
PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE 1

Multiple Layer Error Control over Wireless Links
George Xylomenos and Giannis Vasalas Kokkinakis

xgeorge@aueb.gr and jvk21gr@gmail.com
Mobile Multimedia Laboratory

Department of Informatics
Athens University of Economics and Business

Patision 76, Athens 104 34, Greece

Abstract— In this paper we compare the wireless performance
of TCP with or without selective acknowledgments and in the
presence or absence of a reliable link layer protocol, in order
to determine whether link layer error control remains beneficial
for TCP variants with improved error recovery capabilities, such
as TCP SACK. We also examine whether there are adverse
interactions between the two protocol layers, that is, whether link
layer error control degrades the congestion control performance
of the transport layer, and whether transport layer error recovery
degrades the error control performance of the link layer. Our
results show that, even with TCP SACK, link layer error
control remains critical for TCP performance over wireless links.
Furthermore, our results show that with a TCP unaware link
layer protocol we have a clear separation of concerns, whereby
the link layer handles wireless losses and the transport layer
handles congestion.

I. I NTRODUCTION

The error prone nature of wireless links is known to severely
degrade the performance of TCP based applications, such as
File Transfer and Web Browsing, due to the inability of TCP to
distinguish between congestion and wireless losses. Numerous
reliable link layer protocols have been proposed as a way to
hide the deficiencies of wireless links, so as to allow TCP to
concentrate on congestion control. Our previous work indeed
shows that TCP unaware reliable link layers offer dramatic
performance improvements for the higher layer protocols and
applications commonly used on the Internet [13].

As more advanced variants of TCP are deployed on the
Internet however, we need to reconsider the performance of
the entire protocol stack over wireless links. Specifically, while
TCP with theSelective Acknowledgmentoption (TCP SACK)
was originally designed to improve TCP recovery from bursty
congestion losses, it may also benefit the performance of TCP
over wireless links. Considering that TCP SACK is quite
similar to theSelective Repeat(SR) protocols used by reliable
link layers, it is inevitable to ask whether TCP SACK can
handle wireless losses by itself, with no aid from a reliable
link layer. Furthermore, it is important to examine whether
the co-existence of TCP SACK with a reliable link layer has
detrimental side effects; it may be the case that TCP SACK
retransmits packets already retransmitted by the link layer, or
that the link layer obstructs the congestion control mechanisms
of TCP SACK.

This paper attempts to answer these questions via extensive
simulation results for the performance of two different TCP
applications running over TCP with and without the selective

acknowledgment option, coupled either with or without link
layer error recovery. In Section II we provide background
information about various TCP variants, while in Section III
we do the same for reliable link layer protocols. Section IV
reviews existing work related to multiple layer error control
and states the objectives of this study. Section V describes the
simulation setup for the performance evaluation that follows.
In Section VI we discuss TCP performance when no conges-
tion exists on the end-to-end path, while in Section VII we do
the same when congestion exists. We present our conclusions
in Section VIII.

II. T RANSPORTLAYER ERRORCONTROL

The heart of the Internet, theInternet Protocol(IP), offers
an unreliable packet delivery service: IP packets may be lost,
reordered or duplicated. While some real-time applications
use theUser Datagram Protocol(UDP) for direct access
to this service, handling error, flow and congestion control
themselves, most applications prefer delegating these tasks to
the Transport Control Protocol(TCP) which offers a reliable
byte stream service. In all TCP variants, the sender buffers
the application layer data stream and segments it into IP
packets for transmission. The receiver reassembles the original
data stream from the arriving packets and passes it strictly
in sequence to the application layer. The receiver returns
acknowledgments(ACKs) to the sender indicating the latest
packet received in sequence and the amount of data beyond
that packet that may be transmitted without additional ACKs;
this is called theadvertised window.

