
PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273 1

Link Layer Adaptation for Shared Wireless Links
George Xylomenos and Michael Makidis

{xgeorge@aueb.gr andmmakidis05@cs.aueb.gr

Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business

Patision 76, Athens 104 34, Greece

Published in: Mobile Networks and Applications, Volume
13, Number 3–4, 2008, pp. 259–273

Abstract— While traditional link layer protocols assume that
they fully control the underlying link, in contemporary wire-
less networks the link may be dynamically shared by sessions
belonging to different users and/or applications. To assess the
impact of link sharing, we measure the File Transfer and Web
Browsing throughput achieved over a Selective Repeat (SR)
protocol, with or without contention from Media Distribution.
Our results indicate that the optimal protocol settings strongly
depend on the level of contention for the link. We therefore
present two link layer protocols that adapt to the available
bandwidth, our Adaptive Selective Repeat (ASR) protocol which
dynamically modifies its retransmission timeouts, and the Radio
Link Control (RLC) protocol specified for use by UMTS networks
which does not employ retransmission timers. We first repeat our
performance measurements to determine the optimal settings for
each protocol, and then compare the fine tuned versions of all
protocols with respect to their File Transfer and Web Browsing
throughput, as well as to the delay induced to the contending
Media Distribution packets. Our results indicate that while both
RLC and ASR are more stable than SR, the complex RLC does
not match the performance of our simpler ASR. Index Terms—
ink Layer Protocols, Adaptive Selective Repeat, Radio Link
Controlink Layer Protocols, Adaptive Selective Repeat, Radio
Link ControlL

I. I NTRODUCTION

Wireless networks have become an integral part of the
Internet, especially in the role of access networks providing
untethered connectivity to users. The error prone nature of
wireless links, however, severely degrades the performance of
many Internet applications. Reliable link layer protocols are
commonly used to hide the shortcomings of wireless links;
the results reported in the literature show that they can indeed
improve Internet application performance [30].

Link layer protocols traditionally assume that they have ex-
clusive access to the underlying link. Many wireless networks,
however, including theUniversal Mobile Telecommunications
System(UMTS) andWireless Local Area Networks, allow a
single physical channel to be dynamically shared by inde-
pendent users. In addition, applications may have different
reliability requirements, hence even the applications of a single
user may employ different link layer protocols. Therefore,
multiple link layer protocol sessions should expect to co-
exist over the link, with the available bandwidth fluctuating
as sessions start and stop.

Contention for a shared link makes the round trip time
visible to each session unpredictable. The problem is that

a standardSelective Repeat(SR) protocol cannot select an
optimal retransmission timeout value without prior knowledge
of the level of contention for the link [28]. Link layer protocols
for shared wireless links should therefore dynamically adapt
to the prevailing level of contention. In this paper we examine
two appropriate adaptation approaches. The first, exemplified
by ourAdaptive Selective Repeat(ASR) protocol, is to make a
standard protocol adapt to contention; in ASR this is achieved
by adapting the retransmission timers using a scheme inspired
by TCP [31]. The second, exemplified by theRadio Link
Control (RLC) protocol of UMTS networks, is to adopt the
most advanced features in the literature; in RLC this means
avoiding retransmission timers and abandoning persistently
lost frames [11].

In order to determine the best adaptation approach, we
assess the performance of all protocols via a comprehensive
simulation study, using different error models and applications.
We first motivate the need for adaptation by showing the
throughput of File Transfer and Web Browsing over SR,
with or without contention from Media Distribution, showing
that the optimal retransmission timeout value depends on the
level of contention. We then repeat these measurements for
ASR and RLC to find the optimal settings for each protocol.
Finally, we compare SR, ASR and RLC in terms of both their
File Transfer and Web Browsing throughput and the delay
induced to the contending Media Distribution packets, showing
that while both RLC and ASR can adapt to different levels
of contention, unlike SR which collapses, our simple ASR
generally outperforms the complex RLC.

The outline of this paper is as follows. In Section II we
discuss related work and outline the contributions of our paper.
In Section III we describe our simulation setup. In Section IV
we describe the SR protocol and its performance as the level
of contention varies. In Section V we describe the operation
of ASR and identify its optimal timeout policies, while in
Section VI we describe the operation of RLC and identify its
optimal retransmission limits. In Section VII we compare the
performance of the fine tuned versions of SR, ASR and RLC
and their impact on the contending application. We summarize
our findings in Section VIII.

II. RELATED WORK AND CONTRIBUTION

The Internet Protocol(IP) offers an unreliable packet de-
livery service: packets may be lost, reordered or duplicated.
Many real-time applications use theUser Datagram Protocol

2 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

(UDP) on top of IP, handling error, flow and congestion control
themselves. Most other applications delegate these tasks to the
Transport Control Protocol(TCP) which offers a reliable byte
stream service. TCP segments application data into packets
at the sender and reassembles it at the receiver. The receiver
generatesacknowledgments(ACKs) for segments received in
sequence, returning duplicate ACKs for those arriving out of
sequence. The sender retransmits the next unacknowledged
segment either on receiving three duplicate ACKs or when a
retransmission timer expires.

Due to the high reliability of wired links, TCP assumes
that all losses are due to congestion, thus after a loss it
reduces its transmission rate and then gradually increases it
to probe the network’s capacity; details depend on the TCP
variant [22]. Unfortunately, losses due to wireless errors are
also interpreted as congestion, causing TCP to repeatedly
reduce its transmission rate, thus leading to poor performance
even at small error rates. Many researchers have proposed
TCP modifications to improve its performance over wireless
links, falling in two categories. The first is to modify TCP
so as to distinguish wireless from congestion losses and react
differently in each case [15]; the drawback of this approach
is that it can only recover from wireless losses on an end-to-
end basis. The second is to split the end-to-end connection
to wired and wireless parts and only perform retransmissions
over the wireless part [3]; the drawback of this approach is
that it breaks the end-to-end semantics of TCP.

The alternative is using a reliable link layer protocol over
the wireless link to hide wireless errors from TCP. An early
proposal customized to TCPsnoopsinside the packets of each
TCP stream at the router bridging the wired and wireless parts
of the path and retransmits lost segments when duplicate ACKs
arrive, hiding these duplicate ACKs from the sender [4]. Later
work shows that TCP application performance can also be en-
hanced with TCP unaware link layer protocols [30]. Avoiding
TCP awareness has many advantages, such as compatibility
with encrypted IP payloads that hide TCP headers and preven-
tion of conflicts with TCP with theSelective Acknowledgement
(SACK) option [25].

