
PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM 1

A hybrid overlay multicast and caching scheme for
information-centric networking
Konstantinos Katsaros, George Xylomenos and George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics

Athens University of Economics and Business
Patision 76, Athens 104 34, Greece

E-mail: ntinos@aueb.gr, xgeorge@aueb.gr and polyzos@aueb.gr

Abstract— It has long been realized that the use of the Internet
has moved away from its original end-host centric model. The
vast majority of services and applications is nowadays focused on
information itself rather on the end-points providing/consuming
it. However, the underlying network architecture still focuses on
enabling the communication between pairs of end-hosts, leading
to a series of problems, such as the inefficient utilization of
network resources, demonstrated by the proliferation of peer-to-
peer (P2P) and file sharing applications. In essence, the prevailing
end-to-end nature of the current Internet architecture prohibits
network operators from controlling the traffic carried by their
networks, leaving this control entirely to end users and their
applications. In this paper, we investigate the potential benefits of
MultiCache, an overlay network architecture aiming at handing
control back to network operators. In MultiCache proxy overlay
routers enable the delivery of data either via direct multicast, or
via multicast fed caches residing at the leaves of multicast delivery
trees. We study crucial aspects of our architecture, paying special
attention to the properties of our distributed caching scheme,
and investigate the feasibility of a progressive deployment of the
proposed functionality over the existing Internet.

I. I NTRODUCTION

The Internet emerged as a communications substrate en-
abling the delivery of data between pairs of end hosts. Though
suitable for the once prevailing end-to-end communication
patterns, this end point centric model seems to no longer cater
to current communications needs. End users are now primarily
concerned with accessing a desired piece of information rather
than the specific end point providing it. The proliferation of
CDN services, P2P applications, cloud computing applica-
tions, etc., demonstrates this radical shift towards information
centrism. However, this shift has not been reflected in a
corresponding adjustment of the underlying network model.
This lack of information awareness inside the network means
that end points are being organized into overlay content de-
livery structures that are inherently agnostic of the underlying
network topology. This has led to a series of inefficiencies
regarding the use of network resources and is posing signifi-
cant challenges to network operators in controlling the traffic
traversing their networks [1]. In the characteristic example of
P2P applications that dominate Internet traffic, a multitude of
redundant packet transmissions takes place due to network
agnostic decisions taken at the edges [2].

In view of this situation, the need for a radical shift towards
an information-centricnetworking model has become appar-

ent, giving rise to several important research initiatives (e.g.,
[3], [4]). In the same vein, we have proposed MultiCache, an
overlay network architecture aiming to bring information into
focus [5]. In MultiCache network operators deploy overlay
access routers using the Pastry overlay routing substrate [6];
these routers dynamically establish forests of Scribe overlay
multicast trees [7] for the delivery of fragmented data objects
to synchronously submitted requests (e.g. flash crowds). In
addition, the delivered fragments are cached at the leaves of the
corresponding multicast trees, resulting in the availability of
each data fragment in multiple cache locations. The established
multicast forwarding state is used to locate caching points in an
anycast fashion, taking advantage of the locality awareness of
the overlay routing substrate, ultimately leading to data being
delivered either by a nearby cache location, or via overlay
multicast if the content has not been cached.

A preliminary performance evaluation of MultiCache and
comparison against BitTorrent has shown its potential in
reducing network traffic while providing considerably better
download times [5]. However, these results only served in
gaining insight on the potential benefits and in defining an
upper limit for the expected gains, as they assumed caches of
infinite size. In this paper, we take a step further and focus on
the properties of MultiCache’s distributed caching scheme. We
investigate the impact of limited cache sizes and study several
cache replacement strategies. Moreover, we discuss the effect
of deployment density on MultiCache performance, aiming
to explore the relationship between traffic gains and required
investment in equipment. Finally, we explore MultiCache’s
ability to localize traffic with respect to the distribution of
content requests across the network.

The remainder of this paper is organized as follows. In
Section II we provide a description of MultiCache, focusing on
the proposed caching scheme. We then present our evaluation
framework and discuss our simulation results in Section III. In
Section IV we present previous research related to our work.
Finally, we describe our next steps and conclude in Section V.

