
PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007 1

Adaptive Link Layer Protocols for Shared Wireless
Links

George Xylomenos and Micahel Makidis
Mobile Multimedia Laboratory

Department of Informatics
Athens University of Economics and Business

Patision 76, Athens 104 34, Greece
Email: xgeorge@aueb.gr and mikem4600@gmail.com

Abstract— The error prone nature of wireless links often
necessitates the use of a link layer protocol to ensure acceptable
application performance. While traditional link layers assume
that they fully control the link, in most emerging wireless
networks many sessions may dynamically share the link due to
the presence of multiple contending users and/or applications.
Such networks require link layers that can automatically adapt
to bandwidth variations, offering good performance regardless
of contention. To this end, we discuss two adaptive protocols,
an Adaptive Selective Repeat (ASR) protocol that dynamically
modifies its retransmission timeouts, and the Radio Link Control
(RLC) protocol used by UMTS, an advanced protocol without re-
transmission timers. To assess the applicability of each approach,
we measure the throughput achieved by File Transfer and Web
Browsing over both protocols, with or without contention from a
Media Distribution application, as well as the delay induced by
these protocols to the contending application. Our results indicate
that the complexity of RLC is not justified by its performance,
as ASR nearly always outperforms it.

I. I NTRODUCTION

Wireless networks have become an integral part of the
Internet, especially as access networks providing wireless
connectivity to users. However, the error prone nature of
wireless links severely degrades the performance of many
Internet applications. The use of reliable link layer protocols
is a direct way to locally hide the deficiencies of wireless
links and improve the performance of higher layer protocols
and applications [11]. This is the option adopted by the3rd
Generation Partnership Project(3GPP) in its specifications for
the Universal Mobile Telecommunications System(UMTS) to
improve the behavior of the cellular network air interface.

A limitation of most existing link layer protocols is that they
set their parameters assuming exclusive access to the under-
lying wireless link. Many emerging wireless networks how-
ever, most notably UMTS andWireless Local Area Networks
(WLANs), allow a single physical channel to be dynamically
shared by independent users. Furthermore, since different
applications have different requirements, multiple link layer
protocols should expect to co-exist with each other over the
link. In both cases, the bandwidth available to each session
fluctuates, necessitating the use of link layers capable of
dynamically adapting their operation. Indeed, we have found
that a non-adaptive retransmission based link layer protocol

cannot offer optimal performance under different contention
levels [10].

In this paper we examine two different approaches to link
layer adaptivity. The first, exemplified by theAdaptive Selec-
tive Repeat(ASR) protocol [12], is to start with a standard
protocol and make it adapt to prevailing conditions; in the
ASR case by adapting its retransmission timers. The second,
exemplified by theRadio Link Control(RLC) protocol [1], is
to adopt the most advanced features in the literature; in the
RLC case by avoiding retransmission timers, offering many
feedback options and abandoning persistently lost frames. We
put both protocols to the test by measuring the throughput
of File Transfer and Web Browsing over each one, with or
without contention for the link from a Media Distribution
application, as well as the delay that they induce to the media
packets.

The outline of this paper is as follows. In Section II
we provide background on Internet protocol and application
performance over wireless links. In Section III we describe
the operation of ASR, while in Section IV we describe the
operation of RLC. Section V describes our simulation setup.
Section VI discusses the performance of File Transfer and
Web Browsing over ASR and RLC, first without contention
for the link, and then when contention is introduced by Media
Distribution; in the latter case, we also discuss media packet
delay. We summarize our findings in Section VII.

II. BACKGROUND AND RELATED WORK

The Internet Protocol(IP), offers an unreliable packet de-
livery service: IP packets may be lost, reordered or duplicated.
Many real-time applications use theUser Datagram Protocol
(UDP) for direct access to this service, handling error, flow
and congestion control themselves, so as to best support their
needs. Most other applications delegate these tasks to the
Transport Control Protocol(TCP) which offers a reliable byte
stream service. TCP segments the application data into packets
at the sender and reassembles it at the receiver, only passing
correctly sequenced data to the application. The receiver
generatesacknowledgments(ACKs) for segments received in
sequence, returning duplicate ACKs for segments arriving out
of sequence. The sender retransmits the next unacknowledged
segment either on receiving three duplicate ACKs or when a
retransmission timer expires before an ACK is received.