Despite the benefits of reliable link layer protocols for TCP
applications, delay sensitive UDP applications such as Media
Distribution may perform better with faster, albeit limited,
error recovery [30]. To serve the needs of both TCP and
UDP applications, a network should allow multiple link layer
sessions to dynamically share the link; this is the approach
taken in UMTS. Link sharing however causes the available
bandwidth and the effectiveRound Trip Time(RTT) of the
link to fluctuate, meaning that protocols for shared wireless
links should be designed to provide some form of adaptation
to link contention, otherwise performance will suffer as the
effective RTT varies, as explained in Section IV.

Unfortunately, the existing research on link layer adaptation
does not address the problems raised by link contention, as
its goal is to adapt to the error characteristics of wireless
links by, for example, scheduling transmissions depending
on channel state or adapting the frame modulation, coding
or size. While to the best of our knowledge there is no
research directly related to this problem, a few schemes do

provide some kind of solution. The TCP aware snoop protocol
indirectly adapts to link contention as its timers follow the
TCP timers, which themselves adapt to congestion, albeit on
an end-to-end basis [4]. Another link layer protocol uses an
adaptive timeout to limit the total number of retransmissions
for frames belonging to streaming applications, dropping those
frames that would miss their deadlines [8]; since individual
retransmissions still use fixed timeouts, this scheme does not
address the issues raised by link contention.

In contrast, the RLC protocol was explicitly designed to
share the channel with other link layer sessions. Due to the
large number of RLC parameters discussed in Section VI,
many studies of its performance can be found in the literature.
Some studies focus on the interplay between the polling and
status triggers and their related timers, as the frequency of
StatusProtocol Data Units(PDUs) affects both link overhead
and packet delay [1], [21], [27], [32]. Other studies focus
on the impact of the RLC window size (in PDUs) or buffer
size [in Service Data Units(SDUs)] on throughput; buffers
must be large enough to avoid stalling during bad channel
periods [1], [5], [14], but not too large to avoid building
up queues that reduce the TCP transmission rate [26]. Other
studies examine the impact of the SDU discard policy on
throughput: it has been noted that the discard SDUs after a
timeout option strongly depends on the link bandwidth [32].
While most studies employ TCP Reno, the beneficial impact
of TCP SACK on performance has also been noted [1]. Most
studies also focus on File Transfers; only a few consider Web
Browsing [7], [32]. Most of these studies are not relevant to the
link contention problem, as only a handful consider competing
traffic [26], [27] and even they do not discuss the implications
of contention.

Based on the above discussion, we can clarify the contribu-
tions of this paper. The first contribution is the identification of
the problems faced by retransmission based link layer proto-
cols when operating over shared wireless links. In Section IV
we show that contention for the link adversely affects the per-
formance of File Transfer and Web Browsing and explain why
this problem is inherent to the fixed retransmission timeouts
of the SR protocol. Based on this insight, the remainder of the
paper discusses possible solutions to the problem of adapting
to contention at the link layer.

The second contribution is a study of RLC performance over
shared wireless links. Our study in Section VI is differentiated
from previous ones in three ways: first, we study generic links
rather than UMTS ones, although the performance parameters
are similar; second, we are employing the fine granularity
TCP timers currently in use, rather than the coarse grained
timers of previous studies which make TCP less responsive
to losses; third, we consider both the effect of UDP traffic on
TCP application performance, and the impact of RLC on the
delay of the contending UDP traffic.

The third contribution is our own solution to the link
contention problem: a method for dynamically adapting the
retransmission timeouts of the SR protocol. In Section V we
present and evaluate our ASR protocol, showing how the
TCP adaptation scheme can be modified for use in the link
layer. We also determine the parameters of the best solution

3

which, interestingly, depend on the error model. As shown
in Section VII, our solution, despite its simplicity, generally
outperforms RLC by a wide margin, without introducing
additional delay for the competing Media Distribution traffic.

III. S IMULATION SETUP

Our performance results are from simulations with ns-2 [24]
extended with additional error models and link layer proto-
cols [2]. Each test was repeated 30 times with different random
seeds; the results shown reflect average metric values as well
as their 95% confidence intervals. The simulated topology is
shown in Fig. 1: a Wired Server communicates with a Wireless
Client via an Access Point. In all applications, the server was at
the wired end of the network and the client at the wireless end.
The wired link had a bandwidth of 10 Mbps and a propagation
delay of 1 ms. Simulations using a 2 Mbps wired link with
a propagation delay of 50 ms also support the conclusions
reached in this paper.

Wired Server Access Point Wireless Client

TCP/UDP
IP

PHY
LL

TCP/UDP
IP IP

PHY
LL

Fig. 1. Simulated network topology.

The wireless link parameters were similar to those of
UMTS links, as RLC was designed for that environment. The
bandwidth of 64 Kbps is what a regular user can afford,
being just sufficient for the applications under study, while
the propagation delay of 50 ms represents the interleaving,
framing and propagation delays of UMTS [12]. The frame
size used was 250 bytes plus a small link layer header; to
avoid the need for packet fragmentation and reassembly, each
application used 250 byte or smaller packets.

Two wireless error models were used. In theUniform model
each frame may be independently lost with a probability of
1.5%, 2.5%, 5.4% or 9.8%. In theTwo Statemodel the link
can be either in a good state, with a bit error rate of10−6,
or in a bad state, with a bit error rate of10−2. Both states
have exponential durations, with the average duration of the
good state being 10 s and the average duration of the bad state
being 100 ms, 200 ms, 500 ms or 1000 ms. We first found
that with these parameters the averageFrame Loss Rate(FLR)
of the Two State model is 1.5%, 2.5%, 5.4% or 9.8%, and
then set the FLRs of the Uniform model to the same values,
so as to examine the impact of the different error models on
application performance. Note that the error processes in each
link direction were identical but independent. As a baseline,
we also show results with no errors.