II. M ULTI CACHE ARCHITECTURE

MultiCache functionality is deployed in an overlay fash-
ion inside access networks. In particular, this entails the
deployment of additional infrastructure in the form ofoverlay



2 PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM

Internet

Domain A, d = 0.25 Domain B, d = 1

Access Router Overlay Access Router End hostBackbone router

Fig. 1. MultiCache deployment

access routers(OARs), possibly collocated with regular access
routers. All deployed OARs participate in the Pastry overlay
routing and forwarding substrate. In addition, OARs act as
proxies of end-hosts in the overlay, i.e., upon attachment to
the network, an end-host establishes a control connection to
an available OAR, designated during network attachment. The
selected OAR (proxyOAR) may be collocated with the access
router of the end-host or it may be located several hops away,
subject to the density of OAR deployment. Its role is to
act as the interface of the end-host to the overlay, possibly
aggregating data requests from multiple attached end-hosts. A
simple MultiCache deployment example is given in Figure 1.

A. Multicast

Multicast forwarding takes place among OARs driven by
end-host requests, i.e., each end-host issues requests for de-
sired data objects to its proxy OAR via their established
connection. If the proxy OAR is not already part of the
Scribe generated multicast distribution tree for that data, these
requests are translated to ScribeJOIN messages so as to allow
the proxy OAR to become part of the corresponding Scribe
tree. The joining process deviates slightly from regular Scribe
in that theJOIN messages are extended to further carry the
IP address, listening port number, credentials of the initial
issuer of theJOIN message (i.e., the proxy OAR1) and the
32-bit Autonomous System(AS) Number of the proxy OAR’s
AS [8]. This extra information is used during cache searching
and provisioning as explained in the next subsection.

During the joining process, OARs establish TCP connec-
tions with their children for the reliable delivery of the re-
quested data. When a ScribeJOIN message eventually reaches
theRendez Vous(RV) point designated by Scribe for the group
corresponding to the requested data, the content provider will
be solicited to deliver the data via the created multicast tree.
It is assumed that the content provider has already created the
respective group, and therefore has contacted the RV point,
before announcing data availability. Due to the asynchronous

1Note that in cases of multi-hop overlay paths, the proxy OAR is not the
node that delivers theJOIN message to a node already in the tree.

character of request arrivals, this process may result in partial
data availability at the leaves of the multicast tree at the end
of the multicast session. However, the caching mechanism
ensures the completion of these partial feeds.

B. Caching

In MultiCache, caches are located at proxy OARs, i.e.,
at the leaves of multicast trees. The same content may be
cached at multiple network locations close to the clients. This
facilitates the discovery of caches in the networking vicinity of
a requesting OAR and enables the localization of traffic (see
Section II-B.4). It is also noted that placing caches at the edge
of the network avoids incentive incompatibilities regarding
inter-AS relationships as discussed in [9].

1) Cache discovery:In order to locate an available cache,
MultiCache uses the already established overlay multicast
forwarding state. The OARs cache the forwarding state es-
tablished during tree creation even after the end of a multicast
transmission. As caches are created,CACHE UPDATE mes-
sages are issued by leaf OARs towards the RV of the multicast
tree. The purpose of these messages is to notify ancestors
about the availability of cached items downstream and allow
their discovery upon cache requests. Note that caches may be
fed by other caches, therefore OARs cannot rely on forwarded
traffic in order to deduce cache availability below them.
OARs further propagate receivedCACHE UPDATE messages
towards the rootiff they have not already done so for another
downstream cache, thus avoiding feedback implosion.

When an end-host requests data, the ScribeJOIN message
sent by its proxy OAR is suppressed at the first OAR that
has already joined the respective tree, henceforth termed as a
meta-cacheOAR. What happens next, depends on the state
of the meta-cache OAR with respect to the indicated object.
If the requested object has been cached by the meta-cache
OAR itself, the cached data will be directly delivered to the
requesting node (direct cache hit). If the data are not cached
but the meta-cache OAR has previously completed forwarding
the data object to its descendants2, it will anycast aCACHE

REQUEST message to the sub-tree below it in adepth first
search(DFS) fashion, carrying all extra information inserted
in theJOIN message. In particular, at each level of the traversed
sub-tree this message is forwarded to one of the children that
have previously issued aCACHE UPDATE message. At each
step, preference is given to children belonging to the same AS
with the requesting proxy OAR. Among equivalent candidates,
a randomized selection ensures the uniform distribution of
load to the available caches. Eventually, aCACHE REQUEST

reaches an OAR that has cached the data, and a TCP connec-
tion is established between the caching OAR and the proxy
OAR for the delivery of the cached data.