2 PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007

Due to the high reliability of wired links, TCP assumes that
all segment losses are due to congestion, thus after a loss it
abruptly reduces its transmission rate to relieve congestion,
and then gradually increases it to gently probe the network
for available capacity. Unfortunately, losses due to wireless
errors are also interpreted as congestion, causing TCP to
repeatedly reduce its transmission rate. Many researchers have
proposed TCP modifications to improve its performance over
wireless links, but they all have two drawbacks: they require
modifications to end hosts throughout the Internet and they
can only retransmit lost data on an end-to-end basis.

The alternative is to employ a reliable link layer protocol
over the wireless link so as to hide wireless errors from
TCP. An early proposal customized to TCPsnoops inside
the packets of each TCP stream at the access point bridging
the wired and wireless parts of the path and retransmits lost
segments when duplicate ACKs arrive, hiding duplicate ACKs
from the sender to prevent end-to-end recovery [2]. Later work
shows that TCP application performance can be enhanced
with standard reliable link layer protocols without TCP aware-
ness [11]. Avoiding TCP awareness has many advantages,
such as compatibility with encrypted IP payloads, as well as
prevention of adverse interactions with newer versions of TCP,
such as TCP with the Selective Acknowledgement option [8].

An important issue with reliable link layer protocols is that
not every application requires their services. Delay sensitive
UDP applications, such as Media Distribution, may prefer
faster, albeit limited, error recovery, therefore reliable link
layers should expect to share the wireless link with other
protocols. This causes the bandwidth available to the reliable
link layer protocol, and therefore its effectiveRound Trip
Time (RTT), to fluctuate. The problem is how to set the
retransmission timers of a reliable link layer protocol when
the effective RTT varies. A TCP aware link layer solves
this problem by monitoring TCP retransmission timers [2],
but this approach is tied to TCP. The idea of adapting the
retransmission timers can be used with other protocols though,
as discussed in Section III. Alternatively, retransmission timers
can be avoided when regular receiver feedback is available, as
discussed in Section IV.

III. A DAPTIVE SELECTIVE REPEAT

Having found theSelective Repeat(SR) protocol to offer
good performance for TCP based applications in our past
research [11], we used it to experiment with the interaction
between link sharing and retransmission timers. In Selective
Repeat, the sender sequentially numbers and transmits link
layer frames within a transmission window ofN frames,
buffering them for possible retransmission. The receiver ac-
cepts frames that lie within a reception window ofN frames.
When frames are received in sequence they are passed to the
higher layer, the reception window slides upwards and an ACK
is returned to the sender, acknowledging all frames received
in sequence. When the sender receives an ACK, it drops the
buffered frames confirmed by it and also slides its window
upwards.

When a frame arrives out of sequence, it is buffered but
not delivered, since the gap in the sequence indicates that

some frames were lost; anegative acknowledgment(NACK) is
returned for each missing frame to the sender, and the sender
retransmits each NACKed frame. When missing frames arrive,
the receiver delivers to the higher layer all frames that are now
in sequence, slides its window upwards and returns an ACK for
all delivered frames. To reduce protocol overhead, we delay
returning an ACK for a short interval, trying to piggyback
it into a data frame traveling in the reverse direction. If the
interval expires, the ACK is sent as a separate frame. NACKs
on the other hand are always sent immediately as separate
frames. Many Selective Repeat variants exist, mostly differing
on NACK handling [4]. The variant used here allows each
missing frame to be NACKed multiple times, a feature called
multireject.