The application layer performance offered by each protocol
was evaluated via two of the most popular applications on the
Internet, File Transfer and Web Browsing [23]. We employed
TCP Reno [22] with 10 ms granularity timers, as on most

modern systems [20]; the coarse TCP timer granularity of
older systems would make TCP react unrealistically slow
to losses. In File Transfer, a file was transmitted from the
server to the client. While longer transfers produce more stable
results, users do not make infinite transfers, so we used 10
Mbyte files which would take 21 minutes to download in the
absence of errors. The ns-2 File Transfer module sends data as
fast as possible, with TCP handling flow, error and congestion
control. The metric of interest was File Transfer throughput,
defined as the amount of application data transferred (not
retransmissions) divided by total time.

Since Internet traffic studies show the volume of Web
Browsing traffic to be an order of magnitude greater than that
of File Transfer [23] and File Transfer throughput cannot ad-
equately characterize the performance of Web Browsing [30],
we also measured Web Browsing performance. In Web Brows-
ing a client accessespagescontaining text, links to other pages
and embedded objects, stored on a server. The interaction
consists oftransactions: the client requests a page from a
server, the server returns the page which contains pointers to
embedded objects, the client requests each embedded object,
and the server returns them, completing the transaction. The
ns-2 Web Browsing module provides empirical distributions
for request, page and embedded object sizes, as well as for
the number of objects per page [16]. Only one transaction was
in progress at any time, with no pauses between transactions.
The metric of interest was Web Browsing throughput, defined
as the amount of application data transferred from the server
to the client divided by time taken. The results shown reflect
the state at the end of the last completed transaction within a
simulation period of 2000 s.

To examine the suitability of each protocol for shared links,
we introduced contention via a UDP based Media Distribution
application; it approximates a lecture where the speaker sends
audio to a wireless client. The speaker alternates between
talking andsilent states with exponential durations, averaging
1 s and 1.35 s, respectively [18]. Packets are transmitted
isochronously at a rate of 56 Kbps, consuming 87.5% of
the bandwidth in the talking state, but only 37.5% of the
bandwidth on average; the bandwidth fluctuates dramatically
whenever the speaker changes state. The Media Distribution
packets are not retransmitted, bypassing the reliable link layer
protocol. However, that protocol introduces contention for the
UDP application, which we assessed by measuring the Media
Distribution packet delay.

IV. F IXED SELECTIVE REPEAT

In this section we demonstrate the performance limitations
of traditional link layer protocols over shared wireless links
by studying the SR protocol, which we have found to pro-
vide excellent TCP application performance in our previous
work [30]. In SR the sender transmits link layer frames
within a transmission window ofN frames, buffering them
for retransmission. The receiver only accepts frames within a
reception window also ofN frames; if a frame is received in
sequence it is delivered to the higher layer, the window slides
upwards and an ACK is returned to the sender, confirming

4 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

 35

 40

 45

 50

 55

 60

 65

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 2. File Transfer throughput (Uniform errors, no Contention).

reception of all frames up to the one delivered. When the
sender receives an ACK, it drops the buffered frames covered
by it and also slides its window upwards.

When a frame is received out of sequence, it is buffered
but not delivered, since the gap in the sequence indicates that
some frames were lost; anegative acknowledgment(NACK)
is returned for each missing frame, and the sender retransmits
each NACKed frame. When a missing frame arrives, the
receiver delivers to the higher layer all frames that are now
in sequence. To reduce protocol overhead, we delay returning
an ACK for a short interval, trying to piggyback it into a data
frame traveling in the reverse direction. If that interval expires,
the ACK is sent as a separate frame. NACKs are always sent
immediately as separate frames.

If some ACKs and/or NACKs are lost over the wireless
link, the sender may exhaust its transmission window and stall,
waiting for feedback that will never arrive. To prevent this, the
sender starts a retransmission timer after sending each frame.
If the timer expires before an ACK for that frame arrives, the
frame is assumed lost and retransmitted. Ideally, the timeout
period should be set slightly higher than the expected RTT, that
is, the time between sending a frame and receiving an ACK
for that frame. If the timeout period is shorter than the RTT,
frames will be needlessly retransmitted; if it is much longer
than the RTT, recovery from lost frames will be unnecessarily
delayed.

Many variants of SR exist, mostly differing on NACK
handling. The variant used in this paper allows each missing
frame to be NACKed multiple times if the receiver detects
that its retransmissions have also been lost, a feature called
multireject [6]. We also tested two simpler SR variants, one
where only a single NACK can be outstanding at any time, and
one where only a single NACK may be sent for each missing
frame [6]; apart from providing lower performance, they also
support the conclusions reached in this paper.

We now turn to the performance of File Transfer and Web
Browsing over SR, with or without contention from Media
Distribution. In all tests the SR window was set to 127
frames, the delayed ACK timer was set to 0.5 s and the
retransmission timeout ranged from 0.9 s to 1.3 s. Regarding

 10

 20

 30

 40

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 3. File Transfer throughput (Uniform errors, Contention).

 45

 50

 55

 60

 65

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 4. File Transfer throughput (Two State errors, no Contention).

 10

 20

 30

 40

 50

 60

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 5. File Transfer throughput (Two State errors, Contention).

5

 15

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 6. Web Browsing throughput (Uniform errors, no Contention).

 15

 20

 25

 30

 35

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 7. Web Browsing throughput (Uniform errors, Contention).

File Transfer, Fig. 2 shows that with the Uniform error model
and without contention, throughput is maximized with the
lowest timeout value, progressively decreasing as the timeout
period decreases. The5.4% performance gap, that is, the
difference between the best and worst options at a FER of
5.4%, is 8.23%. When contention is introduced however, the
situation is reversed, as Fig. 3 shows: in this case, lower
timeout values perform worse, while higher values lead to
progressive improvement. In this case the 5.4% performance
gap is 228%, but in the opposite direction: the optimal timeout
value without contention offers less than one third of the
optimal performance with contention.

The performance results with the Two State error model
further support these findings. Figure 4 shows that the File
Transfer throughput without contention is optimized with the
lowest timeout value, although the difference is smaller: the
5.4% performance gap from the highest timeout value is
only 1.85%. However, Fig. 5 shows that when contention is
introduced, not only the situation is reversed in favor of the
highest timeout value, the 5.4% performance gap from the
lowest timeout value is even higher at 296%.

Regarding Web Browsing, Fig. 6 shows that with the
Uniform error model and without contention, throughput is

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 8. Web Browsing throughput (Two State errors, no Contention).