The TCP sender also maintains acongestion windowwhich
represents an estimate of the amount of data that may be
transmitted, beyond the latest acknowledged packet, without
causing congestion to the network. Since IP networks do
not provide explicit congestion indications, the TCP sender
dynamically calculates a proper size for the congestion win-
dow: the window is increased as new ACKs arrive, indicating
that packets are reaching the receiver, and decreased when
packets are lost, indicating that they may be dropped due
to congestion. The window increases slowly, so as to gently
probe the capacity of the network, but decreases sharply, so
as to quickly relieve network congestion. The exact details
of congestion window handling depend on the TCP variant
in use [6]. In all TCP variants however, the sender may only
transmit new packets if they lie within both the advertised



2 PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE

window and the congestion window, which provide flow and
congestion control, respectively.

Early TCP variants only detected losses when a timer
expired before an ACK was received for a specific packet,
triggerring a retransmission of the lost packet as well as the
congestion control mechanism. As the round trip time of
a TCP connection over the Internet may fluctuate, timeouts
must be conservative so as to avoid redundant retransmissions,
making timeout based loss detection quite slow. Newer TCP
variants, and in particular the TCP Reno variant used in this
paper, also employ a heuristic loss detection method: whenever
three duplicate ACKs arrive for the same packet, meaning
that after that packet three more packets were received out
of sequence, the next packet in sequence is assumed lost
and retransmitted, and the congestion control mechanism is
triggered. Provided that enough packets are sent after the lost
one to trigger the duplicate ACKs, this loss detection method
is much faster than waiting for a timeout.

A known limitation of TCP Reno is that when multiple
losses occur in neighboring packets, only a single packet can
be retransmitted before a new set of three duplicate ACKs is
received, thus revealing the identity of the next lost packet.
As a result, TCP Reno can either retransmit at most a single
lost segment per round trip time or risk retransmitting packets
that have already been received [6]. TCP SACK attempts to
solve this problem by including in each ACK information for
up to three consecutive blocks of data that have been received
beyond the last packet acknowledged. This allows the sender to
accurately determine the identities of multiple lost packets and
retransmit them within a single round trip time, without the
risk of wasting bandwidth. This is useful for both congestion
and wireless losses that occur in bursts: in an analytical study,
TCP SACK has been found to outperform other TCP variants
over wireless links without a reliable link layer [2].

III. L INK LAYER ERRORCONTROL

The basic limitation of TCP over wireless links is that all
losses are interpreted as congestion, as TCP has no way of dis-
tinguishing congestion and wireless losses. Due to the fact that
the TCP congestion window increases slowly but decreases
rapidly, mistaking wireless errors for congestion leads to very
degraded TCP performance [14]. While many researchers
have proposed TCP modifications that better handle wireless
losses, none of these has found widespread acceptance as they
generally require modifications to end hosts throughout the
Internet and they often interfere with the end-to-end semantics
of TCP.

The alternative to modifying TCP is to employ a reliable
link layer protocol over the wireless link, so as to hide wireless
errors from TCP and thus prevent triggerring congestion
control. An early proposal is theSnoopprotocol, a link layer
agent that examines the packets of each TCP stream at the
access point bridging the wired and wireless parts of the
path. Snoop buffers outgoing packets and retransmits them
whenever three duplicate ACKs are received, exactly like TCP;
in order to avoid triggerring retransmissions at the TCP sender,
Snoop hides these duplicate ACKs from the sender [3]. This

TCP awareness has the disadvantage of incompatibility with
encrypted IP payloads. In addition, TCP awareness means that
a scheme may need modifications as new TCP variants are
introduced.

In our previous work we have found that TCP performance
can be greatly enhanced with TCP unaware reliable link layer
protocols, such asSelective Repeat(SR) [13]. In SR, the
sender buffers and transmits link layer frames in sequence
within a window of N frames. The receiver also accepts
frames within a window ofN frames; if a frame is received in
sequence it is delivered to the higher layer, the window slides
upwards and an ACK is returned to the sender, confirming
reception of all frames up to the one delivered. When a
frame arrives out of sequence, it is buffered but not delivered,
since the gap in the sequence indicates that some frames
were lost; anegative acknowledgment(NACK) is returned for
each missing frame to the sender, and the sender retransmits
NACKed frames. When missing frames arrive, the receiver
delivers to the higher layer all frames that are now in sequence,
slides its window upwards and returns an ACK covering all
delivered frames. Since ACKs and/or NACKs may also be
lost, the sender starts a retransmission timer after sending each
frame; if it expires before an ACK arrives for that frame, the
frame is assumed lost and retransmitted. Many SR variants
exist, mostly differing on NACK handling [4]. In this paper
we use amultireject SR variant, that is, each missing frame
can be NACKed many times.