Finally, if the meta-cache OAR is currently forwarding
the requested data, it forwards the arriving multicast data to
the joining node, keeping also track of the part of the data
object that was not delivered due to the late arrival of the
JOIN message. Upon the arrival of the firstCACHE UPDATE

2The anticipation of this fact is based on content fragmentation (see
Section II-C) and a simple block counting mechanism.



PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM 3

5

4

2

1

3

5

4

2

1

3
LEAVE

REQUEST

5

4

2

1

3
CACHE

REQUEST

LEAVE
REQUEST CACHE

REQUEST

LEAVE
RESPONSE

Cached data

Fig. 2. MultiCache leave procedure

notification a data receiver, aCACHE REQUEST is issued for
the missing data for each partially served child of a meta-cache
OAR, thereby reverting to the previous case.

2) Cache eviction: In MultiCache, cache availability is
correlated with the overlay multicast forwarding state. This
allows requests for content to lead to either the multicast-based
delivery of data or to a cache hit, while preserving the locality
properties of the established tree structure (see Section II-
B.4) and avoiding extra control overhead for the discovery of
cached objects. In practice, this means that cached items are
not evicted from a cache unless the corresponding multicast
forwarding state is torn down.

To synchronize caching and forwarding state, we have
slightly altered Scribe’s leave procedure. When a caching
OAR issues a ScribeLEAVE message for the tree serving the
cached object marked for eviction, this message propagates
up the tree until either the first node with additional children
or the RV point is encountered. Then aLEAVE RESPONSE

message is issued towards the leaving child, thus tearing
down the forwarding state and removing the cached data. In
contrast, in regular Scribe the forwarding state is removed
immediately upon the reception of aLEAVE message. The
new procedure ensures that eventually, all requests for data
reach either a caching OAR (in the form ofCACHE REQUEST

messages) or the root if no other cache location is available
(in the form of ScribeJOIN messages). In the latter case,
the content provider is solicited to provide the desired object
again via the established multicast delivery path. The above
procedure is illustrated in the simple example of Figure 2.
Node 2 will not remove node1 from its forwarding table
until a LEAVE RESPONSEmessage is received from node3.
In the meanwhile, node4’s issuedCACHE REQUEST will be
normally served.

3) Cache replacement:As mentioned above, OARs always
cache the content delivered due to an end host request. When
a request arrives at an OAR with an exhausted cache space,
a cache replacement policy is employed to select an item for
eviction. Common replacement policies (e.g.,Least Recently
Used (LRU)) aim at adjusting cache contents to request
patterns so that less popular items leave space for more popular
ones, thus increasing the cache hit ratio. In MultiCache, cache
replacement aims at taking advantage of the multiplicity of
cache locations inside an administrative domain. To this end,
caching OARs keep track of the popularity of each cached
item with respect to the frequency and/or recency of hits from
other OARs inside the domain. Since all content delivered
to an OAR is locally cached, such hits imply that additional
copies of the same object are probably cached nearby. Hence,
in MultiCache we examine the suitability of theMost Recently

Used(MRU) andMost Frequently Used(MFU) policies; these
policies favor the selection of items that are most likely to be
available at other cache locations. The rationale behind the
MRU policy is that the most recently served object is more
likely to be still available at the served OAR, i.e., not to have
been evicted yet, therefore the existence of an alternative cache
location allows replacing that item. In the case of MFU, the
probability of eviction increases with the anticipated number
of alternative cache locations.

It must be stressed that common replacement policies such
as LRU and LFU refer to the recency/frequency of requests
referring to the entire data item (file). In MultiCache, caching,
and therefore cache replacement, takes place at a fragment
level (see Section II-C), allowing the partial caching of files.
The examined MFU and MRU policies aim at reflecting the
existence of specific cache locations and therefore are enforced
on fragments, regardless of the data item that each fragment
belongs to. In this manner there is no need for control signaling
and state overhead for the association of single pieces with
the corresponding data items. We study the behavior of these
policies in section III-C.