 15

 20

 25

 30

 35

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

SR 0.9s
SR 1.0s
SR 1.1s
SR 1.2s
SR 1.3s

Fig. 9. Web Browsing throughput (Two State errors, Contention).

again maximized with the lowest timeout value; the 5.4%
performance gap from the highest timeout value is 9.98%.
When contention is added, Fig. 7 shows that the highest
timeout value performs best, with a 5.4% performance gap of
22.88%, but in the opposite direction than without contention.
With the Two State error model and without contention, Fig. 8
shows that the throughput of Web Browsing is again optimized
with the lowest timeout value, albeit with a 5.4% performance
gap of just 1.35%. When contention is introduced, Fig. 9
shows that the situation is reversed and the 5.4% performance
gap in favor of the highest timeout value is 31.64%. Therefore,
the Web Browsing results confirm that the optimal timeout
value depends on the level of contention.

To summarize, we have found that for both File Transfer and
Web Browsing and with both the Uniform and the Two State
error models, it is not possible to select a single retransmission
timeout value for SR that will provide optimal performance
regardless of the level of contention. These results confirm
that, as we have found in previous work [28], a timeout
value that provides excellent performance without contention
can only offer suboptimal Web Browsing performance with
contention. This paper further shows that contention has a far
more pronounced impact on File Transfer performance: the

6 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

optimal value without contention provides less than a third of
the optimal performance with contention.

V. A DAPTIVE SELECTIVE REPEAT

In Section IV we showed that contention for the link dra-
matically affects SR performance: as the available bandwidth
fluctuates, so does the effective RTT and therefore the optimal
retransmission timeout value. Ideally, a retransmission based
link layer protocol for shared wireless links would adapt its
timeouts, always keeping them slightly higher than the RTT.
To achieve this, we modified the SR protocol to track the RTT
in a manner similar to TCP and set its retransmission timeouts
accordingly; this is our ASR protocol [31].

The ASR protocol generally operates exactly the same as
SR, but in addition, for every packet transmitted or retrans-
mitted the sender stores its transmission time. When an ACK
arrives for the packet, the difference between the current time
and the transmission time provides an RTTsample. These
samples are used to update smoothed estimates for the RTT,
srtt, and its variance,srttvar, as follows:

srtt = 0.875 ∗ srtt + 0.125 ∗ sample

srttvar = 0.75 ∗ srttvar + 0.25 ∗ |srtt− sample|
These estimators react to the RTT fluctuations with a time
lag, without being dramatically affected by sporadic extreme
values. The equations and smoothing factors used are those of
TCP [19], allowing the calculations to be performed efficiently
using only integer arithmetic [13]; these calculations are
performed with a 10 ms granularity as in TCP. We have also
tested a wide range of other values for the smoothing factors
but found that the TCP values provide good performance
under most conditions. After updating the estimators, the new
timeout value,rtxto, is calculated as follows:

rtxto = α ∗ srtt + β ∗ srttvar

While this equation is also borrowed from TCP, the actual
values recommended for use with TCP, that is,α = 1 and
β = 4 [19], were found to lead to suboptimal performance.
We therefore tested an extended set of values forα and β,
referring to the resulting adaptive timeout policies asα + β;
for example, the TCP policy is referred to as ASR1 + 4.

Our ASR protocol calculates samples from every acknowl-
edged packet, with three exceptions. First, NACKs are not
used to calculate samples, since they do not reflect reception
of the frame indicated. Second, when an ACK covers multiple
frames, only the last frame acknowledged is used to calculate
a sample; the previous ones may have been received much
earlier. Third, when duplicate ACKs arrive, only the original
ACK is used to provide a sample.

The ASR retransmission timeout policy also diverges from
TCP in that the timeout value isnot modified after a timeout
occurs, unlike TCP which performs binary exponential back-
off. The reason is that consecutive timeouts over a wireless link
are more likely to indicate wireless losses rather than severe
congestion, therefore they do not reflect a dramatic change to
the RTT. Furthermore, when setting the retransmission timer
for a frame, ASR ensures that it will not expire before any

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

ASR 1+4
ASR 2+4
ASR 3+2
ASR 4+0
ASR 4+2

Fig. 10. File Transfer throughput (Uniform errors, no Contention).

 15

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

ASR 1+4
ASR 2+4
ASR 3+2
ASR 4+0
ASR 4+2

Fig. 11. File Transfer throughput (Uniform errors, Contention).

previously set retransmission timer by increasing the timer
(not thertxto) if needed; this ensures that the SR correctness
proofs remain valid for ASR.

We now turn to the performance of File Transfer over ASR,
with or without contention from Media Distribution. All ASR
settings are the same as for SR, with the initialsrtt set to
1.1 s and the initialsrttvar set to 0. In addition to the TCP
policy ASR 1 + 4 we show results for the ASR2 + 4, 3 + 2,
4+0 and4+2 policies. Figure 10 shows that with the Uniform
error model and without contention throughput is maximized
with ASR 3 + 2; the TCP policy ASR1 + 4 performs worse
than the other policies even with no errors. The simulation logs
indicate that ASR1+4 causes many timeouts to occur, despite
the absence of errors and contention, indicating that this policy
tends to calculate very short timeouts. The 5.4% performance
gap between the best and worst policies is 50.64%. When
contention is added, Fig. 11 shows that ASR3+2 remains the
best and ASR1 + 4 remains far worse than all other policies,
with a 5.4% performance gap between the two of 46.06%. It
is important to note that the same policy, ASR3+2, provides
the best performance regardless of the level of contention.

The performance results with the Two State error model lead
to similar findings. Figure 12 shows that the throughput of File

7

 35

 40

 45

 50

 55

 60

 65

 70

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

ASR 1+4
ASR 2+4
ASR 3+2
ASR 4+0
ASR 4+2

Fig. 12. File Transfer throughput (Two State errors, no Contention).

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame Loss Rate (%)

ASR 1+4
ASR 2+4
ASR 3+2
ASR 4+0
ASR 4+2

Fig. 13. File Transfer throughput (Two State errors, Contention).

Transfer without contention is optimized with ASR4+0. The
TCP policy ASR1 + 4 again performs worse than the other
policies, even with no errors, with a 5.4% performance gap
between it and the4 + 0 policy of 23.25%. Figure 13 shows
that when contention is introduced ASR4 + 0 remains the
best policy, ASR1+4 remains by far the worst, and the 5.4%
performance gap between them is 26.99%. Again, the same
policy, ASR 4 + 0, provides the best performance regardless
of the level of contention.