While SR and TCP SACK are quite similar in many aspects,
their different operating environments have a significant im-
pact on their loss recovery capabilities. TCP SACK operates
over an end-to-end path where the round trip delay varies,
therefore its timeouts must be conservative, and where packets
may be reordered, therefore gaps in the packet sequence do
not necessarily imply losses. In contrast, SR operates over a
single link where the round trip delay is fixed, therefore its
timeouts can be tight, and where frames cannot be reordered,
therefore gaps in the frame sequence imply losses, so NACKs
can be used.

IV. RELATED WORK AND OBJECTIVES

While numerous papers evaluate link layer and transport
layer approaches for improving TCP performance over wire-
less links, only a handful deal with combined error recovery at
both layers. Early work indicated that the link layer could po-
tentially adversely interact with the transport layer, by locally
retransmitting packets that were already retransmitted end-
to-end, thus wasting bandwidth and reducing throughput [5].
Later work shows that as the link layer operates at a finer
time scale than the transport layer, it may retransmit a packet
many times before the transport layer manages to do so [13].
An analytical study found that even a stop and wait link layer
scheme may greatly improve the performance of many TCP
variants [1].

Another approach is to employ a TCP orientedForward
Error Correction (FEC) scheme at the link layer [7], whereby
the endpoints of a wireless link combine the error statistics of
the link with a model of TCP throughput in order to determine



PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE 3

how much FEC overhead to apply to each transmitted frame:
higher overhead means increased error recovery but also
decreased available bandwidth, thus the scheme calculates the
optimal operating point. This scheme improves the perfor-
mance of TCP SACK [7] with limited TCP awareness.

Interestingly, another study shows that the Snoop protocol
can adversely interact with TCP SACK [11]. The first reason
for this behavior is that when duplicate ACKs arrive after a
loss burst, Snoop can only retransmit a single packet, as it is
unaware of the TCP selective acknowledgment option, and it
also drops some of these ACKs, thus preventing a TCP SACK
sender from exploiting their information. The second reason is
that even when a duplicate ACK is not dropped by Snoop, if
it triggers multiple retransmissions from a TCP SACK sender,
Snoop may drop the retransmitted packets to avoid wasting
bandwidth, as it is not yet aware that these packets have been
lost. While it is trivial to modify Snoop to properly handle,
and indeed benefit from, TCP SACK acknowledgments, these
problems indicate a fundamental limitation of TCP aware
schemes: a change in TCP may conflict with a TCP aware
link layer.

Due to the problems of TCP aware schemes, in this paper
we focus on the interplay between a regular SR link layer
protocol and TCP SACK. Unlike previous work in this area,
we consider both wireless losses and congestion over the wired
link. We present simulation results showing the performance
of TCP Reno and TCP SACK over either a Raw link layer,
that is, without error recovery, or a reliable link layer using
SR, in order to answer the following questions:

1) Can TCP SACK handle wireless error recovery without
assistance from the link layer?

2) Does SR at the link layer obstruct the congestion recov-
ery performance of TCP SACK?

3) Does TCP SACK obstruct the error recovery perfor-
mance of SR at the link layer?

In order to come up with conclusive results, we performed
experiments over random and bursty wireless error models,
local and wide area network topologies and bulk transfer or
interactive TCP applications, so as to determine which aspects
of TCP performance over wireless links are specifically related
to the interaction between link layer and transport layer error
control.

V. SIMULATION SETUP

The performance results reported below are based on simu-
lations with ns-2 [10] (version 2.30), extended with additional
error models, link layers and applications [12]. Each test was
repeated 30 times with different random seeds and the metrics
shown reflect average values from these 30 runs, as well as
their 95% confidence intervals. The simulated topology is
shown in Fig. 1: a Wired Server communicates with a Wireless
Client via an Access Point. The results given in the following
figures and tables are for a LAN topology where the wired
link has a bandwidth of 10 Mbps and a propagation delay
of 1 ms. We also discuss, but do not present due to space
limitations, results from a WAN topology where the wired
link has a bandwidth of 2 Mbps and a propagation delay of
50 ms.