4) Locality properties:MultiCache favors localized cache
hits by building upon Pastry’s locality properties and the
multiplicity of cache locations. According to Pastry’s route
convergence property, since caching OARs are essentially
leaves of the data item’s Scribe multicast tree, a ScribeJOIN

message from a proxy OAR is expected to reach a meta-cache
OAR at a distance approximately equal to the distance between
the proxy OAR and a caching OAR in the proximity space. At
the same time, following Pastry’s prefix based routing, Scribe
JOIN messages are initially expected to travel short distances
at each overlay routing step. Hence, as demonstrated in [10], in
cases of multiple cache locations, ScribeJOIN messages from
proxy OARs are expected to first reach nearby meta-cache
OARs, thus leading to closely located caches. In effect, cache
search messages and cached data are expected to traverse short
network distances, with respect to Pastry’s proximity metric,
leading to the localization of traffic. This is further enhanced
by the simple AS number-based cache selection mechanism.

C. Content fragmentation

MultiCache allows the fragmentation of large files into
pieces, in a BitTorrent fashion, leading to the creation of a
forest of Scribe trees, resembling SplitStream [11], but without
the explicit goal of creating disjoint trees. This fragmentation
serves several important goals. First, it facilitates the establish-
ment of parallel data flows towards a recipient node, possibly
exploiting the available downlink bandwidth and avoiding the
sequential delivery of large files. Furthermore, it allows the
partial caching of large data volumes, i.e., certain pieces can
be cached independently of others, enabling the fine grained
management of caching space [12]. The establishment of
partial caches in different network locations favors the estab-
lishment of disjoint delivery paths, facilitating the distribution
of forwarding load and the localization of traffic. However,
these benefits come at the cost of forwarding state which
increases with the size of the resulting forest. Pieces are



4 PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM

further partitioned into blocks, again as in BitTorrent fashion.
This second level of fragmentation facilitates the provision of
data from multiple sources. For example, as explained in the
previous section, an OAR may join a multicast tree while data
are in transit, in which case the first part of the piece shall be
later provided by a cache.

III. PERFORMANCEEVALUATION

In order to provide a realistic, information-centric applica-
tion model for the evaluation of the proposed architecture,
we designed a simple MultiCache-based content distribution
application borrowing features from BitTorrent. In this ap-
plication a content provider employs content fragmentation
to create multiple trees for the delivery of a single file. All
identifiers are retrieved by end-hosts via out-of-band means,
e.g., a MultiCache-torrent file. In order to reduce forwarding
dependencies [13], piece identifiers are assumed to have been
appropriately selected so that the RV points will be OARs
residing at the content provider’s domain. Upon arrival to the
network, end-hosts connect to their proxy OAR and submit
requests for pieces of the file. The number of pending requests
is capped, similarly to regular BitTorrent. Each node submits
its requests independently: as in BitTorrent, we do not assume
any form of collaboration between end-hosts.

A. Simulation Environment

The following evaluation is based on a detailed simulation
environment developed over the OMNeT++ Simulator [14]
and the OverSim Framework [15]. In our simulations we used
Internet-like topologies generated by theGeorgia Tech Internet
Topology Model(GT-ITM) [16]. For our measurements, we
created topologies comprised of 1225 routers hierarchically
organized in 25 stub and 5 transit domains. In all topologies,
the default link establishment probabilities were used.

In order to study the properties of our caching scheme,
we generated synthetic traces of request arrivals for several
files across the network. To generate this workload we used
features of the ProWGen trace generation tool [17]. To better
reflect the characteristics of a P2P application we replaced the
Zipf distribution of file popularities with the Mandelbrot-Zipf
distribution proposed in [12]. A certain number of requests
is generated for each file in the workload, according to the
file’s popularity. All file requests follow the exponentially
decreasing arrival rate process described in [18], parameterized
according to the popularity of the corresponding file. We
interleave these single file traces by placing the first request
of each file at a constant time interval after the first request
for the previous file. This reflects the constant torrent arrival
rate observed with BitTorrent in [18]. File sizes were sampled
from the traces in [19]. The content providers, one per file, are
uniformly distributed across the entire network. Each of the
generated requests is then assigned to one of the 100 end hosts
we attach at a randomly chosen access router of the topology.

B. Evaluation framework

In order to study the properties of MultiCache’s caching
scheme, our first metric is the achievedcache hit ratio(CHR).