Due to space limitations, we omit the corresponding figures
for Web Browsing; the results however confirm our previous
observations, that is, that the optimal policies are ASR3+2 for
Uniform errors and ASR4+0 for Two State errors, regardless
of the level of contention, while the TCP policy ASR1+4 is
always the worst. The 5.4% performance gaps for the Uniform
error model are 33.71% without and 37.89% with contention,
while for the Two State error model they are 20.54% without
and 25.45% with contention.

To summarize, we have found that the ASR protocol reaches
its optimal performance with the same policy, regardless of the
application and the level of contention. These results confirm
that, as we have found in previous work [31], the optimal
adaptation policy for Web Browsing depends on the error

model: ASR3 + 2 performs best with Uniform errors and
ASR 4 + 0 performs best with Two State errors. This paper
further shows that these findings also apply to File Transfer,
which exhibits even higher 5.4% performance gaps between
the best and worst policies than Web Browsing. It also shows
that the use of integer arithmetic and 10 ms granularity timers
to calculate the smoothed estimates, rather than the floating
point previously used [29], [31], only slightly improves the
performance of the TCP policy ASR1 + 4.

VI. RADIO L INK CONTROL

The RLC protocol is mandatory for all UMTS link layer
sessions, therefore three modes are supported. InTransparent
Mode the protocol simply passes through all frames unmodi-
fied; this is used for voice calls. InUnacknowledged Mode
the protocol only performs duplicate frame avoidance and
reordering; this is useful for applications requiring low delay,
such as media streaming. InAcknowledged Modethe protocol
performs flow control, error detection and retransmission of
missing frames; this is suitable for applications requiring
a reliable link, such as TCP based ones. We focus below
exclusively on the Acknowledged Mode of RLC.

The basic operation of RLC is similar to that of SR. The
sender is passed a sequence of variable size packets from
the higher layer, called SDUs, it segments and/or packs the
SDUs into a sequence of fixed size frames, called PDUs,
and transmits these frames to the receiver. The receiver uses
the sequence of incoming PDUs to reassemble the original
sequence of SDUs and deliver it to the higher layer. The
sender (receiver) may only transmit (accept) PDUs within a
sender (receiver) window. The receiver advances its window
as Acknowledged Mode Data(AMD) PDUs are received in
sequence; it notifies the sender about received AMD PDUs
by returningStatusPDUs and the sender advances its window
accordingly.

The first departure of RLC from SR is that Status PDUs
may contain additional information in the form of one or more
Super Fields(SUFIs). All RLC implementations must support
the ACK SUFI, used to acknowledge all PDUs up to the
one indicated; other SUFIs are optional. The BITMAP SUFI
indicates the complete status of the receiver window after the
latest frame received in sequence, with each bit indicating
whether the corresponding frame has been received or not.
Status PDUs may be piggybacked in the padding of the fixed
size AMD PDUs, or sent as independent frames.

The second departure of RLC from SR is that Status PDUs
are not returned after every frame received: they are either
requested by the sender or returned by the receiver based on
various triggers. Therefore, RLC cannot use retransmission
timers to detect lost PDUs; it must instead rely on the informa-
tion returned in Status PDUs. The absence of retransmission
timers makes RLC robust to contention for the link, as the
protocol makes no assumptions about the RTT of the link. At
the same time, it makes the policies for Status PDU generation
critical for performance.

The sender can ask for a Status PDU by setting a polling
bit in the header of an AMD PDU. The polling function may

8 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

TABLE I

RLC CONFIGURATION PARAMETERS.

Parameter Uniform Two State
Window size 128 frames 128 frames
Piggybacked Status No No
Poll triggers Poll Timer, Poll Timer,

Window Based Window Based,
Every Last PDU
in Retr. Buffer

Poll Timer timeout 200 ms 200 ms
Window threshold 70% 80%
Poll Prohibit Yes (100 ms) Yes (100 ms)
Status Report triggers Missing PDU, Missing PDU,

Timer based Timer based
Status Report timeout 400 ms 500 ms
Status Prohibit No Yes (90 ms)
SDU Discard mode Discard afterx transmissions
Maximum retransmissions 1 to 5 1 to 5
MRW timeout 500 ms 110 ms
Piggybacked Status No No

be triggered by a number of events: (a) when the last PDU
in the transmission (or retransmission) buffer is transmitted,
(b) after everyx PDUs (or SDUs) are transmitted, (c) when
the sender’s window usage is higher than a configured limit,
(d) when a periodic timer expires and, (e) when a timer set on
sending a poll expires before either the frame which contained
the poll and all previous ones have been acknowledged, or that
frame has not been negatively acknowledged.

The receiver may return a Status PDU if any of the
following events occur: (a) when gaps are detected in the
received AMD PDU sequence, (b) when a periodic timer
expires and, (c) when a request arrives from the lower layers.
Due to the numerous options for triggering polls and status
replies, RLC also defines two options to limit the number of
Status PDUs. IfPoll Prohibit is used, the sender starts a timer
after transmitting a poll and defers further polls until the timer
expires. IfStatus Prohibitis used, the receiver starts a timer
after returning a Status PDU and defers further Status PDUs
until the timer expires. Any combination of these mechanisms
can be configured; normally, at least one side must periodically
poll for or return Status PDUs [21].

The third departure of RLC from SR is that RLC can
abandon persistently lost PDUs. Since TCP will eventually
timeout and retransmit the corresponding packets, repeated
RLC retransmissions only lead to a waste of bandwidth [9].
The sender may drop unacknowledged data via theSDU
Discard function, whereby the sender notifies the receiver to
advance its window by transmitting aMove Reception Window
(MRW) SUFI in a Status PDU, the receiver advances its
window and acknowledges by returning a Status PDU with an
MRW ACK SUFI, and the sender finally advances its window.
Note that the persistent loss of a PDU causes the entire SDU
of which that PDU is a part of to be discarded. The sender
can be configured to use one of three SDU Discard modes: (a)
discard PDUs when a period of time elapses after their first
transmission, (b) discard PDUs after a number of unsuccessful
transmissions, or (c) reset the peer RLC entities after a number
of unsuccessful PDU transmissions.

We fine tuned the RLC parameters for our wireless links

 35

 40

 45

 50

 55

 60

 65

 70

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
RLC 2 rtx
RLC 3 rtx
RLC 4 rtx
RLC 5 rtx

Fig. 14. File Transfer throughput (Uniform errors, no Contention).