Wired Server Access Point Wireless Client

TCP/UDP
IP

PHY
LL

TCP/UDP
IP IP

PHY
LL

Fig. 1. Simulated network topology

The wireless link has a bandwidth of 64 Kbps, a propagation
delay of 50 ms and uses a frame size of 250 bytes plus a
header. To avoid packet fragmentation, the applications also
use 250 byte packets. Two error models were used for the
wireless link. In theUniform error model each frame may be
independently lost with a probability of 1.5%, 2.5%, 5.4% or
9.8%. In theTwo Stateerror model the link can be either in
a good state, with a bit error rate of10−6, or in a bad state,
with a bit error rate of10−2. Both states have exponential
durations, with the average duration of the good state being
10 s and the average duration of the bad state being 100 ms,
200 ms, 500 ms or 1000 ms. We have experimentally found
that with these parameters the averageFrame Loss Rate(FLR)
of the Two State model is 1.5%, 2.5%, 5.4% or 9.8%, matching
the FLRs used for the Uniform model. Note that the error
processes in each link direction are identical but independent.
To establish a performance baseline, we also show results with
no errors.

In order to evaluate TCP performance, we used two very
different applications. In File Transfer the Wired Server simply
sends a large file as fast as possible to the Wireless Client,
with TCP handling flow and congestion control. While longer
transfers produce more stable results, in practice users do not
initiate huge transfers, therefore we used 10 MByte files as a
compromise. We measured File Transfer throughput, defined
as the amount ofapplicationdata transferred divided by time
taken.

In Web Browsing the Wireless Client accessespagescon-
taining text, links to other pages and embedded objects, stored
at the Wired Server. The client-server interaction consists of
a sequence oftransactions: the client requests a page from a
server, the server returns the page which contains pointers to
embedded objects, the client requests each embedded object,
and the server returns them, completing the transaction. The
next transaction begins when the client requests another page.
The ns-2 HTTP module provides empirical distributions for
request, page and embedded object sizes, as well as for the
number of objects per page [8]. Only one transaction is in
progress at any time with no pauses between transactions. We
measured Web Browsing throughput, defined as the amount
of application data transferred from the server to the client
divided by time taken. Note that client requests only influence
throughput indirectly, by introducing delays. The results given
reflect the state at the end of the lastcompletedtransaction
during the simulated period, which was 2000 s.



4 PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE

 10

 20

 30

 40

 50

 60

 70

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 2. File Transfer Throughput (Uniform, LAN)

While Web Browsing seems to be nothing more than a set
of File Transfers, the two applications behave very differently.
File Transfer always has data to send, therefore TCP can
eventually reach its peak throughput, while Web Browsing
consists of small transfers that rarely last long enough for TCP
to achieve high throughputs. Similarly, while in File Transfer
the server sends data continuously, in Web Browsing a client
request must complete before initiating a server response and
vice versa, therefore the server may be idle for extended
periods.

Application performance was measured both with and with-
out congestion so as to separately examine how each transport
/link layer protocol combination handles wireless errors and
congestion. Congestion was introduced by an on-off source
transmitting 250 byte packets over UDP from the Wired
Server to the Access Point at a high speed. As a result, the
wired link suffered only from congestion, while the wireless
link suffered only from wireless errors. The on-off source
alternated between two states with exponential durations, with
an average on duration of 1 s and an average off duration
of 1.35 s [9]. During the on state, packets were transmitted
isochronously at a rate of 9.99 Mbps for the LAN topology
and 1.99 Mbps for the WAN topology, leaving only 10 Kbps
to TCP; during the off state, TCP was limited by the 64 Kbps
bandwidth of the wireless link.