If some ACKs and/or NACKs are lost, the sender may
exhaust its transmission window and stall. To prevent this,
the sender starts a retransmission timer after sending every
frame. If the timer expires before an ACK arrives, the frame
is assumed to be lost, so it is retransmitted. Based upon exper-
imental results showing how difficult it is to select a proper
timeout value in a shared wireless link environment [10], we
modified thisFixed Selective Repeat(FSR) protocol to adapt
its retransmission timers similarly to TCP [5]; this is the
Adaptive Selective Repeat(ASR) protocol. For every packet
(re)transmitted, the sender notes its transmission time. When
an ACK arrives, the difference between the current and the
transmission time provides an RTTsample. We use these
samples to update estimates for the RTT,srtt, and its variance,
srttvar:

srtt = 0.875 ∗ srtt + 0.125 ∗ sample (1)

srttvar = 0.75 ∗ srttvar + 0.25 ∗ (sample− srtt) (2)

As the effective RTT fluctuates, the estimators (1) and (2)
follow its progress in a smoothed manner, i.e., they are not
affected by sporadic extreme values. The smoothing factors
used are those of TCP, meaning that these calculations can
be performed very efficiently in integer arithmetic [5]. After
updating the estimators, the new value to be used for the
retransmission timers,rtxto, becomes:

rtxto = α ∗ srtt + β ∗ srttvar (3)

While this estimator (3) has the same form as the one used
by TCP, the actual TCP coefficients (α = 1 andβ = 4) offer
suboptimal performance in this setting [10]. Our scheme cal-
culates samples fromeverypacket acknowledged, with three
exceptions: (a) NACKs do not provide samples, since they do
not reflect reception of the NACKed frame, (b) when an ACK
covers multiple frames, only the last frame acknowledged
provides a sample, and (c) when duplicate ACKs arrive, only
the first ACK provides a sample.

IV. RADIO L INK CONTROL

In UMTS networks theRadio Link Control(RLC) protocol
is used for all sessions, therefore it offers three different
modes. In theTransparent Mode(RLC/TM), frames are passed
unmodified from sender to receiver; this mode is suitable
for voice calls. In theUnacknowledged Mode(RLC/UM), a



PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007 3

sequence number is added to each frame to support (optional)
duplicate frame avoidance and reordering; it is suitable for
applications requiring low delay, such as UDP based Media
Distribution. Finally, in theAcknowledged Mode(RLC/AM),
a full header is added to each frame to support error detection
and retransmission of missing frames; it is suitable for appli-
cations requiring a reliable channel, such as TCP based File
Transfer and Web Browsing. In the remainder of this paper
we focus on RLC/AM, as this is the closest competitor of SR.

RLC/AM is a retransmission based protocol like SR. The
sender is passed a sequence of variable size packets from the
higher layer, calledService Data Units(SDUs), it segments
and/or packs them into a sequence of fixed size frames, called
Protocol Data Units (PDUs), and it transmits these to the
receiver. The receiver uses the sequence of incoming frames
to reassemble and deliver the original packet sequence to
the higher layer. The sender labels eachAcknowledged Mode
Data (AMD) PDU with a sequence number and buffers it
for possible retransmission. The receiver advances its window
for every frame received in sequence within the window,
detecting losses when out of sequence frames arrive, and the
sender advances the transmission window based on the ACKs
returned.

The first departure of RLC/AM from SR is that the receiver
can inform the sender about received and missing frames by
returningStatusPDUs which contain one or moreSuper Fields
(SUFIs). Implementations are free to decide which SUFIs to
use in each Status PDU. Every implementation must support
at least the ACK SUFI, used to acknowledge all frames up
to the one indicated; other SUFIs are optional. The BITMAP
SUFI indicates the status of the receiver window after the latest
frame received in sequence, with each bit indicating whether
the corresponding frame has been received or not. Status PDUs
may be piggybacked into the padding of the (fixed size) AMD
PDUs, or sent as independent frames.

The second departure from SR is that Status PDUs are not
automatically returned after every frame received: they are
either explicitly requested by the sender or returned by the
receiver based on a trigger. Therefore, RLC/AM cannot use
retransmission timers to detect losses; it must instead rely on
the Status PDUs returned for this purpose. This characteristic
of RLC/AM makes it robust to contention for the link, as it
does not need to make any assumptions about the effective
RTT of the link. On the other hand, it makes the policies used
to trigger Status PDU generation critical.