 20

 25

 30

 35

 40

 45

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
RLC 2 rtx
RLC 3 rtx
RLC 4 rtx
RLC 5 rtx

Fig. 15. File Transfer throughput (Uniform errors, Contention).

based on an extensive simulation study [17]. Table I lists the
RLC parameters used in our simulations. We only study below
the SDU Discard after a number of transmissions policy as it
automatically adapts to the prevailing RTT, unlike the SDU
Discard after a period of time policy which requires choosing
a fixed timeout value; in a shared wireless link this is as hard
as setting the SR retransmission timeout.

We now turn to the performance of File Transfer over RLC,
with or without contention from Media Distribution, while
varying the retransmission limit from 1 to 5. Figure 14 shows
that with the Uniform error model and without contention,
throughput is maximized with 1 retransmission at the lower
FLRs, while for higher FLRs 2 retransmissions are required
for optimal performance. As the performance gap between
these policies at lower FLRs is very small, the latter policy
should be preferred due to its stability. The 5.4% performance
gap between the best and worst policies is 13.59%. When
contention is added, Fig. 15 shows that RLC again performs
best with 1 retransmission at lower FLRs and 2 retransmissions
at higher FLRs; the latter is again the preferable policy. The
5.4% performance gap between the best and worst policies
is 13.85%. Note that the relative performance of each RLC
policy is not affected by the level of contention.

9

 35

 40

 45

 50

 55

 60

 65

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
RLC 2 rtx
RLC 3 rtx
RLC 4 rtx
RLC 5 rtx

Fig. 16. File Transfer throughput (Two State errors, no Contention).

 20

 25

 30

 35

 40

 45

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
RLC 2 rtx
RLC 3 rtx
RLC 4 rtx
RLC 5 rtx

Fig. 17. File Transfer throughput (Two State errors, Contention).

The performance of File Transfer with the Two State error
model is only slightly different. Figure 16 shows that the
throughput of File Transfer without contention is optimized
with 1 retransmission, regardless of the FLR. As the number
of retransmissions increases the throughput drops, with the
5.4% performance gap between the best and worst policies
being 7.25%. Figure 17 shows that when contention is in-
troduced, 1 retransmission remains the best option, with the
5.4% performance gap with the worst performing policy being
11.37%. Again, the relative performance of each RLC policy
is unaffected by the level of contention.

Due to space limitations, we omit the corresponding fig-
ures for Web Browsing; the results are similar to those of
File Transfer, indicating that the optimal RLC policy is 2
retransmissions for Uniform errors and 1 retransmission for
Two State errors, regardless of the level of contention. The
5.4% performance gaps between the best and worst policies
for the Uniform error model are 10.71% without and 11.75%
with contention, while for the Two State error model they are
4.56% without and 5.25% with contention.

To summarize, we have found that the RLC protocol
achieves its optimal performance with the same policy, re-
gardless of the application and the level of contention. For

 10

 20

 30

 40

 50

 60

 70

 80

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 2 rtx
ASR 3+2
SR 1.1s

Raw Link

Fig. 18. File Transfer throughput (Uniform errors, no Contention).

 10

 15

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 2 rtx
ASR 3+2
SR 1.1s

Raw Link

Fig. 19. File Transfer throughput (Uniform errors, Contention).

the Uniform error model, 1 retransmission provides the best
performance for lower FLRs, but 2 retransmissions provide
nearly the same performance for lower FLRs and better perfor-
mance at higher FLRs. For the Two State error model the best
performance is always offered with 1 retransmission. As the
number of retransmissions increases, application performance
decreases for two reasons: first, the same packet may be
retransmitted by both layers leading to wasted bandwidth [9];
second, the increased bandwidth-delay product of the path
reduces the TCP transmission rate [10]. Therefore, the SDU
discard option is beneficial for TCP performance.

VII. OVERALL PERFORMANCECOMPARISON

In this section we compare the fine tuned variants of each
protocol against each other, as well as with theRaw Link:
this is what TCP can achieve without any link layer error
recovery. For the SR protocol there is no single optimal
retransmission timeout value, therefore we use the 1.1 s value
as a compromise. For the ASR protocol we use the3 + 2
policy for the Uniform error model and the4 + 0 policy for
the Two State error model, while for the RLC protocol we use
a limit of 2 retransmissions for the Uniform error model and
1 retransmission for the Two state error model.

10 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

 40

 45

 50

 55

 60

 65

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
ASR 4+0
SR 1.1s

Raw Link

Fig. 20. File Transfer throughput (Two State errors, no Contention).

 20

 25

 30

 35

 40

 45

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
ASR 4+0
SR 1.1s

Raw Link

Fig. 21. File Transfer throughput (Two State errors, Contention).

We begin with the performance of File Transfer, with or
without contention from Media Distribution. Figure 18 shows
that with the Uniform error model and without contention,
all protocols provide a considerable performance improvement
over the Raw Link. ASR outperforms SR, albeit by a small
margin, also outperforming RLC at lower FLRs, while at
higher FLRs RLC has a performance advantage over ASR. The
5.4% performance gap between ASR and Raw Link is 76.73%.
When contention is introduced, Fig. 19 shows that the situation
is quite similar: ASR outperforms RLC at lower FLRs, RLC
outperforms ASR at higher FLRs, and ASR outperforms SR.
The 5.4% performance gap between ASR and Raw Link is
45.11%. Note that RLC performance is slightly reduced due
to the non piggybacked Status PDUs, as is evident in the no
loss case.

With the Two State error model, the situation is quite
different. Figure 20 shows that without contention ASR always
outperforms RLC, with the performance gap widening at
higher FLRs, where RLC performance is closer to that of Raw
Link; in this scenario, SR performs slightly better than ASR.
The 5.4% performance gap between ASR and Raw Link is
13.84%. When contention is introduced, Fig. 21 shows that
while ASR and RLC perform nearly the same as without

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 2 rtx
ASR 3+2
SR 1.1s

Raw Link

Fig. 22. Web Browsing throughput (Uniform errors, no Contention).

 5

 10

 15

 20

 25

 30

 35

 40

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 2 rtx
ASR 3+2
SR 1.1s

Raw Link

Fig. 23. Web Browsing throughput (Uniform errors, Contention).

contention, that is, ASR outperforms RLC by a widening
margin as the FLR is increased, SR performs worse even than
Raw Link. This clearly shows the limitations of SR: with the
same timeout, it is the best performer without contention but
the worst with contention. The 5.4% performance gap between
ASR and Raw Link is 15.46%.

