
PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 1

MultiCache: An overlay architecture for
information-centric networking
Konstantinos Katsaros, George Xylomenos and George C. Polyzos
ntinos@.aueb.gr, xgeorge@aueb.gr and polyzos@aueb.gr

Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business

Patision 76, Athens 104 34, Greece

Abstract—It has become apparent for quite some time that
the Internet has evolved from a network connecting pairs of
end-hosts to a substrate for information dissemination. While
this shift towards information centric networking has been
clearly demonstrated by the proliferation of file sharing and
content delivery applications, it has not been reflected in a
corresponding shift in network architecture. To address this issue,
we designed MultiCache, an information-centric architecture
aiming at the efficient use of network resources. MultiCache is
based on two primitives: multicast and caching. It exploits overlay
multicast as a means for content delivery and takes advantage of
multicast forwarding information to locate, in an anycast fashion,
nearby caches that have been themselves fed via multicast. We
evaluate MultiCache against a widespread file sharing application
(BitTorrent) with respect to both network resource consumption
and end-user experience.

Index Terms—Information centric, content centric, publish-
subscribe, peer to peer, multicast, caching

I. INTRODUCTION

The Internet was originally designed as a communication
substrate enabling the delivery of data between pairs of end-
hosts. Unfortunately, this end-point centric model seems to
no longer cater to current communications needs: while users
focus on the desired information, the underlying network
focuses on the end-to-end communication between end-hosts.
Inevitably, a translation between the information domain and
the networking domain must take place, typically consisting of
the establishment of a delivery path between the data provider
and the data consumer. This translation is usually inefficient,
as it is based on end-point centric data delivery overlays that
neglect network topology, data location and data popularity,
ultimately over-consuming network resources. For example, in
Peer to Peer (P2P) file sharing, it has been shown that a major
part of the incurred traffic crosses Internet Service Provider
(ISP) boundaries, even though the desired information could
have been retrieved locally [1].

We believe that at the heart of this problem lies the lack of
information awareness inside the network, that is, the fact that
only the end-points are aware of what is being delivered. Due
to this deficiency, attempts to more efficiently use network
resources, such as via caching and multicast, are unlikely
to succeed, as decisions are made at network end-points
based on coarse grained information. We believe that only
an information-centric network model can enable the efficient
use of network resources, thus better reflecting user needs. In

this context, by knowing what is being delivered, in addition to
where it originates from or is destined to, the network becomes
inherently capable of forming targeted and efficient delivery
structures. In addition, in this model users can directly express
their interest in pieces of information, rather than engaging in
the aforementioned domain translation.

Towards this direction, we present MultiCache, an overlay
network architecture that brings information into focus. Mul-
tiCache takes advantage of information-awareness to improve
network utilization via resource sharing. To achieve this,
network operators deploy and control proxy overlay routers
that enable the joint provision of multicast and caching,
targeting both synchronous and asynchronous requests. End-
hosts interact with this infrastructure by simply providing flat,
location independent identifiers for the desired content, with-
out engaging in the process of locating an end-host providing
the data. Inside the network, the Scribe overlay multicast
scheme [2] is employed to transport the content from its
origin in a publish/subscribe fashion, thus serving synchronous
requests (e.g., flash crowds) and feeding in-network caches.
By taking advantage of the locality awareness of the Pastry
routing substrate [3], anycast queries, based on the already
established overlay multicast forwarding state, are later used
to locate nearby caches that can serve asynchronous requests
via unicast.

In this paper, we highlight the benefits of information
centric networking, as realized in MultiCache. In particular, we
demonstrate how the proposed architecture takes advantage of
information-awareness in order to improve both the utilization
of network resources and the end-user experience. To this
end, we compare a MultiCache-based content distribution
application with the popular BitTorrent application. Our sim-
ulation results demonstrate a significant reduction of traffic
load, in conjunction with considerably lower download times.
To the best of our knowledge, this is the first head to head
comparison of an information centric architecture against the
current Internet model in the context of content distribution,
with respect to network resource utilization and end user
experience.

