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Abstract— It has been long realized that the Internet is
evolving from a network connecting pairs of end hosts to a
substrate for information dissemination. While this shift towards
information centric networking has been clearly demonstrated
by the proliferation of file sharing (e.g., BitTorrent) and content
delivery (e.g., YouTube) applications, it has not been followed
by a corresponding shift in network architecture. As a result,
even though such applications are attractive to both content
providers, due to their lower bandwidth requirements, and to
end users, due to their reduced download times, they plague
the underlying network with redundant packet transmissions, a
significant part of which takes place over costly inter-domain
links. In essence, the end-to-end nature of the current Internet
architecture prevents network operators from controlling the
traffic carried by their networks, delegating such control to
end users and their applications. In this paper, we propose
MultiCache, an information centric architecture aiming at the
efficient use of network resources that is based on two primitives:
multicast and caching. To this end, we revisit overlay multicast
as a means for content delivery, and take advantage of multicast
forwarding information to locate, in an anycast fashion, nearby
caches that have been themselves fed by multicast sessions.
Our architecture is evaluated against a widespread file sharing
application (BitTorrent) with respect to both network resource
savings and end user experience.

I. I NTRODUCTION

It has been long realized that the Internet’s communication
model does not reflect current end user usage patterns. While
users focus on the desired information, the underlying commu-
nication substrate focuses on the end-to-end communication
between pairs of end-hosts. Inevitably, a translation between
the information domain and the networking domain takes
place, typically consisting of the establishment of a delivery
path between the data provider and the data consumer. This
translation is usually performed inefficiently as it is based on
end-point centric overlay data delivery structures that neglect
network topology, data location and data popularity, ultimately
over-consuming network resources. In the characteristic ex-
ample of P2P file sharing applications, it has been shown
that a major part of the incurred traffic crosses Internet
Service Provider boundaries, even though the corresponding
information could have been retrieved locally [1].

We believe that at the heart of this problem lies the lack of
information awareness inside the network, that is, the fact that
only the end-points are aware ofwhat is being delivered. Due

to this deficiency, attempts to more efficiently use network
resources, such as resource sharing via caching and multicast,
are hard to succeed, as the corresponding decisions are made
at the end-points of the network, based on coarse grained
information. Therefore, an information-centric model should
be employed in order to enable the efficient use of network
resources and better reflect user needs. In this context, the
network, by gaining knowledge onwhat is being delivered, in
addition towhereit originates from or is destined to, becomes
inherently capable of forming targeted and efficient delivery
structures. In addition, in this paradigm users only express
their interest on pieces of information, rather than engaging in
the aforementioned mapping between models.

Towards this direction, we presentMultiCache, an overlay
network architecture that brings information into focus. Mul-
tiCache aims at taking advantage of information-awareness to
improve the utilization of network resources via resource shar-
ing. To this end, network operators deploy and control proxy
overlay routers that enable the joint provision of multicast
and caching, targeting both synchronous and asynchronous
requests. End hosts interact with the infrastructure by simply
providing flat, location independent identifiers for the desired
content, without engaging in the process of locating an end
host providing the data. Inside the network, the Scribe overlay
multicast scheme [2] is employed to transport the content from
its origin in a publish/subscribe fashion, thus serving syn-
chronous requests (e.g., flash crowds) and feeding in-network
shared caches. By taking advantage of the locality awareness
of the established Pastry routing substrate [3], anycast queries
based on the already established overlay multicast forwarding
state are later used to locate nearby caches that can serve
asynchronous requests by unicasting the cached content.

In this paper, we provide a thorough description of the
proposed architecture, highlighting its primary design choices.
Moreover, we gain insight on its performance by comparing a
simple MultiCache-based content distribution application with
the prevalent BitTorrent file sharing application. Preliminary
simulation results demonstrate the potential of MultiCache
to better utilize network resources, while yielding improved
download times for the end users. The remainder of this paper
is organized as follows. In Section II we describe the proposed
architecture, providing a performance evaluation in Section III.
In Section IV we present previous research relating to our
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work. We describe our next steps and conclude in Section V.

II. PROPOSEDARCHITECTURE

A. Deployment

MultiCache functionality is deployed in an overlay fashion
inside access networks. This entails the deployment of ad-
ditional infrastructure in the form ofOverlay Access Routers
(OARs), possibly collocated with regular access routers. OARs
provide the following functionality:

1) They participate in the overlay routing and forwarding
substrate, enabling the use of overlay multicast. This en-
tails the maintenance of Pastry routing information [3],
as well as the functionalities of Scribe and MultiCache,
as described below.

2) They act as proxies of end-hosts in the overlay, i.e., an
end-host establishes a control connection to an avail-
able OAR designated during network attachment. The
selected OAR (proxy OAR) may be collocated with the
access router of the end-host or it may be located several
hops away, subject to the density of OAR deployment.
The role of the proxy OAR is to act as the interface
of the end-host to the overlay, possibly aggregating data
requests from multiple attached end-hosts.