We then turn to the performance of Web Browsing. Fig-
ure 22 shows that with the Uniform error model and without
contention, not only ASR outperforms SR and RLC by a
considerable margin, even SR outperforms RLC at all FLRs.
The 5.4% performance gap between ASR and Raw Link is
95.09%. Figure 23 shows that the situation remains the same
when contention is added: ASR clearly outperforms both SR
and RLC, while SR outperforms RLC, albeit by a smaller
margin. The 5.4% performance gap between ASR and Raw
Link is 60.29%. It should be clear that with Uniform errors
RLC cannot provide good Web Browsing performance, despite
providing excellent File Transfer performance.

The situation is even worse for RLC with the Two State
error model. As shown in Fig. 24, in the absence of con-
tention RLC provides performance closer to Raw Link than
to ASR, while ASR outperforms SR. The 5.4% performance
gap between ASR and Raw Link is 20.42%. When contention

11

 25

 30

 35

 40

 45

 50

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
ASR 4+0
SR 1.1s

Raw Link

Fig. 24. Web Browsing throughput (Two State errors, no Contention).

 15

 20

 25

 30

 35

 9.8 5.4 2.5 1.5 0

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

RLC 1 rtx
ASR 4+0
SR 1.1s

Raw Link

Fig. 25. Web Browsing throughput (Two State errors, Contention).

is introduced, Fig. 25 shows that RLC is again closer to Raw
Link than to ASR; in this case SR performs nearly the same
as RLC. The 5.4% performance gap between ASR and Raw
Link is 15.98%. Therefore, with the Two State error model
RLC cannot provide good performance for either File Transfer
or Web Browsing.

Finally, we examine the impact of each protocol to Media
Distribution. Figure2 26 and 27 show Media Distribution
packet delay when contending against File Transfer with Uni-
form and Two State errors, respectively. For most protocols the
delay is proportional to the File Transfer throughput achieved:
with the Uniform error model RLC introduces more delay than
ASR, while with the Two State error model ASR introduces
more delay than RLC; in both cases, Raw Link introduces
the lowest delays. The exception is SR which introduces the
highest delays, even though it provides worse performance
than ASR and RLC.

Due to space limitations, we omit the corresponding figures
for Media Distribution packet delay when contending against
Web Browsing. The results are similar to those with File
Transfer: ASR introduces higher delays, as it provides the
highest Web Browsing performance, followed by RLC and
Raw Link. Again, SR introduces the highest delays even

 0

 0.5

 1

 1.5

 2

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC 3 rtx
ASR 3+2
SR 1.1s

Raw Link

Fig. 26. Media Distribution delay (Uniform errors, Contention from File
Transfer).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 9.8 5.4 2.5 1.5 0

P
ac

ke
t D

el
ay

 (
s)

Frame Loss Rate (%)

RLC 2 rtx
ASR 4+0
SR 1.1s

Raw Link

Fig. 27. Media Distribution delay (Two State errors, Contention from File
Transfer).

though it provides worse performance than ASR and RLC.
It should be noted that with both File Transfer and Web
Browsing, ASR and RLCnever increase the delay of Media
Distribution packets compared to the no loss case, therefore,
the adaptive protocols not only improve TCP performance,
they also lead to lower UDP delays than the fixed SR.

We can summarize these results as follows. First, while RLC
provides good performance for File Transfer with Uniform
errors, as it is more robust to higher FLRs than ASR, the
situation is reversed with Two State errors, with RLC being
closer to Raw Link than ASR at higher FLRs. An explanation
of this phenomenon is that while RLC can recover from
multiple losses within the same RTT due to its BITMAP
SUFIs, the SDU Discard function makes it less robust to
the long error bursts of the Two State model. Second, RLC
works better with File Transfer than with Web Browsing, since
with the latter it is outperformed not only by ASR, but even
by FSR. This phenomenon can be explained by the short
transfers typical of Web Browsing: when the last packet of
a transfer is lost, RLC will not detect the loss until a Status
PDU is asked for or returned due to a timer expiration. As
these timers are conservative to avoid overloading the link,

12 PUBLISHED IN: MOBILE NETWORKS AND APPLICATIONS, VOLUME 13, NUMBER 3–4, 2008, PP. 259–273

RLC cannot react to these losses as fast as ASR and SR
with their tight retransmission timers. Third, ASR and RLC
do not increase the delay experienced by contending Media
Distribution packets, despite the performance gains offered to
File Transfer and Web Browsing, unlike SR which increases
delays despite its lower performance.

VIII. C ONCLUSIONS

In this paper, we first presented the problems faced by
reliable link layer protocols when sharing a wireless link
with competing link layer sessions, using the SR protocol
as an example. Our measurements indicate that the optimal
retransmission timeout values for SR strongly depend on the
level of contention: for both wireless error models tested, a
single value cannot provide optimal File Transfer and Web
Browsing performance both with and without contention. We
then presented two protocols designed for shared wireless
links, our own ASR protocol, an adaptive timeout extension of
SR, and the RLC protocol, a complex protocol with numerous
options and parameters. Regarding ASR, our measurements
indicate that while the TCP adaptation policy does not work
well, the ASR3 + 2 policy for Uniform errors and the ASR
4 + 0 policy for Two State errors provide optimal application
performance, regardless of the level of contention. Regarding
RLC, our measurements indicate that 2 retransmissions for
Uniform errors and 1 retransmission for Two State errors
provide optimal application performance, again regardless of
the level of contention.

We then compared the fine tuned versions of SR, ASR and
RLC. While we found both ASR and RLC to be insensitive
to the level of link contention, in contrast to SR that collapses
under some circumstances, their behavior is quite different.
RLC performs well with File Transfer and Uniform errors at
high loss rates, while with Two State errors it barely improves
upon plain TCP at high loss rates. With Web Browsing, RLC
performs worse even than SR with both error models. In
contrast, ASR provides excellent performance regardless of
the application and error model, nearly always outperforming
RLC. Finally, both RLC and ASR did not induce additional
delay to the contending Media Distribution packets, unlike
SR that inflated delays despite its lower performance. We
therefore conclude that adaptivity at the link layer is critical
for performance over shared wireless links and that our simple
ASR is superior to the far more complex RLC for both bulk
transfer and interactive applications, regardless of the level of
contention and error model.