The remainder of this paper is organized as follows: In
Section II we provide a thorough description of MultiCache,
including both protocol functionality and deployment issues.
We then present our MultiCache-based content distribution
application, comparing it with BitTorrent in Section III. In

2 PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947

Section IV, we analytically investigate the scaling properties of
MultiCache with respect to the overlay multicast trees created
and the forwarding state required by MultiCache. We contrast
MultiCache with other approaches in Section V, concluding
and presenting our next steps in Section VI.

II. PROPOSED ARCHITECTURE

A. Overview
MultiCache aims to establish an information-centric model

of communication that better reflects current Internet usage
patterns, in order to facilitate the deployment of resource shar-
ing mechanisms. The introduction of information-awareness
into the network enables the network (in addition to the end
points) to identify pieces of information. In consequence,
request similarities can be detected, thus allowing request
aggregation and, eventually, network resource sharing. This
enables the deployment of resource sharing mechanisms inside
the network, rather than at the end-points. At the same time,
information-awareness simplifies the usage model, as it allows
end-hosts to directly denote the desired piece of information
to the network, rather than engaging in the process of locating
an end-point providing it.

In this context, the proposed architecture is realized as
an overlay network, based on the deployment of additional
infrastructure inside access networks. Namely, ISPs deploy
and control Overlay Access Routers (OARs) at their Points-
of-Presence (PoPs). These OARs establish an overlay routing
substrate for the forwarding of data based on information
identifiers, using the Pastry routing scheme [3]. Pastry provides
a location-aware key-based routing fabric (see Section II-B1)
which allows the network location of any piece of information
to be discovered, given a globally unique information identifier
(ID) in the Pastry namespace. Based on this substrate, the pro-
posed architecture adopts and extends the Scribe scheme [2]
to enable the joint operation of overlay multicast and caching,
subject to the temporal characteristics of the requests (see
Sections II-B2, II-C and II-D). Scribe establishes multicast
trees to serve multiple synchronous requests, while feeding
in-network caches also located at the OARs. The already
established multicast forwarding state is reused to allow later
requests to reach nearby caches, leading to a hybrid protocol
where data is delivered either via multicast or from a caching
location via unicast.

At the edges of the network, end-hosts access the overlay
network through a proxy OAR, designated during network
attachment. The usage model of the proposed architecture
closely follows the publish/subscribe paradigm [4]. Data con-
sumers (i.e., subscribers) send a subscription request message
towards their proxy OAR declaring the ID of a desired
piece of information. The proxy OAR is then responsible
to fetch the requested item using multicast and/or caching.
On the other hand, data providers (i.e., publishers) advertise
their content to the network by submitting an advertisement
message to their proxy OAR, which is then responsible to
locate the corresponding Scribe tree, using Pastry routing (see
Section II-B). Despite not participating in any of the overlay
protocols (i.e., Pastry, Scribe and MultiCache protocols), end-
hosts interact with the network in a simplified manner that

Fig. 1. MultiCache Deployment.

does not include a translation between the desired data and its
location.

The proposed deployment of overlay functionality inside
access networks is motivated by several factors. First, it is
expected to significantly improve performance, as it results in
multicast trees that avoid forwarding content over the, typically
lower bandwidth, access uplinks [5]. Moreover, the overlay
character of the architecture facilitates deployment, as it does
not require the replacement of existing infrastructure, thus also
allowing the unobstructed operation of established services and
applications. By deploying MultiCache inside access networks,
content is cached close to the clients, facilitating the discovery
of caches in the clients’ networking vicinity and therefore en-
abling the localization of traffic (see Sections II-D3 and III). At
the same time, the deployment on top of ISP owned, dedicated
servers is expected to provide lower churn rates, mitigating
the maintenance overhead of the routing substrate, in contrast
with typical end host deployment scenarios [6]. Finally, as
discussed in [7], placing caches close to the end points of
the network avoids incentive incompatibilities regarding inter-
domain relationships. A simple deployment example is given
in Figure 1, with OARs collocated with the corresponding
access routers.

B. Background

We provide below an introduction to the Distributed Hash
Table (DHT) based Pastry overlay routing substrate [3] and
to the Scribe overlay multicast scheme [2] upon which the
MultiCache functionality is built.