3) They cache content destined to their attached end hosts.
As a result, the same content is cached at multiple
locations in the network, i.e., at all leafs of an established
overlay multicast trees.

4) They provide cached content to other OARs via unicast,
as described in Section II-C.

The deployment of overlay functionality inside access net-
works serves several important goals. First, the overlay char-
acter of the architecture facilitates the deployment process, as
it does not require the replacement of existing infrastructure,
while it allows the unobstructed operation of established
services and applications. By deploying MultiCache inside
access networks, content is cached close to the clients [4],
facilitating the discovery of caches in the clients’ networking
vicinity and therefore enabling the localization of traffic (see
Sections II-C.2 and III). Finally, as discussed in [5], placing
caches close to the end points of the network avoids incen-
tive incompatibilities regarding inter-domain relationships. A
simple deployment example is given in Figure 1, with OARs
being collocated with the corresponding access routers.

B. Multicast

Multicast forwarding takes place among OARs driven by
end-host requests, i.e. after end-hosts issue requests for desired
data objects to their proxy OARs via the established control
connections. These requests may be translated to correspond-
ing ScribeJOIN messages, depending on the current state of
the proxy OAR with respect to the indicated data item. The
joining process deviates slightly from regular Scribe in that
JOIN messages are extended to further carry the IP address,
the listening port number, the credentials of the initial issuer
of the JOIN message (i.e. the proxy OAR1) and the 32-bit

1Note that in cases of multi-overlay hop paths, the proxy OAR is not the
node that eventually delivers theJOIN message to an already joined node.

Fig. 1. MultiCache Deployment

Autonomous System(AS) number of the proxy OAR’s AS.
This extra information is used during cache searching and
provisioning, as explained in the next subsection.

During the joining process, OARs establish TCP connec-
tions with their children for the reliable delivery of the
requested data. When aJOIN message eventually reaches the
Rendez Vous(RV) point, the content provider will be solicited
to deliver the data which will then start traversing the tree
created via the already established TCP connections. It is
assumed that the content provider has already created the
respective group, and therefore has contacted the RV point.
Due to the asynchronous character of request arrivals, this
process may result in partial data availability at the leafs of
the multicast tree at the end of the multicast session. However,
the caching mechanism ensures that these partial feeds will be
able to complete later.

A simple example of these operations is given in Figure 2.
The first two subfigures depict progressive snapshots of a
simple Scribe tree. The arrays below each OAR denote the
availability of the content and will be further explained in
Section II-D. OAR 1 first joins a Scribe multicast tree via
OAR 2, followed by OARs 3 and then5 that join during
the multicast session via OAR4. At the end of the multicast
session (end of Step 3) , OARs3 and 5 have received part
only of the multicasted content, i.e., they are missing blocks
0 to 3 and 0 to 6 respectively.

C. Caching

1) Protocol description: In order to locate an available
cache, MultiCache exploits the already established multicast
forwarding state. For this reason, forwarding nodes cache the
forwarding state established during tree creation even past the
end of the multicast session. As caches are created,CACHE

UPDATE messages are issued by leaf OARs towards the RV of
the multicast tree. The purpose of these messages is to notify
ancestors about the availability of cached items and thus allow
their discovery upon a cache request. Note that caches may
be fed by other caches, therefore OARs cannot rely solely
on forwarded traffic to gain knowledge of downstream cache
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Fig. 2. MultiCache example

existence. OARs further propagate receivedCACHE UPDATE

messages towards the rootiff they have not already done so for
another descendant cache, thus avoiding feedback implosion.

Following regular Scribe operation, a ScribeJOIN message
is suppressed at the first OAR that has already joined the
respective tree, henceforth termed as ameta-cacheOAR.
Depending on the arrival time of theJOIN message and
its current state with respect the indicated object, the meta-
cache OAR may issue a cache request (CACHE REQUEST)
message on behalf of the joining proxy OAR. This message
carries all the extra information inserted in theJOIN message.
Obviously, if the meta-cache OAR happens to have cached the
requested object, the cached data will be directly delivered
to the requesting node. Otherwise, if the meta-cache OAR
has completed forwarding the data object to its descendants2,
it will anycast a cache request (CACHE REQUEST) message
to its downstream sub-tree in adepth first search(DFS)
fashion. In particular, at each level of the traversed sub-tree
the request message is forwarded to one of the children that
have previously issued aCACHE UPDATE message. At each
step, preference is given to children belonging to the same AS
with the proxy OAR that will be eventually served. Among
equivalent children candidates, a randomized selection ensures
the uniform distribution of load to the available caches.