VI. PERFORMANCE WITHOUTCONGESTION

In this section we will examine the performance of File
Transfer and Web Browsing when there is no congestion
over the end-to-end path; in this case, each TCP application
operates without contention for the wired link. The goal of this
section is to study in isolation the error control behavior of
each transport / link layer protocol combination under various
scenarios by eliminating the need for congestion control.

Starting with File Transfer, Figure 2 shows the throughput
achieved by TCP Reno and TCP SACK over either a Raw or
an SR link layer in the LAN scenario with Uniform errors.
Table I shows the same data in tabular form: for each FLR,
the baseline performance of TCP Reno over a Raw link layer

TABLE I

FILE TRANSFERTHROUGHPUT(UNIFORM, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 55.95 8.7% 8.3% 8.4%
2.5 48.70 16.7% 19.3% 19.2%
5.4 30.09 28.2% 70.2% 70.4%
9.8 13.81 19.4% 198.3% 199.6%

 30

 35

 40

 45

 50

 55

 60

 65

 70

 9.8 5.4 2.5 1.5 0
T

hr
ou

gh
pu

t (
K

bp
s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 3. File Transfer Throughput (Two State, LAN)

is given as an absolute number, while the performance of
the enhanced protocol combinations is given as a factor of
improvement over the baseline. In this scenario, without link
layer error control TCP SACK provides an improvement of
8.7 to 28.2% over TCP Reno, showing that its improved loss
recovery is useful even for wireless links. When SR is added at
the link layer however, not only the performance of both TCP
Reno and TCP SACK are much better, with improvements
of 8.3 to 199.6%, but the two TCP variants perform nearly
identically.

Figure 3 and Table II show the corresponding results with
the Two State error model, which are quite similar: while TCP
SACK provides an improvement of 2.7 to 10.1% over TCP
Reno, the addition of SR not only provides an improvement
of 12.1 to 20.7%, it also makes TCP Reno and TCP SACK
nearly indistinguishable. The results from the WAN scenarios
(not shown) differ from the LAN results in one aspect only:
the performance improvements due to TCP SACK by itself
are relatively smaller. This is reasonable, as all TCP variants
can only recover from errors via end-to-end retransmissions,
leading to performance degradations when the propagation
delay of the path is increased. In contrast, link layer error
recovery is not affected by end-to-end path characteristics,
therefore it becomes even more beneficial with increasing path
delays.

Turning now to Web Browsing, Figure 4 and Table III
show the throughput achieved by TCP Reno and TCP SACK
over either a Raw or an SR link layer in the LAN scenario
with Uniform errors. Without link layer error recovery TCP
SACK only has a slight advantage, if any, over TCP Reno:



PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE 5

TABLE II

FILE TRANSFERTHROUGHPUT(TWO STATE, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 55.32 10.1% 12.1% 12.1%
2.5 53.67 7.8% 13.0% 13.0%
5.4 48.62 5.0% 14.3% 14.3%
9.8 40.74 2.7% 20.7% 19.6%

 0

 10

 20

 30

 40

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 4. Web Browsing Throughput (Uniform, LAN)

the improvement is 2.1 to 8.9%. In contrast, when SR is
introduced performance improves by 18.2 to 149.1%, factors
comparable to those with File Transfer; also as in File Transfer,
with SR both TCP variants perform nearly the same. The
reason that TCP SACK by itself is not as beneficial with
Web Browsing is that this application mostly consists of short
transfers, therefore after a loss it is often the case that not
enough packets follow to trigger the three duplicate ACKs
required by the TCP sender to detect a loss, thus making TCP
resort to timeout initiated recovery; this is a problem affecting
all TCP variants, but not SR which uses short timers optimized
for the underlying link.

The same situation appears in Figure 5 and Table IV for the
Two State error model: without link layer error recovery TCP
SACK is slightly better (0.5 to 3.3%) or worse (1.6%) than
TCP Reno; adding SR leads to performance gains of 14.0% to
22.5%, again comparable to those with File Transfer, as well as
nearly indistinguishable performance for the two TCP variants.
The results from the WAN scenarios (not shown) differ from
the LAN results in one aspect only: the performance of all
protocol combinations is relatively reduced in the WAN case,
in contrast to File Transfer where LAN and WAN performance
results are similar. The reason is that with File Transfer
data are sent in one direction only, therefore the increased
propagation delay of the WAN path is mostly hidden by
the pipelined transmissions. In contrast, with Web Browsing
the direction of transfer continuously switches from client to
server and vice versa, and as each transfer must complete
before the next one begins, the pipeline is emptied, therefore
the application runs relatively slower.