To further study whether traffic is localized within AS bound-
aries, we also measure theintra-domain cache hit ratio(CHR-
Intra) which reflects only cache hits on OARs residing in the
same AS as the end-host receiving the cached data. Finally, we
measure thedistance to block source, i.e., the average number
of physical hops traversed by blocks arriving at end hosts, in
order to assess the overall locality properties of data transfers.

These metrics are studied for the cache replacement policies
described in Section II-B.3, as well as for various cache sizes.
Following the methodology in [20], we consider relative cache
sizes (Sr), i.e., the cache size is expressed as a fraction of
the “infinite cache size”, which is the minimum cache size
required to avoid replacements. We also examine the effect on
these metrics of MultiCache deployment densityd ∈ [0, 1],
defined as the fraction of the access routers that are enhanced
with MultiCache functionality. In the example deployment of
Figure 1, the density for domain A isdA = 2/8 = 0.25 while
for domain B it isdB = 1. In this paper, we assume uniform
density values across all ASs.

Finally, we investigate the ability of MultiCache to localize
traffic inside domain boundaries depending on the popularity
of data objects inside the domain. For this reason we define
the localizability parameterl ∈ [0, 1] as an indicator of the
concentration of end-hosts (and the corresponding requests)
inside domain boundaries. If we denote asD the total number
of administrative domains in the topology, then end hosts are
uniformly distributed acrossmax[(1 − l)D, 1] administrative
domains. Atl = 1, all end-hosts reside in the same AS, while
at l = 0, they are uniformly distributed across all ASs.

C. Results

1) Cache size and replacement policies:Figures 3(a)
and 3(b) show the CHR and CHR-Intra achieved with the
LRU, MFU and MRU cache replacement policies, for relative
cache sizes (Sr from 0.5% to 20%). Interestingly, all these
policies exhibit approximately the same behavior for all cache
sizes considered. Note that the CHR reaches values up to
98.5% for higherSr values, thus reducing the amount of
data delivered via overlay multicast and taking advantage of
available caches throughout the entire network. As a result,
MultiCache reduces the impact of overlay multicast stretch
and takes advantage of Pastry’s proximity properties in order
to locate nearby copies of the desired data. This is clearly
demonstrated in Figure 3(c) which depicts the distance to
block source. As the cache size increases, average distance
decreases, denoting the delivery of content from nearby
caches. Again, no cache replacement policy exhibits superior
performance, leading us to the adoption of the MFU policy
due to its implementation simplicity.

2) Deployment Density:Since MultiCache necessitates the
deployment of additional infrastructure (OARs) by network
operators, a crucial issue for the viability of the proposed
architecture is the magnitude of the investment required.
Figure III-C shows the cache hit ratio for various deployment
densities and relative cache sizes. Figure 4(a) shows that even
though CHR increases with deployment density, for relative
cache sizes ranging from 2.5% to 20% of the “infinite cache



PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM 5

 0

 20

 40

 60

 80

 100

20%10%5%2.5%0.5%

 C
ac

he
 h

it 
ra

tio
 (

%
)

Relative cache size (Sr)

LRU Item
MFU Piece
MRU Piece

(a) Cache hit ratio

 0

 20

 40

 60

 80

 100

20%10%5%2.5%0.5%

 In
tr

a-
do

m
ai

n 
ca

ch
e 

hi
t r

at
io

 (
%

)

Relative cache size (Sr)

LRU Item
MFU Piece
MRU Piece

(b) Intradomain Cache hit ratio

 0

 5

 10

 15

 20

20%10%5%2.5%0.5%

 D
is

ta
nc

e 
to

 B
lo

ck
 S

ou
rc

e 

Relative cache size (Sr)

LRU Item
MFU Piece
MRU Piece

(c) Localization of traffic

Fig. 3. Effect of cache replacement policies on cache hit ratio and the localization of traffic (l = 0, d = 0.25).

