeed offer dramatic performance
improvements [11].

While traditional link layer protocols assume that they
operate in isolation over the underlying link when setting their
operating parameters, such as retransmission timers, emerging
wireless networks allow multiple users and/or applications
to dynamically share the link. This is most evident in the
Universal Mobile Telecommunications System(UMTS) where
a single physical channel is shared among independent link
layer sessions employed by different users and/or applications.
Since different applications have different requirements in
terms of reliability and delay, when many applications share
the same wireless link, different link layer protocols should
expect to co-exist over it. While the sharing of a wireless link
by independent link layer sessions also introduces fairness
issues [11], in this paper we are only concerned with the
interplay between link sharing and retransmission timer values
and its effect on application performance.

The outline of this paper is as follows. In Sect. II we provide
background on Internet protocol and application performance
over wireless links and discuss related work. Section III
describes our simulation setup for the performance evaluation

that follows. In Sect. IV we describe the fixed Selective Repeat
protocol used in this paper and discuss its performance with
Web Browsing. Motivated by these results, in Sect. V we
present an adaptive Selective Repeat protocol and evaluate its
performance with Web Browsing against its fixed counterpart.

II. BACKGROUND AND RELATED WORK

The heart of the Internet, theInternet Protocol(IP), of-
fers an unreliable packet delivery service: packets may be
lost, reordered or duplicated. Many real-time applications
use theUser Datagram Protocol(UDP) for direct access
to this service, handling error, flow and congestion control
themselves. Most other applications prefer delegating these
tasks to theTransport Control Protocol(TCP) which offers
a reliable byte stream service. TCP segments the application
data stream into IP packets at the sender and reassembles it at
the receiver. The receiver generatesacknowledgments(ACKs)
for segments received in sequence, returning duplicate ACKs
for out of sequence segments. The sender retransmits the
next unacknowledged segment either on receiving 3 duplicate
ACKs or when a retransmission timer expires before an ACK
is received.

Due to the high reliability of wired links, TCP assumes that
all losses are due to congestion, thus after a loss it abruptly
reduces its transmission rate to relieve congestion and then
gradually increases it to probe the network. Unfortunately,
losses due to wireless errors are also interpreted as congestion,
causing TCP to dramatically reduce its transmission rate [10].
Many researchers have proposed TCP modifications to im-
prove its performance over wireless links, but they all have two
drawbacks: they require modifications to end hosts throughout
the Internet and they can only retransmit lost data on an end-
to-end basis.

Another approach is to employ a reliable link layer protocol
over the wireless link so as to hide wireless errors from
TCP. An early proposal customized to TCPsnoops inside
the packets of each TCP stream at the access point bridging
the wired and wireless parts of the path and retransmits lost
segments when duplicate ACKs arrive, hiding them from the
sender to avoid end-to-end recovery [2]. Later work shows
that the performance of TCP applications can be enhanced
with standard reliable link layer protocols, without making the
link layer TCP aware [11]. Avoiding TCP awareness has many
advantages, such as compatibility with encrypted IP payloads
which hide TCP headers from the link layer [5].
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Fig. 1. Simulated network topology

An important issue with reliable link layer protocols is
that notall Internet applications require their services. While
TCP applications are well suited to them, delay sensitive UDP
applications often prefer faster, albeit limited, error recovery.
Reliable link layer sessions should therefore expect to co-exist
with other link layers over the same wireless link. This causes
the bandwidth available to the reliable link layer protocol, and
therefore its effectiveRound Trip Time(RTT), to vary, leading
to a problem when setting retransmission timers: they should
be higher than the RTT, to prevent premature retransmissions,
but not too high, to prevent the protocol from stalling until a
timeout occurs. A TCP aware link layer sets its retransmission
timers dynamically by mimicking TCP retransmissions [2], so
as to retransmit lost packets before TCP, but this approach is
inherently tied to TCP and not guaranteed to be the best one.

III. S IMULATION SETUP

The performance results reported below are based on sim-
ulations with ns-2 [8], extended with additional error models,
link layers and applications [9]. Each test was repeated 30
times with different random seeds. The results shown reflect
average metric values from these 30 runs, as well as their
95% confidence intervals. The simulated topology is shown in
Fig. 1: a Wired Server communicates with a Wireless Client
via an Access Point. In all applications tested, the server
was located at the wired end of the network and the client
at the wireless end, hence the naming convention used. The
wired link has a bandwidth of 10 Mbps and a propagation
delay of 1 ms. Simulations using a 2 Mbps wired link with
a propagation delay of 50 ms also support the conclusions
reached in this paper.