If the meta-cache OAR is currently forwarding multicast
data, it forwards the remainder of the arriving multicast data
to the joining node, as described above, keeping also track of
the part of the data object that was not delivered due to the late
arrival of theJOIN message. This accounting mechanism will
enable the precise indication of the required cached content
in later cache requests. Upon the arrival of the firstCACHE

UPDATE notification, aCACHE REQUEST is issued for each
partially served child of a meta-cache OAR. Eventually, a
CACHE REQUESTreaches an OAR in theCACHED state and a
TCP connection is established between the caching OAR and
the proxy OAR for the delivery of the cached data.

In the example of Figure 2, due to the arrival of OAR3,
the RV node receives aJOIN message from OAR4 including
OAR 3’s details (Step I). At the end of the multicast session
OAR 1 completes downloading the data and notifies its parent
with a CACHE UPDATE message (Step III). OAR2 forwards
this notification to the RV point, where it gets suppressed. At

2The anticipation of this fact is based on Content Fragmentation (see
Section II-D) and a simple block counting mechanism.

this point, having partially served its descendants, the RV node
issues aCACHE REQUEST towards the only child known to
lead to a cache, i.e. OAR2 (Step IV). Since this node has not
cached the requested item, it forwards the received message
to OAR 1 which eventually serves the request (Step V). The
same procedure takes place in the case of OARs5 and 6,
which belong to a different AS than OARs3 and 4. OAR 5
joins first and receives the cached data from OAR3. Later,
OAR 6’s JOIN message is suppressed by OAR4 that prefers
to send aCACHE REQUEST message to OAR5 than to OAR
3, resulting in localized traffic between OARs5 and6.

2) Locality properties:The expectation of localized cache
hits builds on Pastry’s properties and the multiplicity of
cache locations. According to Pastry’s route convergence
property [3], since caching OARs are essentially leafs of the
data item’s Scribe multicast tree, a ScribeJOIN message of an
arriving proxy OAR is expected to reach a meta-cache OAR
at a distance approximately equal to the distance to a caching
OAR in the proximity space. At the same time, following
Pastry’s prefix based routing, ScribeJOIN messages are ini-
tially expected to travel short distances at each overlay routing
step. Hence, as demonstrated in [6], in cases of multiple cache
locations, ScribeJOIN messages of arriving proxy OARs are
expected to first reach meta-cache OARs leading to nearby
caches. In effect, cache search messages and cached data are
expected to traverse short network distances, with respect to
Pastry’s proximity metric, leading to the localization of traffic.
This is further assisted by the simple AS number-based cache
selection mechanism.

3) Cache size and expiration:One major issue pertaining to
every caching scheme is the cache replacement policy. In this
stage of our research, we attempt to establish a performance
baseline and investigate the potential benefits of the proposed
architecture, therefore we assume that we have infinite cache
capacity. Our plans for imminent work focus on this issue.
Specifically, our plans consider connecting cache availability
with the existence of the corresponding overlay multicast
forwarding state. In this context, we consider caching OARs
evicting items from their cache only after they have left
the corresponding multicast tree. The whole procedure will
be initiated based on the selected cache replacement policy
(e.g., LRU, LFU). Note that cache invalidation due to content
updates is implicitly addressed by the proper selection of new
flat identifiers at the application layer.
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D. Content fragmentation

MultiCache allows the fragmentation of large files into
pieces, as in BitTorrent, leading to the creation of a forest
of Scribe trees as in [7]. This fragmentation serves several
important goals. First, it facilitates the establishment of parallel
data flows towards a recipient node, possibly better exploiting
the available downlink bandwidth and avoiding the sequential
delivery of large files. Moreover, it allows the partial caching
of large data volumes, i.e. certain pieces can be cached
independently of others, enabling a fine grained management
of caching space [8]. The establishment of partial caches in
different network locations favors the establishment of disjoint
delivery paths, facilitating the distribution of forwarding load
and the localization of traffic. However, these benefits come
at the cost of forwarding state which increases with the size
of the resulting forest.

At a second level, pieces are further partitioned into blocks,
again as in BitTorrent. This second level of fragmentation
facilitates the provision of data from multiple sources, i.e. as
explained in the previous section, an OAR may join a multicast
tree while data are in transit, in which case the remainder of
the piece shall be provided by a cache. As shown in Figure 2,
this further fragmentation enables the provision of the first
four blocks only to OAR3 from OAR 1’s cache.