1) Pastry: In Pastry, as in all DHT based routing substrates,
a flat identifier space is uniformly distributed among nodes.
Pastry routes a messages destined to a specific identifier to
the node responsible for that identifier. Each node maintains
routing state that enables message forwarding using prefix
based routing: at each routing step, a node forwards the
message to another node whose identifier shares at least one
more digit with the target identifier. Pastry takes network

PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 3

locality into consideration during routing state computations,
i.e., among equally qualified routing table entries, the one
corresponding to the closest node with respect to the employed
proximity metric, e.g., hop count or RTT, is selected. By
reducing overlay path stretch, this yields Pastry’s short routes
property and constitutes one of the reasons for selecting
Pastry as the routing substrate for MultiCache. Additionally,
according to Pastry’s route convergence property, the distance
traveled by two messages originating from two distinct nodes
before their routes converge towards the same destination,
tends to be approximately equal to the distance between the
two source nodes in the proximity space. As described below
in detail, our caching scheme takes advantage of this property
in order to create caches residing in the network vicinity of
end-hosts.

2) Scribe: Scribe enables multicast distribution by mapping
the name of each group to an identifier and making the node
responsible for that identifier the rendezvous (RV) point of
the group. Receivers join the group by sending a join mes-
sage towards the group identifier; as the message propagates
towards the RV point, reverse path routing state is established
until a node already in the tree is found, thus forming a
multicast tree rooted at the RV point. A sender simply routes
data towards the group identifier, so that the RV point may
then propagate it over the established tree. An important
characteristic of Scribe, motivating its adoption for Multi-
Cache, is that multicast routing state is decentralized: each
node in a tree is only aware of its immediate ancestors and
descendants. This presents a significant scalability advantage
over other schemes (e.g., Bayeux [8]) as it means that Scribe
does not require excessive signaling in order to gather global
state information. Moreover, it must be noted that Scribe
follows the publish/subscribe paradigm [4] which is considered
especially suitable for information-centric networking, in that
it decouples the sender from the receiver [9].

C. Multicast

In MultiCache, multicast forwarding takes place among
OARs driven by end-host requests, i.e., end-hosts issue re-
quests for data objects to their proxy OARs via control connec-
tions. These requests may then be translated to corresponding
Scribe JOIN messages, depending on what the proxy OAR
knows about the data item requested. The joining process
deviates slightly from regular Scribe in that JOIN messages
are extended to further carry the IP address, the listening
port, the credentials and the 32-bit Autonomous System (AS)
number [10] of the initial issuer of the JOIN message (i.e.,
the proxy OAR of the end-host). Note that in the case of
multiple overlay hop paths, this proxy OAR may not be the
OAR that eventually delivers the JOIN message to an already
joined node. This information is used during cache searching
and provisioning, as explained below.

During the joining process, the OARs establish TCP connec-
tions with their descendants in the tree, to ensure the reliable
delivery of the requested data. When a JOIN message even-
tually reaches the RV point, the content provider is solicited
to start delivering data, which then starts traversing the tree

formed by the TCP connections. Note that we assume that the
content provider has already created the respective group, and
has therefore established contact with the RV point. Due to the
asynchronous character of request arrivals, this process may
result in partial data availability at the leafs of the tree at the
end of a multicast session. However, the caching mechanism
ensures that these partial feeds will be able to complete later.

A simple example of these operations is given in Figure 2.
The subfigures depict progressive snapshots of a simple Scribe
tree. The arrays below each OAR denote the availability
of content at each OAR and will be further explained in
Section II-E. OAR 1 first joins a Scribe multicast tree via
OAR 2, followed by OARs 3 and then 5 which join the tree via
OAR 4 during the multicast session. At the end of the multicast
session (end of Step III), OARs 3 and 5 have received only
part of the multicasted content, i.e., they are missing blocks
0-3 and 0-6 respectively. OAR 6 joins after the end of the
multicast session, thus receiving no blocks from it.