 0

 20

 40

 60

 80

 100

10.750.500.25

 C
ac

he
 h

it 
ra

tio
 (

%
)

 Deployment density (d) 

Sr=0.5%
Sr=2.5%

Sr=5%
Sr=10%
Sr=20%

(a) Cache hit ratio

 0

 20

 40

 60

 80

 100

10.750.500.25

 In
tr

ad
om

ai
n 

ca
ch

e 
hi

t r
at

io
 (

%
)

 Deployment density (d) 

Sr=0.5%
Sr=2.5%

Sr=5%
Sr=10%
Sr=20%

(b) Intradomain Cache hit ratio

 0

 5

 10

 15

 20

10.750.500.25

 D
is

ta
nc

e 
to

 B
lo

ck
 S

ou
rc

e

 Deployment density (d) 

Sr=0.5%
Sr=2.5%

Sr=5%
Sr=10%
Sr=20%

(c) Localization of traffic

Fig. 4. Effect of deployment density on cache hit ratio and the localization of traffic (l = 0.5, MFU ).

size” the perceived CHR is always greater than 80% at a
deployment density of 25%. Figure 4(b) shows that CHR-
Intra ranges from 46% to 88% for higher relative cache sizes,
meaning that this portion of traffic is held inside domain
boundaries. As the density increases however, local cache hits
decrease, due to the reduced degree of request aggregation
at caching OARs and the corresponding reduction of direct
cache hits at proxy OARs. This is also depicted by the
modest reduction of the average network distance travelled by
data blocks, shown in Figure 4(c). While denser deployments
result in more cache locations, and therefore shorter distances
between proxy and caching OARs, they also mean that similar
requests and the resulting cached content are distributed across
a correspondingly larger number of locations. Therefore, the
modest investment required to achieve a deployment density of
25 to 50% is sufficient to reap all the benefits of MultiCache.

 0

 20

 40

 60

 80

 100

0.0 0.2 0.4 0.6 0.8 1

 C
ac

he
 h

it 
ra

tio
 (

%
)

 In
tr

ad
om

ai
n 

ca
ch

e 
hi

t r
at

io
 (

%
)

 Localizability (l) 

CHR Sr=2.5%
I-CHR Sr=2.5%

Fig. 5. Effect of localizability on cache hit ratio (d = 0.25, Sr =
2.5%, MFU )

3) Localizability: Figure 5 shows the effect of the localiz-
ability factor on the cache hit ratios forSr =2.5%3. Since the
delivery of content to an OAR results in the availability of that
content at the corresponding cache, localizability essentially
expresses the availability of content inside domain boundaries.
However, as localizability increases, so does the competition
for caching space: the more data being delivered to a domain,
the more content has to be cached locally within a fixed
cache size. Hence, the content arrives at a domain but gets
evicted due to the increased load on the caches. At the same
time, content concentrates at intra-domain cache locations, due
to co-located requests, therefore the portion of intra-domain
cache hits rises, up to the point where all cached content is
provisioned by a local cache. This means that MultiCache does
takes advantage of localized request patterns, but only up to
the point where cache size limitations do not allow further
improvements.

IV. RELATED WORK

Povey et al. [21] pointed out some of the inherent in-
efficiencies of hierarchical caching and introduced the idea
of employing only leaves of server hierarchies as caching
locations, discovered through their ancestors. MultiCache de-
parts from this approach in that it further employs multicast
forwarding and builds on Pastry’s proximity properties in order
to localize traffic. In LSAM Proxy Cache, multicast is used to
distribute popular web pages to proxy caches [22]. A major
differentiation point of MultiCache is that caches are not only

3Similar results were derived for other relative cache sizes; they are omitted
due to lengh limitations.



6 PUBLISHED IN: PROCEEDINGS OF THE GLOBAL INTERNET 2010 SYMPOSIUM

fed via multicast from the source, but also by other caches,
resulting in the localization of traffic and the further reduction
of the content provider load. Moreover, MultiCache’s anycast
functionality enables the automated discovery of closely lo-
cated cached objects, replacing, in a sense, the proactive push
of content towards higher layers of the multicast tree.

SplitStream [11] stripes content to produce a forest of
disjoint Scribe trees in an effort to efficiently distribute the
forwarding load. While MultiCache is orthogonal to this effort,
we note that the tree-reconfiguration mechanisms employed in
SplitStream may result in parent-child relationships violating
the locality properties that MultiCache is based upon [23].
ChunkySpread[24] is also based on the creation of multiple
trees but with a P2P orientation. Unlike both these approaches,
MultiCache is deployed by network operators and focuses on
the localization of traffic and the reduction of network traffic
both across and inside domain boundaries.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we advance our work on MultiCache, an over-
lay information-centric architecture, focusing on its distributed
caching scheme. Our findings show that MultiCache takes
advantage of the multiplicity of cache locations, avoiding as far
as possible the employment of overlay multicast for already
transmitted content. Moreover, our results show that sparse
MultiCache deployments can yield high intradomain cache hit
ratios, thus localizing traffic inside domain boundaries.