The wireless link has a bandwidth of 64 Kbps, a propagation
delay of 50 ms and uses a frame size of 250 bytes plus a
header; these are typical characteristics for cellular links where
bit interleaving inflates propagation delay. To avoid packet
fragmentation, each application also uses 250 byte packets.
Two error models were used for the wireless link. In the
Uniform error model each frame may be independently lost
with a probability of 1.5%, 2.5%, 5.4% or 9.8%. In theTwo
Stateerror model the link can be either in a good state, with
a bit error rate of10−6, or in a bad state, with a bit error
rate of10−2. Both states have exponential durations, with the
average duration of the good state being 10 s and the average
duration of the bad state being 100 ms, 200 ms, 500 ms
or 1000 ms. We have experimentally found that with these

parameters the averageFrame Loss Rate(FLR) of the Two
State model is 1.5%, 2.5%, 5.4% or 9.8%, matching the FLRs
used for the Uniform model. Note that the error processes in
each link direction were identical but independent. To establish
a performance baseline, we also show results with no errors.

To evaluate the Selective Repeat variants presented below,
we used Web Browsing, the most popular application on the
Internet [6], over TCP Reno with 10 ms granularity timers.
In Web Browsing a client accessespages containing text,
links to other pages and embedded objects, stored on a server.
The client-server interaction consists oftransactions: the client
requests a page from a server, the server returns the page which
contains pointers to embedded objects, the client requests each
embedded object, and the server returns them, completing
the transaction. The next transaction begins when the client
requests another page. The ns-2 HTTP module provides em-
pirical distributions for request, page and embedded object
sizes, as well as for the number of objects per page [6]. Only
one transaction was in progress at any time with no pauses
between transactions. The performance metric used was Web
Browsing throughput, defined as the amount of allapplication
data transferred from the server to the client divided by time
taken. Client requests only influence throughput indirectly, by
introducing delays. All results shown reflect the state at the end
of the last completed transaction during the simulated period,
which was 2000 s.

Contention is provided by a UDP real-time Media Distribu-
tion application. This application approximates a lecture where
a speaker sends audio, and possibly video, to an audience
including a wireless client. The speaker alternates between
talking andsilent states with exponential durations, averaging
1 s and 1.35 s, respectively [7], transmitting media only in the
talking state. Packets are transmitted isochronously at a rate
of 56 Kbps, consuming 87.5% of the available bandwidth in
the talking state, but only 37.5% of the available bandwidth
on average. As a result, the bandwidth available for Web
Browsing is abruptly modified whenever Media Distribution
changes state. It should be noted that no retransmissions
are performed for the, delay sensitive, Media Distribution
application. To be more exact, the Media Distribution data
stream bypasses the reliable link layer protocol used by the
Web Browsing data stream.

IV. F IXED SELECTIVE REPEAT

In past research we have found the Selective Repeat protocol
to offer excellent performance for TCP applications such as
Web Browsing [11], without requiring TCP awareness. We
have therefore decided to use it to study the interplay between
link sharing and retransmission timers. In Selective Repeat,
the sender transmits link layer frames in sequence within a
transmission window ofN frames, buffering them for possible
retransmission. The receiver accepts frames within a reception
window of N frames; if a frame is received in sequence it is
delivered to the higher layer, the window slides upwards and
an ACK is returned to the sender, confirming reception of all
frames up to the one delivered. When the sender receives an
ACK, it drops the buffered frames covered by it and also slides
its window upwards.
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When a frame arrives out of sequence at the receiver, it
is buffered but not delivered, since the gap in the sequence
indicates that some frames were lost; anegative acknowl-
edgment(NACK) is returned for each missing frame to the
sender, and the sender retransmits each NACKed frame. When
missing frames arrive, the receiver delivers to the higher layer
all frames that are now in sequence, slides its window upwards
and returns an ACK covering all delivered frames. To reduce
protocol overhead, in our implementation we delay returning
an ACK for a short interval, trying to piggyback it into a data
frame traveling in the reverse direction. If the interval expires,
the ACK is sent as a separate frame. NACKs on the other
hand are always sent immediately as separate frames.

If some ACKs and/or NACKs are lost, the sender may
exhaust its transmission window, thus becoming unable to
proceed. To prevent this, the sender starts a retransmission
timer after sending each frame. If the timer expires before an
ACK arrives for that frame, the frame is assumed lost and
retransmitted. Many Selective Repeat variants exist, mostly
differing on how NACKs are handled [3]. The variant used
here allows each missing frame to be NACKed multiple times,
a feature calledmultireject; we have also tested two simpler
protocol variants, both of which support the conclusions
reached in this paper.