TABLE III

WEB BROWSING THROUGHPUT(UNIFORM, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 36.09 2.1% 18.2% 18.4%
2.5 30.75 3.5% 29.3% 29.7%
5.4 18.28 8.9% 71.6% 69.7%
9.8 8.53 6.5% 149.1% 146.2%

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0
T

hr
ou

gh
pu

t (
K

bp
s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 5. Web Browsing Throughput (Two State, LAN)

VII. PERFORMANCE WITHCONGESTION

In this section we will examine the performance of File
Transfer and Web Browsing when there is congestion over
the wired part of the path; in this case, each TCP application
contents for the wired link with the UDP on-off source. The
goal of this section is to study the differences induced in the
behavior of each transport / link layer protocol combination by
the alternation between congested and uncongested periods.

Starting again with File Transfer, Figure 6 and Table V show
the throughput achieved by TCP Reno and TCP SACK over
either a Raw or an SR link layer in the LAN scenario with
Uniform errors. The main differentiation with the correspond-
ing uncongested scenario is that with congestion TCP SACK
always provides an improvement over TCP Reno, regardless
of the underlying link layer protocol. When SR is used at the
link layer, the difference between TCP Reno and TCP SACK
is nearly constant, even with no wireless losses, therefore it can
be attributed to the improved congestion control mechanisms
of TCP SACK. When the Raw link layer is used, TCP SACK
outperforms TCP Reno by 10.1 to 25.2% due to its improved
handling of both congestion and wireless losses. By adding
SR, TCP SACK improves performance by 12.8 to 176.8%.

Figure 7 and Table VI show the corresponding results with
the Two State error model, which are quite similar: with SR
there is a nearly constant gap between TCP Reno and TCP
SACK, reflecting the improved congestion control of TCP
SACK, while without SR the larger gap between the two
TCP variants reflects the improved congestion control and
wireless loss handling of TCP SACK. TCP SACK without
SR improves upon TCP Reno by 6.3 to 13.0%, but when SR



6 PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE

TABLE IV

WEB BROWSINGTHROUGHPUT(TWO STATE, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 38.84 3.3% 14.0% 14.0%
2.5 37.18 3.0% 15.4% 14.6%
5.4 33.43 0.5% 16.2% 17.7%
9.8 28.23 -1.6% 21.2% 22.5%

 10

 20

 30

 40

 50

 60

 70

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 6. File Transfer Throughput (Uniform, LAN)

is also introduced, the performance with TCP SACK improves
by 17.2 to 25.4%. The results from the WAN scenarios (not
shown) differ from the LAN results in two ways: first, the
gap between TCP SACK and TCP Reno when SR is used
is larger, since with higher propagation delays the importance
of improved congestion recovery is more pronounced; second,
the performance improvements in both TCP variants due to the
introduction of SR are even more dramatic, since link layer
error control becomes more important with higher end-to-end
propagation delays.

Turning now to Web Browsing, Figure 8 and Table VII show
the throughput achieved by TCP Reno and TCP SACK over
either a Raw or an SR link layer in the LAN scenario with
Uniform errors. In this application TCP SACK only provides
a slight improvement over TCP Reno without SR, which is
even smaller with SR; in contrast, the introduction of SR
greatly improves the performance of both TCP variants. With
the Raw link layer, TCP SACK outperforms TCP Reno by 3.0
to 12.4%, while with SR the improvements due to TCP SACK
are 18.2 to 144.1%. As explained in the uncongested case, the
relatively small gains of TCP SACK over TCP Reno are due
to the short transfers of Web Browsing that often prevent the
triggerring of TCP retransmissions by duplicate ACKs; this
obstructs both congestion and error control. Another factor
diminishing the congestion control gains of TCP SACK is that
Web Browsing is bidirectional, therefore it faces congestion
only in the server to client direction, unlike File Transfer which
is unidirectional, thus continuously facing congestion.