REFERENCES

[1] Alcaraz JJ, Cerdan F, Garcia-Haro J (2006) Optimizing TCP and RLC
interaction in the UMTS radio access network. IEEE Network 20(2):
56–64

[2] AUEB/MMLAB: Multi service link layers for ns-2. Available at
http://www.mm.aueb.gr/˜xgeorge/codes/codephen.htm

[3] Badrinath B, Bakre A, Imielinski T, Marantz R (1993) Handling mobile
clients: A case for indirect interaction. In: Proc. of the 4th workshop
on workstation operating systems. IEEE Computer Society Press, Silver
Spring, pp 91–97

[4] Balakrishnan H, Padmanabhan VN, Seshan S, Katz RH (1996) A com-
parison of mechanisms for improving TCP performance over wireless
links. In: Proc. of the ACM SIGCOMM. Association for Computer
Machinery, New York, pp 256–267

[5] Bestak R, Godlewski R, Martins P (2002) RLC buffer occupancy when
using a TCP connection over UMTS. In: Proc. of the IEEE PIMRC,
vol. 3. IEEE, Piscataway, pp 1161–1165

[6] Brady PT (1987) Evaluation of multireject, selective reject, and other
protocol enhancements. IEEE Trans Commun 35(6): 659–666

[7] Cano-Garcia J, Gonzalez-Parada E, Casilari-Perez E (2006) On the
impact of RLC layer configuration parameters in UMTS internet access.
In: Proc. of the IEEE vehicular telecommunications conference fall.
IEEE, Piscataway, pp 1–5

[8] Chen L, Kapoor R, Lee K, Sanadidi M, Gerla M (2004) Audio streaming
over Bluetooth: an adaptive ARQ timeout approach. In: Proc. of the
international conference on distributed computing systems workshops.
IEEE, Piscataway, pp 196–201

[9] DeSimone A, Chuah MC, Yue OC (1993) Throughput performance of
transport-layer protocols over wireless LANs. In: Proceedings of the
IEEE GLOBECOM ’93. IEEE, Piscataway, pp 542–549

[10] Fall K, Floyd S (1996) Simulation based comparisons of Tahoe, Reno
and SACK TCP. Comput Commun Rev 26(3): 5–21

[11] 3rd Generation Partnership Project (3GPP) (2006) Radio link control
(RLC) protocol specification (Release 7). Technical Specification
25.322, V7.0.0

[12] Hernandez-Valencia EJ, Chuah MC (2000) Transport delays for UMTS
VoIP. In: Proc. of the IEEE wireless communications and networking
conference. IEEE, Piscataway, pp 1552–1556

[13] Jacobson V (1988) Congestion avoidance and control. In: Proc. of the
ACM SIGCOMM. Association for Computer Machinery, New York, pp
314–329

[14] Lefevre F, Vivier G (2001) Optimizing UMTS link layer parameters for
a TCP connection. In: Proc. of the IEEE vehicular telecommunications
conference spring, vol. 4. IEEE, Piscataway, pp 2318–2322

[15] Ludwig R, Katz R (2000): The eifel algorithm: making TCP robust
against spurious retransmissions. Comp Commun Rev 30(1): 30–36

[16] Mah BA (1997) An empirical model of HTTP network traffic. In: Proc.
of the IEEE INFOCOM. IEEE, Piscataway, pp 592–600

[17] Makidis M (2007) Implementing and evaluating the RLC/AM pro-
tocol of the 3GPP specification. Master’s thesis, Dept. of Infor-
matics, Athens University of Economics and Business, Available at
http://mm.aueb.gr/archive.html

[18] Nanda S, Goodman DJ, Timor U (1991) Performance of PRMA: a packet
voice protocol for cellular systems. IEEE Trans Veh Technol 40(3): 584–
598

[19] Paxson V, Allman M (2000) Computing TCP’s retransmission timer.
Request For Comments 2988

[20] Rewaskar S, Kaur J, Smith FD (2007) Performance study of loss
detection/recovery in real-world TCP implementations. In: Proc. of the
IEEE international conference on network protocols. IEEE, Piscataway

[21] Rossi M, Scaranari L, Zorzi M (2003) On the UMTS RLC parameters
setting and their impact on higher layers performance. In: Proc. of
the IEEE vehicular telecommunications conference fall, vol. 3. IEEE,
Piscataway, pp 1827–1832

[22] Stevens W (1997) TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms. Request For Comments 2001

[23] Thompson K, Miller G, Wilder R (1997) Wide-area Internet traffic
patterns and characteristics. IEEE Netw 11(6): 10–23

[24] UCB/LBNL/VINT: Network Simulator - ns (version 2). Available at
http://www.isi.edu/nsnam

[25] Vangala S, Labrador M (2007) Shielding TCP from last hop wireless
losses. Wirel Commun Mob Comput 7(6): 679–688

[26] Xu H, Chen YC, Xu X, Gonen E, Liu P (2002) Performance analysis on
the radio link control protocol of UMTS system. In: Proc. of the IEEE
vehicular telecommunications conference fall, vol. 4. IEEE, Piscataway,
pp 2026–2030

[27] Xu X, Chen YC, Xu H, Gonen E, Liu P (2002) Simulation analysis
of RLC timers in UMTS systems. In: Proc. of the winter simulation
conference, vol. 1. IEEE, Piscataway, pp 506–512

[28] Xylomenos G (2006) Limitations of fixed timers for wireless links. In:
Proc. of the int. symposium on parallel and distributed processing and
applications. Springer, Heidelberg, pp 159–170

[29] Xylomenos G, Makidis M (2007) Adaptive link layer protocols for
shared wireless links. In: Proc. of the ACM international mobile
multimedia communications conference, Nafpaktos, 27–29 August 2007

[30] Xylomenos G, Polyzos GC (2004) A multi-service link layer architecture
for the wireless Internet. Int J Commun Syst 17(6): 553–574

[31] Xylomenos G, Tsilopoulos C (2006) Adaptive timeout policies for
wireless links. In: Proc. of the int. conference on advanced information
networking and applications, vol. 1. IEEE, Piscataway, pp 497–502

13

[32] Zhang Q, Su HJ (2002) Performance of UMTS radio link control. In:
Proc. of the IEEE international conference on communications, vol. 5.
IEEE, Piscataway, pp 3346–3350