Our current work focuses on interdomain cache service pro-
vision and specifically on the support of peering relationships
between AS’s. Our goal is to allow operators to share the
benefits of their individual MultiCache deployments, while
keeping control of the interdomain traffic generated by this
form of collaboration. To this end, we aim at incorporat-
ing these peering relationships into Pastry, so that multicast
forwarding and cache selection functions will implicitly take
into account the willingness of network operators to exchange
cache contents.

ACKNOWLEDGMENT

The work reported in this paper was supported by the ICT
PSIRP project under contract ICT-2007-216173.

REFERENCES

[1] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and P2P
users cooperate for improved performance?”ACM SIGCOMM Computer
Communication Review, vol. 37, no. 3, pp. 29–40, 2007.

[2] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?” inProc. of
ACM/USENIX IMC, Berkeley, CA, USA, Oct 2005, pp. 63–76.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and
R. L. Braynard, “Networking named content,” inProc. of ACM CoNEXT,
Dec. 2009.

[4] PSIRP Project,PSIRP Project Home Page, http://www.psirp.org.
[5] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “MultiCache: an

incrementally deployable overlay architecture for information-centric
networking,” in INFOCOM Work-in-Progress (WiP), San Diego, CA,
USA, March 2010.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” inProc. of
the Middleware Conference, 2001, pp. 329–350.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE:
A large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE JSAC, vol. 20, no. 8, pp. 100–110, 2002.

[8] IANA. (2009, Jun) Autonomous system (AS) numbers. [Online]. Avail-
able: http://www.iana.org/assignments/as-numbers/as-numbers.xml

[9] J. Rajahalme, M. S̈arel̈a, P. Nikander, and S. Tarkoma, “Incentive-
compatible caching and peering in data-oriented networks,” inProc.
of ACM CoNEXT, Madrid, Spain, 2008, pp. 1–6.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scalable
application-level anycast for highly dynamic groups,” inProc. of NGC,
Sept. 2003.

[11] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” inProc. of the ACM SOSP, 2003, pp. 298–313.

[12] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,”IEEE/ACM Transactions on Network-
ing, vol. 16, no. 6, pp. 1447–1460, 2008.

[13] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment issues for the IP multicast service and architecture,”
Network, IEEE, vol. 14, no. 1, pp. 78–88, 2000.

[14] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” inProc. of ICST SIMUTools, Brussels, Belgium, 2008,
pp. 1–10.

[15] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” inProc. of the IEEE Global Internet
Symposium, Anchorage, AK, USA, Jan 2007, pp. 79–84.

[16] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internet-
work,” in Proc. of the IEEE INFOCOM, vol. 2, CA, USA, Mar 1996,
pp. 594–602.

[17] M. Busari and C. Williamson, “ProWGen: a synthetic workload gen-
eration tool for simulation evaluation of web proxy caches,”Computer
Networks, vol. 38, no. 6, pp. 779–794, 2002.

[18] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A
performance study of BitTorrent-like peer-to-peer systems,”IEEE JSAC,
vol. 25, no. 1, pp. 155–169, 2007.

[19] A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the use of
bittorrent as the basis for a large trace repository,” University of
Massachusetts Amherst, Tech. Rep., June 2004.

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: a scal-
able wide-area web cache sharing protocol,”IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[21] D. P. John and J. Harrison, “A distributed internet cache,” inIn
Proceedings of the 20th Australian Computer Science Conference, 1997,
pp. 5–7.

[22] J. Touch and A. S. Hughes, “LSAM proxy cache: a multicast distributed
virtual cache,”Computer Networks and ISDN Systems, vol. 30, no. 22-
23, pp. 2245–2252, 1998.

[23] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang, “The
impact of heterogeneous bandwidth constraints on DHT-based multicast
protocols,” inProc. of IPTPS, February 2005.

[24] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heteroge-
neous unstructured tree-based peer-to-peer multicast,” inProc. of IEEE
ICNP, 2006, pp. 2–11.