On the sending side, a Status PDU can be requested by
setting a polling bit in the header of an AMD PDU. This may
be triggered by a number of events: (a) whenever the last PDU
in the transmission or (separate) retransmission buffer is sent,
(b) wheneverx PDUs or SDUs are transmitted, (c) whenever
the sender’s window occupancy is higher than a configured
limit, (d) whenever a periodic timer expires, and (e) whenever
a timer set when the latest poll was sent expires before the
arrival of new ACKs or NACKs. Any combination of these
can be configured for use by the sender.

On the receiving side, in addition to polls from the sender,
Status PDUs may be triggered by a number of other events:
(a) whenever the receiver detects gaps in the received frame

sequence, and (b) whenever a periodic timer expires. Due
to the numerous options for triggering poll requests and
status replies, two optional functions can limit the number of
Status PDUs generated: (a) the sender can start a timer after
transmitting a poll, deferring further polls until it expires, and,
(b) the receiver can start a timer after generating a Status PDU,
deferring further Status PDUs until it expires.

Finally, RLC/AM departs from SR in that it may abandon
persistently lost PDUs, thus trading off reliability for delay
and preventing conflicting retransmissions between the link
and transport layers. ThisSDU Discard function can be
triggered by a number of events: (a) whenever a frame is not
acknowledged for a period of time after its first transmission,
and (b) whenever a frame is not acknowledged after a number
of transmissions. When SDU Discard is activated, the sender
transmits aMove Reception Window(MRW) SUFI in a Status
PDU to the receiver, the receiver advances its window and
acknowledges with a Status PDU containing an MRWACK
SUFI, and then the sender advances its window.

V. SIMULATION SETUP

The performance results reported in Section VI are based on
simulations with ns-2 [7], extended with additional wireless
error models and link layers [9]. Each test was repeated
30 times with different random seeds and the results shown
reflect average metrics from these 30 runs, as well as their
95% confidence intervals. The simulated topology is shown in
Figure 1: a Wired Server communicates with a Wireless Client
via an Access Point. In all applications, the server was located
at the wired end of the network and the client at the wireless
end, hence the naming convention used. The wired link has
a bandwidth of 10 Mbps and a propagation delay of 1 ms.
Simulations using a 2 Mbps wired link with a propagation
delay of 50 ms also support the conclusions reached in this
paper.

The wireless link has a bandwidth of 64 Kbps, a propagation
delay of 50 ms and uses a frame size of 250 bytes plus
a header; these are typical characteristics for cellular links,
where bit interleaving inflates delay. To avoid packet frag-
mentation, each application uses 250 byte or smaller packets.
Two error models were used for the wireless link. In the
Uniform error model each frame may be independently lost
with a probability of 1.5%, 2.5%, 5.4% or 9.8%. In theTwo
Stateerror model the link can be either in a good state, with
a bit error rate of10−6, or in a bad state, with a bit error
rate of10−2. Both states have exponential durations, with the
average duration of the good state being 10 s and the average
duration of the bad state being 100 ms, 200 ms, 500 ms or
1000 ms. We found experimentally that with these parameters
the averageFrame Loss Rate(FLR) of the Two State model
is 1.5%, 2.5%, 5.4% or 9.8%, matching the FLRs used for
the Uniform model. Note that the error processes in each
link direction were identical but independent. To establish a
baseline, we also show results with no errors.

To evaluate the link layer protocols under study, we used
File Transfer and Web Browsing, two of the most popular
applications on the Internet, over TCP Reno with 10 ms



4 PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007

Wired Server Access Point Wireless Client

TCP/UDP
IP

PHY
LL

TCP/UDP
IP IP

PHY
LL

Fig. 1. Simulated network topology.

granularity timers. In File Transfer, a file was transmitted
from the wired server to the wireless client. While longer
transfers produce more stable results, users do not make
infinite transfers, so we used a file size of 10 Mbytes. The
ns-2 File Transfer module sends data as fast as possible, with
TCP handling flow, error and congestion control. We measured
File Transfer throughput, defined as the amount of application
data transferred (not retransmissions) divided by total time.