III. E VALUATION

In order to provide a realistic application model for the
evaluation of the proposed architecture, we have designed a
MultiCache-based content distribution application that can be
directly compared to regular BitTorrent. In this application
a content provider employs content fragmentation to create
multiple trees for the delivery of a single file. All identifiers
are retrieved by end-hosts via out-of-band means, e.g., a
MultiCache-torrent file. In order to reduce forwarding depen-
dencies [9], piece identifiers are assumed to have been appro-
priately selected so that the RV functionality is provided by
OARs residing at the content provider’s domain. Upon arrival
to the network, end-hosts connect to their proxy OAR and
submit requests for pieces of the file. The number of pending
requests is capped, in an analogy to regular BitTorrent. Each
node submits its requests independently of other end-hosts,
since we cannot assume any form of collaboration between
end-hosts. Once a piece has been entirely downloaded, the
next piece is requested from the proxy OAR until the file
download has completed.

A. Simulation Environment

The evaluation of MultiCache is based on a detailed full
stack simulation environment based on the OMNeT++ Simu-
lator [10] and the OverSim Framework [11]. The MultiCache
content distribution application is compared against our own
BitTorrent implementation for OMNeT++[12]. In our sim-
ulations we used Internet-like topologies generated by the
popular Georgia Tech Internet Topology Model(GT-ITM).
For our measurements, we created topologies comprised of
1225 routers hierarchically organized in 25 stub and 5 transit
domains. In all topologies, the default link establishment

probabilities were used. All scenarios include the download of
a single 256 MB file by 100 end-hosts attached to randomly
chosen stub routers, following the exponential decreasing
arrival rate process described in [13]. We used the default
parameters for both the Peer-Wire and Tracker protocols of
BitTorrent. In the case of MultiCache, we use 16KB blocks
and set the default size of a piece to 16MB.

B. Results

The following results express the average of five repetitions
of each simulation scenario with different random number
generator seeds, over five different topology instances.

1) Traffic: Focusing first on the potential reduction of un-
necessary transmissions, we investigate MultiCache’s perfor-
mance with respect to inter-domain and intra-domain traffic. In
the former case we measure the total number of bytes of egress
traffic at each stub domain, while in the latter we measure the
total link stress at each stub domain, i.e. the aggregate number
of block transmissions over all links of a domain. Due to length
limitations, Figure 3 presents the cumulative distribution of
both metrics over the set of stub domains in the considered
topologies. The gains incurred by MultiCache functionality are
in both cases substantial, reaching an average decrease of 57%-
60% compared with BitTorrent. We attribute this reduction to
the localization of traffic due to the deployment of caches.
Indeed, the average distance traveled by a BitTorrent block
was 8.86 hops, while MultiCache blocks only traversed 4.61
consecutive links before reaching an end host.
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2) Download time:Even though the reduction of network
traffic is of particular importance to network operators, QoS
at the end users must not be neglected. Here we express QoS
as the download time experienced by end users. Figure 4
illustrates the download times observed with BitTorrent and
MultiCache. The download time perceived with MultiCache
is on average 88% lower than in the case of BitTorrent. This
huge reduction is due to three important factors. First, in the
case of MultiCache end-hosts do not engage in a search for
the required data among participating peers. This is a direct
consequence of the information-centric model, in which users



PUBLISHED IN: PROCEEDINGS OF THE IEEE INFOCOM 2010 WORK IN PROGRESS SYMPOSIUM 5

simply request data from the network. Second, the download
rate of end hosts is not capped by the uplink of their peers but
by the forwarding capacity of the OARs, which is typically
higher. Finally, our current assumption on infinite cache space
results in the elimination of cache misses, yielding only an
upper bound for MultiCache’s performance.
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IV. RELATED WORK

The most closely related approach to MultiCache is the
LSAM Proxy Cache scheme, where multicast is used to
distribute popular web pages to proxy caches [14]. A major
differentiation is that in LSAM caches are only fed via
multicast, while in MultiCache caches may be fed by other
caches, resulting in traffic localization and further reduction of
content provider load. In the same direction, MultiCache’s any-
cast functionality enables the automated discovery of closely
located cached objects, replacing, in a sense, the proactive
push of content towards higher layers of the multicast tree.
SplitStream [7] stripes content to produce a forest of disjoint
Scribe trees in an effort to efficiently distribute the forwarding
load. While MultiCache is orthogonal to this effort, we note
that the employed tree-reconfiguration mechanisms may re-
sult in parent-child relationships violating the locality-related
properties MultiCache is based on [15]. ChunkySpread[16] is
also based on the creation of multiple trees but with a P2P
orientation. Unlike both these approaches, MultiCache focuses
on the localization of traffic and the reduction of network
traffic both across and inside domain boundaries.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we presented MultiCache, an overlay
information-centric architecture based on multicast and
caching. Our preliminary results show that the proposed archi-
tecture has the potential to localize network traffic, relieving
network operators from costly interdomain transmissions and
further reducing traffic inside their domains. At the same time
the localization of traffic and the parallelization of data flows
acts in favor of end-hosts that perceive substantially reduced
download times. However, the presented results only provide a
baseline for the performance of the proposed architecture. Our

current work focuses on the implementation and evaluation of
appropriate cache replacement schemes.
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