A similar situation appears in Figure 9 and Table VIII for the
Two State error model: with SR at the link layer, TCP SACK

TABLE V

FILE TRANSFERTHROUGHPUT(UNIFORM, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 50.54 10.1% 7.1% 12.8%
2.5 44.84 15.2% 15.0% 20.9%
5.4 29.05 25.2% 52.9% 60.5%
9.8 13.72 18.8% 161.8% 176.8%

 30

 35

 40

 45

 50

 55

 60

 65

 70

 9.8 5.4 2.5 1.5 0
T

hr
ou

gh
pu

t (
K

bp
s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 7. File Transfer Throughput (Two State, LAN)

is slightly better than TCP Reno, while without SR at the link
layer TCP SACK has a slightly bigger advantage. Without SR
the gains of TCP SACK over TCP Reno are 2.6 to 4.4%,
while when SR is introduced the TCP SACK gains are 13.4
to 24.6%. The relatively smaller performance improvements
compared to the Uniform error model are consistent with
those experienced by the File Transfer application, while the
overall behavior is consistent with that of Web Browsing with
Uniform errors. Finally, the results from the WAN scenarios
(not shown) are very similar, with the only visible difference
being an overall reduction in Web Browsing throughput, due
to the higher end-to-end propagation delay compared to the
LAN scenario.

VIII. C ONCLUSIONS

We have presented results from a comprehensive set of
simulations of TCP Reno and TCP SACK with or without SR
at the link layer, using different applications, error models and
network topologies. We summarize our findings as follows:

• Without congestion and without SR at the link layer, TCP
SACK provides a performance improvement over TCP
Reno, but only for File Transfers. When SR is used at
the link layer, TCP SACK performs the same as TCP
Reno.

• With congestion TCP SACK provides a performance
improvement over TCP Reno, higher for File Transfers
and lower for Web Browsing. When SR is used at the
link layer, this advantage is relatively independent of the
FLR.



PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE 7

TABLE VI

FILE TRANSFERTHROUGHPUT(TWO STATE, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 50.11 13.0% 10.7% 17.2%
2.5 48.39 11.1% 11.6% 17.6%
5.4 44.22 8.2% 12.6% 18.0%
9.8 36.90 6.3% 19.7% 25.4%

 0

 10

 20

 30

 40

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 8. Web Browsing Throughput (Uniform, LAN)

• The use of SR at the link layer provides a considerable
performance improvement for both TCP variants, regard-
less of the application in use. These performance gains
are much higher than those due to TCP SACK by itself.

• The only difference between LAN and WAN results is
that in the WAN scenarios Web Browsing performance is
lower for all transport / link layer protocol combinations,
due to the increased path propagation delay. In File
Transfer this delay is mostly hidden by pipelining.

Based on these findings, we can now provide answers to
the questions posed in Section IV that are independent of the
network topology, wireless error model and application used:

1) TCP SACK doesnot fully handle wireless error re-
covery. While it manages to improve upon TCP Reno
without link layer error recovery, this improvement only
appears with File Transfer and not Web Browsing.
In contrast, when SR is used at the link layer, the
performance of both TCP variants is improved much
more than with TCP SACK by itself, therefore link layer
error recovery remains essential for performance even
with TCP SACK.

2) SR at the link layer doesnot obstruct the congestion
recovery performance of TCP SACK. Whether with or
without SR at the link layer, TCP SACK outperforms
TCP Reno when congestion exists; the gains may be
major, as is the case with File Transfer, or minor, as
is the case with Web Browsing. Therefore, TCP SACK
provides improves congestion control performance even
when link layer error recovery is used.