As in our past work we found that File Transfer throughput
cannot characterize the performance of interactive applica-
tions [11], we also employed Web Browsing. In Web Browsing
a client accessespagescontaining text, links to other pages and
embedded objects, stored on a server. The interaction consists
of transactions: the client requests a page from a server, the
server returns the page which contains pointers to embedded
objects, the client requests each embedded object, and the
server returns them, completing the transaction. The ns-2 Web
Browsing module provides empirical distributions for request,
page and embedded object sizes, as well as for the number
of objects per page. Only one transaction was in progress at
any time, with no pauses between them. We measured Web
Browsing throughput, defined as the amount of application
data transferred from the server to the client divided by time
taken. The results shown reflect the state at the end of the last
completed transaction within the simulation period of 2000 s.

In order to examine the suitability of each protocol for a
dynamic link sharing environment, we introduced contention
via a UDP based Media Distribution application, approximat-
ing a lecture where a speaker sends audio to a wireless client.
The speaker alternates betweentalking and silent states with
exponential durations, averaging 1 s and 1.35 s, respectively.
Packets are transmitted isochronously at a rate of 56 Kbps,
consuming 87.5% of the available bandwidth in the talking
state, but only 37.5% on average. No retransmissions are
performed for Media Distribution: its packets bypass the link
layer protocol used by the TCP packets. However, that protocol
introduces contention for the UDP application, which we
assessed by measuring Media Distribution packet delay.

For the TCP based applications we examined four error
control options:Raw Link, or no error control at all,Fixed
Selective Repeat(FSR),Adaptive Selective Repeat(ASR), and
Radio Link Control(RLC) in the Acknowledged Mode. Both
FSR and ASR used a window size of 128 frames. FSR used
a retransmission timeout of 1.1 s, a value found to provide
good performance with or without contention for the link [10].
ASR set its retransmission timeouts by using equation (3) with
the valuesα = 3, β = 2 for the Uniform error model and
α = 4, β = 0 for the Two State error model, found to offer

 10

 20

 30

 40

 50

 60

 70

 80

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 2. File Transfer throughput (uniform, no contention).

 40

 45

 50

 55

 60

 65

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 3. File Transfer throughput (two state, no contention).

the best performance for each type of link [12].
Previous studies have found that the SDU discard policy [3]

is critical for RLC performance, something confirmed by our
extensive simulation study of RLC [6]. Based on that study
we selected the following RLC settings; all settings apply to
both Uniform and Two State links unless otherwise indicated.
The RLC window size was 128 frames, with Status PDUs
transmitted as separate frames (not piggybacked). We used
SDU discard with a finite number of transmissions, 3 for
Uniform links and 2 for Two State links. Polls were triggered
at the sender whenever the transmission window occupancy
reached 70% for Uniform links and 80% for Two State links,
or when a 200 ms poll timer expired; on Two State links
polls were also triggered whenever the retransmission buffer
was exhausted; after triggering a poll, further polls were
deferred for 100 ms. Status PDUs were also triggered at
the receiver whenever a missing PDU was detected, as well
as every 400 ms for Uniform links and every 500 ms for
Two State links; after triggering a Status PDU, further Status
PDUs were deferred for 90 ms on Two State links. Finally,
the retransmission timeout for MRW SUFIs was 500 ms for
Uniform links and 110 ms for Two State links.

VI. PERFORMANCEEVALUATION

We begin with the performance of File Transfer and Web
Browsing when operating without contention for the link.



PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007 5

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 4. Web Browsing throughput (uniform, no contention).

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 5. Web Browsing throughput (two state, no contention).