We will now examine the performance of Web Browsing
over Selective Repeat with fixed timers, in order to assess
the effects of contention. Figure 2 shows the Web Browsing
throughput achieved under the Uniform error model with a
range of fixed timeout values from 0.9 s to 1.3 s, in 0.1 s
increments. Throughput is maximized with the lowest timeout
value, and it is progressively decreased as the timeouts are
increased. The 9.8% performance gap, i.e. the difference
between the best and worst options at a FER of 9.8%, is
13.4%. When contention is introduced however, the situation
is completely reversed, as Fig. 3 shows: in this case lower
timeout values perform worst, while higher timeouts lead to
progressive improvement. In this case the 9.8% performance
gap is 21.7%, but in the opposite direction than when no
contention exists.

In the Two State error model, the situation without con-
tention is not that clear. As Fig. 4 shows, it is hard to even
distinguish between the various fixed timeout options, since
the 9.8% performance gap is only 1.4%. However, when con-
tention is introduced, Fig. 5 shows that throughput degrades
as the timeouts are decreased, exactly as with the Uniform
error model. Indeed, in this case the 9.8% performance gap is
40.9%, higher than with the Uniform error model.

These results indicate that under both wireless models, it is
not possible to select a fixed retransmission timer value that
will optimize overall Web Browsing performance: contention
generally increases the optimal timeout value, due to the
corresponding increase in the effective RTT. The results with
contention show that a timeout value that provided excellent
performance without contention, may exhibit terrible perfor-
mance when contention is introduced. Therefore, with fixed
timers the best we can do is to choose a timer that will provide
a good compromise, rather than optimal performance.
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Fig. 2. Web Browsing Throughput without Contention (Uniform): Fixed
Timeouts
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Fig. 3. Web Browsing Throughput with Contention (Uniform): Fixed
Timeouts
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Fig. 4. Web Browsing Throughput without Contention (Two State): Fixed
Timeouts
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Fig. 5. Web Browsing Throughput with Contention (Two State): Fixed
Timeouts

V. A DAPTIVE SELECTIVE REPEAT

As shown in Sect. IV, contention for the link has a dramatic
effect on performance: when competing sessions start and
stop, the available bandwidth changes, influencing the effective
RTT. It is thus desirable for a reliable link layer protocol to
appropriately adapt its retransmission timers. To this end, we
modified Selective Repeat to track the RTT in a manner similar
to TCP [4]. For every packet transmitted or retransmitted, the
sender notes its transmission time. When an ACK arrives for
the packet, the difference between the current time and the
transmission time provides an RTTsample. We use these
samples to update smoothed estimates for the RTT,srtt, and
its variance,srttvar, as follows:

srtt = 0.875 ∗ srtt + 0.125 ∗ sample . (1)

srttvar = 0.75 ∗ srttvar + 0.25 ∗ (sample− srtt) . (2)

As the effective RTT fluctuates, the estimators (1) and (2)
follow its progress in a smoothed manner: they react to
changes with a time lag and are not dramatically affected by
sporadic extreme values. Note that the smoothing factors used
are the same as those used by TCP, therefore these calculations
can be performed very efficiently using integer arithmetic [4].
After updating the estimators, we calculate the new value to
be used for the retransmission timers,rtxto, as follows:

Uniform error model : rtxto = 3∗srtt+2∗srttvar . (3)

Two State error model : rtxto = 4 ∗ srtt + 0 ∗ srttvar .
(4)

Note that both (3) and (4) differ from the formula used by
TCP, which is rtxto = 1 ∗ srtt + 4 ∗ srttvar. We have
experimentally found that these formulas perform very well
for the corresponding wireless error models [12], in contrast to
the plain TCP formula, whose performance will be discussed
below.

Our adaptive timeout scheme calculates samples fromevery
packet acknowledged, with three exceptions, meant to avoid
inaccurate samples. First, NACKs do not provide samples,
since they do not reflect reception of the NACKed frame.
Second, when an ACK covers multiple frames, only the last
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Fig. 6. Web Browsing Throughput without Contention (Uniform): Fixed vs.
Adaptive Timeouts
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Fig. 7. Web Browsing Throughput with Contention (Uniform): Fixed vs.
Adaptive Timeouts

frame acknowledged provides a sample, since the previous
ones may have been received long ago. Third, when duplicate
ACKs arrive, only the first ACK provides a sample; the
following ones are ignored, since they do not offer additional
information.

We will now we examine the performance of Web Browsing
over Selective Repeat with both adaptive and fixed timeouts.
Figure 6 shows the Web Browsing throughput achieved under
the Uniform error model with ourAdaptivescheme, as well
as with fixed timeout values of 0.9 s, 1.1 s and 1.3 s. We also
show performance over theRaw Link, that is, without any
link layer error recovery, and overPlain TCP, that is, when
the standard TCP formula is used for timeout adaptation. Our
adaptive scheme performs better than all fixed options: the
9.8% performance gap of our scheme over the fixed 1.1 s
option, previously found to be a good compromise, is 17%,
while plain TCP is worse than all fixed options.