3) TCP SACK doesnot obstruct the error recovery per-

TABLE VII

WEB BROWSING THROUGHPUT(UNIFORM, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 34.31 3.0% 16.1% 18.2%
2.5 29.60 3.2% 25.6% 27.0%
5.4 18.34 7.4% 60.1% 62.6%
9.8 8.44 12.4% 141.1% 144.1%

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0
T

hr
ou

gh
pu

t (
K

bp
s)

Frame loss rate (%)

SACK/SR
Reno/SR

SACK/Raw
Reno/Raw

Fig. 9. Web Browsing Throughput (Two State, LAN)

formance of SR at the link layer. The introduction of
SR at the link layer leads to considerable performance
improvements for both TCP variants, with or without
congestion; without congestion, SR makes TCP SACK
and TCP Reno indistinguishable. Therefore, SR im-
proves wireless error recovery even when TCP SACK
is used.

We therefore conclude that the use of SR at the link layer
is as beneficial for TCP SACK as it has been found to be
for TCP Reno [13]. Furthermore, it appears that SR at the
link layer and TCP SACK at the transport layer offer largely
orthogonal improvements, with SR handling wireless losses
and TCP SACK handling congestion.

REFERENCES

[1] F. Anjum and R. Jain. Performance of TCP over lossy upstream
and downstream links with link-level retransmissions. InProc. of the
International Conference on Networks (ICON), pp. 3–7, 2000.

[2] F. Anjum, L. Tassiulas. Comparative study of various TCP versions over
a wireless link with correlated losses.IEEE/ACM Trans. on Networking,
11(3):370–383, June 2003.

[3] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R.H. Katz. A com-
parison of mechanisms for improving TCP performance over wireless
links. IEEE/ACM Trans. on Networking, 5(6):756–769, June 1997.

[4] P.T. Brady. Evaluation of multireject, selective reject, and other protocol
enhancements.IEEE Trans. on Communications, 35(6):659–666, June
1987.

[5] A. DeSimone, M.C. Chuah and O.C Yue. Throughput performance of
transport layer protocols over wireless LANs. InProc. of the Global
Telecommunications Conference (GLOBECOM), vol. 1, pp. 542–549,
1993.

[6] S. Floyd, K. Fall. Simulation based comparisons of Tahoe, Reno and
SACK TCP.Computer Communications Review, 26(3):5–21, July 1996.



8 PUBLISHED IN: PROCEEDINGS OF THE EUROPEAN WIRELESS 2007 CONFERENCE

TABLE VIII

WEB BROWSINGTHROUGHPUT(TWO STATE, LAN)

FLR Reno/Raw Improvement over Reno/Raw (%)
(%) (Kbps) SACK/Raw Reno/SR SACK/SR
1.5 36.79 4.4% 11.7% 13.4%
2.5 35.19 3.7% 13.6% 14.2%
5.4 31.52 3.8% 16.5% 18.7%
9.8 26.54 2.6% 23.0% 24.6%

[7] B. Liu, D.L. Goeckel and D. Towsley. TCP cognizant adaptive
forward error correction in wireless networks. InProc. of the Global
Telecommunications Conference (GLOBECOM), vol. 3, pp. 2128–2132,
2002.

[8] B.A. Mah. An empirical model of HTTP network traffic. InProc. of
the IEEE INFOCOM ’97, pp. 592–600, 1997.

[9] S. Nanda, D.J. Goodman, and U. Timor. Performance of PRMA: a
packet voice protocol for cellular systems.IEEE Trans. on Vehicular
Technology, 40(3):584–598, 1991.

[10] UCB/LBNL/VINT. Network Simulator - ns (version 2). Available at
http://www.isi.edu/nsnam.

[11] S. Vangala and M.A. Labrador. Shielding TCP from last hop wireless
losses. InWireless Communications and Mobile Computing, to appear.

[12] G. Xylomenos. Multi service link layers for ns-2. Available at
http://www.mm.aueb.gr/˜xgeorge/codes/codephen.htm.

[13] G. Xylomenos and G.C. Polyzos. A multi-service link layer architecture
for the wireless Internet. International Journal of Communication
Systems, 17(6):553–574, 2004.

[14] G. Xylomenos, G.C. Polyzos, P. Mahonen and M. Saaranen. TCP Per-
formance Issues over Wireless Links.IEEE Communications Magazine,
39(4):52–58, April 2001.