Regarding File Transfer, Figure 2 shows that with the Uniform
error model all link layer protocols provide a considerable per-
formance improvement over the Raw Link. ASR consistently
outperforms FSR, albeit by a small margin, also outperforming
RLC at the lower loss rates; at the highest loss rate, RLC has a
clear performance advantage over ASR, despite its additional
overhead due to the non piggybacked Status PDUs. With
the Two State error model though, Figure 3 shows that the
situation is different, since both ASR and FSR outperform
RLC, with the performance gap widening at higher loss rates;
in this scenario, FSR performs slightly better than ASR.

Regarding Web Browsing, Figure 4 shows that with this
application and the Uniform error model, ASR not only
consistently outperforms FSR by a considerable margin, FSR
also clearly outperforms RLC throughout the loss rate scale;
only at the highest loss rate does RLC approach FSR. The
situation is similar with the Two State error model, as shown
in Figure 5; indeed, in this case the performance advantage of
ASR and FSR over RLC is so large that RLC is closer to the
Raw Link than to the SR protocols.

From these results we can make four observations. First,
while RLC is robust to higher FLRs with the Uniform error
model, the situation is reversed with the Two State error model,
unlike ASR and FSR which exhibit similar behavior with both
error models. Second, RLC works better with File Transfer
than with Web Browsing. Third, ASR consistently outperforms

 10

 15

 20

 25

 30

 35

 40

 45

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 6. File Transfer throughput (uniform, contention).

 20

 25

 30

 35

 40

 45

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 7. File Transfer throughput (two state, contention).

RLC, except with File Transfers over Uniform links and high
loss error rates. Fourth, in the absence of contention, FSR also
outperforms RLC in most cases.

We now turn to the performance of File Transfer and
Web Browsing when contention is introduced by the Media
Distribution application, thus reducing the bandwidth available
to the TCP based applications and increasing their effective
RTT, making the fixed retransmission timers of FSR more
likely to expire prematurely. Regarding File Transfer, Figure 6
shows that with the Uniform error model the situation is
quite similar to the corresponding no contention case: ASR
outperforms RLC at the lower loss rates, RLC outperforms
ASR at the highest loss rate, and ASR outperforms FSR, but
by a higher margin. With the Two State error model though,
Figure 7 shows that while ASR and RLC perform more or less
as in the no contention case, that is, with ASR outperforming
RLC by a widening margin as the error rate is increased, in
this scenario FSR performs worse even than the Raw Link.

Regarding Web Browsing, Figure 8 shows that with the
Uniform error model the situation is again quite similar to the
corresponding no contention case, with ASR outperforming
FSR, which in turn outperforms RLC, albeit by a smaller
margin. The situation is similar with the Two State error
model, as shown in Figure 9, with ASR providing the best
performance, followed by FSR and RLC, with both performing
nearly the same; in this case though, FSR does not perform



6 PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007

 5

 10

 15

 20

 25

 30

 35

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 8. Web Browsing throughput (uniform, contention).

 18

 20

 22

 24

 26

 28

 30

 32

 34

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC
ASR
FSR

Raw Link

Fig. 9. Web Browsing throughput (two state, contention).

worse than the Raw Link, as in the File Transfer case.
From these results we can make three observations. First,

RLC exhibits the same overall behavior as without contention,
that is, better performance with File Transfer and the Uniform
error model, especially at the highest loss rates. Second, ASR
also exhibits the same overall behavior as without contention,
that is, similar performance with both applications and error
models. Third, while the adaptive protocols (ASR and RLC)
are relatively insensitive to contention for the link, the fixed
timeout protocol (FSR) is not: at best it performs worse than
in the corresponding no contention case, and at worst it is
outperformed even by the Raw Link.