When contention is introduced, Fig. 7 shows that our adap-
tive scheme again performs best; in this case the 9.8% perfor-
mance gap over the fixed 1.1 s option is 12.1%. Interestingly,
with the lowest fixed timeout, i.e. 0.9 s, which was the best
option without contention, performance with contention can
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Fig. 8. Web Browsing Throughput without Contention (Two State): Fixed
vs. Adaptive Timeouts
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Fig. 9. Web Browsing Throughput with Contention (Two State): Fixed vs.
Adaptive Timeouts

be worse than without any error control, indicating that timers
expire early, leading to redundant retransmissions. The plain
TCP formula also suffers from the same problem, therefore it
only manages to beat the worst fixed timeout option.

The results with the Two State error model are very similar.
Figure 8 shows that without contention our adaptive scheme
outperforms all fixed schemes, with a 9.8% performance gap
over the fixed 1.1 s option of 2.6%. When contention is
introduced, Fig. 9 shows that our adaptive scheme again
performs best, with a 9.8% performance gap over the fixed
1.1 s option of 9.5%. In this case, the use of a fixed timeout
of 0.9 s, which was quite acceptable without contention, is
always worse than no error control at all. Furthermore, it is
clear that the plain TCP formula is completely inappropriate
for the Two State error model, as it nearly always leads to
lower performance than without any error recovery.

These results indicate that with Web Browsing our adaptive
timeout scheme performs much better than the fixed scheme
with the compromise timeout of 1.1 s, and, indeed, better than
any of the fixed timeout options tested. More importantly, our
adaptive scheme performs excellent without manual tuning
regardless of the level of contention, in contrast to the fixed

schemes where the choice of an optimal timeout value requires
awareness of the, generally unknown, level of congestion over
the link. Furthermore, our results show that the equation used
by TCP is far from optimal, and may even be worse than
performing no error control at all. Therefore, simply using the
TCP policy is not enough.

We conclude this section with a brief sensitivity analysis
of the parameters used for the adaptive scheme under each
wireless error model. In previous work we have explored
the parameter space for the coefficients ofsrtt and srttvar,
concluding that formulas (3) and (4) work best for the Uniform
and Two State error models, respectively [12]. We have also
compared our basic scheme, referred to as adaptive standard,
against two variations: in the adaptive fast case, equations (1)
and (2) are modified tosrtt = 0.75 ∗ srtt + 0.25 ∗ sample
andsrttvar = 0.5 ∗ srttvar + 0.5 ∗ (sample− srtt), respec-
tively, i.e. the estimators adapt faster to prevailing conditions;
conversely, in the adaptive slow case, equations (1) and (2)
are modified tosrtt = 0.9375 ∗ srtt + 0.0625 ∗ sample
and srttvar = 0.875 ∗ srttvar + 0.125 ∗ (sample − srtt),
respectively, i.e. the estimators adapt slower. We omit these
results for brevity, as all three variants of our adaptive scheme
have only marginal performance differences, indicating that
the scheme is relatively insensitive to the exact choice of the
filter coefficients used.

VI. CONCLUSIONS ANDFUTURE WORK

We have discussed the problems faced by reliable link layer
protocols when sharing a wireless link with competing link
layer sessions, using Selective Repeat as an example. Our
measurements of Web Browsing performance indicate that the
optimal fixed retransmission timer values strongly depend on
the level of contention for the link. We therefore proposed
an adaptive Selective Repeat variant that dynamically sets its
retransmission timers based on prevailing conditions, using a
scheme similar to TCP. Our measurements indicate that this
adaptive scheme outperforms its fixed counterparts regardless
of the level of contention and frame loss rate, under two
very different wireless error models. We have also found that,
while our adaptive scheme is relatively insensitive to the filter
coefficients used to smooth the average RTT and RTT variance
estimators involved in the adaptive calculation of the timeout
values, the actual coefficients used by TCP for this calculation
are suboptimal for our link layer environment.

Our adaptive Selective Repeat approach is not the only
way to overcome the issues introduced by contention at the
link layer. The Radio Link Control(RLC) protocol used in
UMTS networks in its Acknowledged Mode [1] does not
use retransmission timeouts at the sender, relying solely on
status information from the receiver to trigger retransmissions.
Since both ACKs and NACKs may be lost however, either
the RLC sender or the RLC receiver must periodically probe
for or return status reports, respectively. We are currently
implementing the UMTS RLC protocol in our simulator with
the aim of comparing its performance against our adaptive
Selective Repeat approach.
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