Finally, we examine the impact of each link layer pro-
tocol to the Media Distribution application. Figure 10 and
Figure 11 show Media Distribution packet delay when con-
tending against File Transfer with the Uniform and Two State
error model, respectively; Figure 12 and Figure 13 show the
same metric when Media Distribution contends against Web
Browsing. Both ASR and RLC do not increase the delay
experienced by Media Distribution packets, but the protocol
offering the best TCP based application performance induces
higher delays to the UDP based application. In contrast, FSR
not only induces the highest delays, it even inflates them with
the Two State error model. Therefore, the adaptive link layer
protocols not only improve performance for the TCP based
applications, they also lead to lower delays for the UDP based

 0

 0.5

 1

 1.5

 2

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC
ASR
FSR

Raw Link

Fig. 10. Media Distribution delay (uniform, contention).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC
ASR
FSR

Raw Link

Fig. 11. Media Distribution delay (two state, contention).

application.

VII. C ONCLUSIONS

We have presented two link layer protocols designed to
operate in a shared wireless link environment, the ASR proto-
col, a straightforward adaptive timeout extension of traditional
Selective Repeat, and RLC, a completely new protocol design
with numerous options and parameters, and evaluated their
performance under a wide range of scenarios. While we found
both protocols to be insensitive to the level of contention for
the link, in contrast to the non adaptive FSR protocol that
collapses under some circumstances, their behavior is quite
different. RLC performs best with random rather than with
bursty errors and with bulk transfer rather than with interactive
applications, unlike ASR which offers good performance with
both types of application and error model. Furthermore, we
found that in most cases ASR outperforms RLC, in some cases
by a wide margin, despite the higher complexity and numerous
tuning parameters of RLC. Finally, both RLC and ASR did
not induce additional delay to the contending media packets,
again unlike FSR. We therefore conclude that while adaptivity
at the link layer is critical for performance in a shared wireless
link environment, our simple ASR protocol is superior to the
far more complex RLC protocol.



PUBLISHED IN: PROCEEDINGS OF THE ACM MOBIMEDIA 2007 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC
ASR
FSR

Raw Link

Fig. 12. Media Distribution delay (uniform, contention).

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC
ASR
FSR

Raw Link

Fig. 13. Media Distribution delay (two state, contention).

REFERENCES

[1] 3rd Generation Partnership Project (3GPP). Radio Link Control (RLC)
protocol specification (Release 7). Technical Specification 25.322,
V7.0.0, March 2006.

[2] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R. H. Katz.
A comparison of mechanisms for improving TCP performance over
wireless links. InProc. of the ACM SIGCOMM, pages 256–267, August
1996.

[3] R. Bestak, P. Godlewski, and P. Martins. RLC buffer occupancy when
using a TCP connection over UMTS. InProc. of the IEEE PIMRC,
volume 3, pages 1161–1165, September 2002.

[4] P. T. Brady. Evaluation of multireject, selective reject, and other protocol
enhancements.IEEE Transactions on Communications, 35(6):659–666,
June 1987.

[5] V. Jacobson. Congestion avoidance and control. InProc. of the ACM
SIGCOMM, pages 314–329, August 1998.

[6] M. Makidis. Implementing and evaluating the RLC/AM protocol of
the 3GPP specification. Master’s thesis, Dept. of Informatics, Athens
University of Economics and Business, February 2007. Available at
http://mm.aueb.gr/archive.html.

[7] UCB/LBNL/VINT. Network Simulator - ns (version 2). Available at
http://www.isi.edu/nsnam.

[8] S. Vangala and M. Labrador. Shielding TCP from last hop wireless
losses. Wireless Communications and Mobile Computing, 2007. to
appear.

[9] G. Xylomenos. Multi service link layers for ns-2. Available at
http://mm.aueb.gr/˜xgeorge/codes/codephen.htm.

[10] G. Xylomenos. Limitations of fixed timers for wireless links. In
Proc. of the Int. Symposium on Parallel and Distributed Processing and
Applications, pages 159–170, 2006.

[11] G. Xylomenos and G. C. Polyzos. A multi-service link layer architecture
for the wireless Internet. International Journal of Communication
Systems, 17(6):553–574, 2004.

[12] G. Xylomenos and C. Tsilopoulos. Adaptive timeout policies for
wireless links. InProc. of the Int. Conference on Advanced Information
Networking and Applications, volume 1, pages 497–502, 2006.