D. Caching

Caching plays a vital role in MultiCache. Our goal is to
take advantage of the constantly decreasing cost of storage
space [11] in order to reduce network traffic via localized
cache hits. In MultiCache the proxy OARs, located at the
leaves of the multicast trees, cache the content they receive via
multicast or unicast from other caches, leading to a distribution
of caching locations across the network. We describe below
our caching scheme in terms of cache discovery, indexing state
management and cache space management.

1) Cache discovery: MultiCache uses the already estab-
lished overlay multicast forwarding state to locate caches. The
OARs maintain the forwarding state established during tree
creation, even after the end of a multicast transmission. As
caches are created, CACHE UPDATE messages are issued by
leaf OARs towards the RV point of the multicast tree. The
purpose of these messages is to notify tree ancestors about
the availability of cached items downstream, thus allowing
their discovery upon cache requests. Caches may be fed by
other caches, therefore OARs cannot solely rely on forwarded
traffic to deduce cache availability in their descendants. OARs
propagate received CACHE UPDATE messages towards the RV
point iff they have not already done so for another downstream
cache, thus avoiding feedback implosion.

When an end-host requests a data object, its proxy OAR
creates a Scribe JOIN message, unless it already has a cached
copy (direct cache hit). As in regular Scribe, this JOIN message
is suppressed at the first OAR that has already joined the
respective tree, henceforth termed as a meta-cache OAR. What
happens next, depends on the state of the meta-cache OAR
with respect to the indicated object. If the object has been
cached by the meta-cache OAR itself, the cached data will
be directly delivered to the requesting node. If the object
has not been cached but the meta-cache OAR has previously
forwarded it to its descendants, it will anycast a CACHE
REQUEST message to the sub-tree below it in a depth first
search (DFS) fashion, carrying the information inserted in the
JOIN message. At each level of the traversed sub-tree, this

4 PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947

RV

2 4

31

JOIN
(AS

3
,IP

3
,port

3
)

CACHE
REQUEST

(AS
3
,IP

3
,port

3
,

Blocks: 0-3)

MULTICAST DATA

RV

1

2 4

53

RV

1

2 4

53

2

RV

1

2 4

53

SIGNALINGUNICAST DATA

CACHE
UPDATE

Step I Step II Step III Step IV Step V

3 61

4

5

0 7

RV

Blocks
0-3

Blocks
0-7

Blocks
0-6

Fig. 2. MultiCache example.

message is forwarded to one of the children that have previ-
ously issued a CACHE UPDATE message, giving precedence
to children belonging to the same AS as the requesting proxy
OAR. Among equivalent candidates, randomized selection
ensures a uniform distribution of load. Eventually, the CACHE
REQUEST reaches an OAR that has cached the data, and a
TCP connection is established between the caching OAR and
the proxy OAR to deliver the cached data.

If, however, the meta-cache OAR is currently forwarding the
requested data when it receives a JOIN, it starts forwarding the
arriving multicast data to the joining node, keeping track of
the part of the data object that was not delivered due to the
late arrival of the JOIN message. Upon the arrival of the first
CACHE UPDATE notification from a data receiver, the meta-
cache OAR issues a CACHE REQUEST for the missing data
for each of its partially served children, thereby reverting to
the previous case.

In the example of Figure 2, upon the arrival of OAR 3 the
RV node receives a JOIN message from OAR 4 including OAR
3’s details (Step I). At the end of the multicast session, OAR
1 notifies its parent with a CACHE UPDATE message which is
eventually suppressed by the RV point (Step III). At this point,
having partially served its descendants, the RV point issues a
CACHE REQUEST towards the only child known to lead to a
cache, i.e., OAR 2 (Step IV). Since this node has not cached
the requested item, it forwards the received message to OAR
1, which serves the request (Step V). The same procedure
takes place in the case of OARs 5 and 6, which belong to a
different AS than OARs 3 and 4. OAR 5 joins first and receives
the cached data from OAR 3. Later, OAR 6’s JOIN message
is suppressed by OAR 4, which decides to send a CACHE
REQUEST message to OAR 5, thus resulting in localized traffic
between OARs 5 and 6.

2) Cache eviction: In MultiCache, cache availability is cor-
related with the overlay multicast forwarding state. This allows
requests for content to lead to either multicast-based delivery
or to cache hits, while preserving the locality properties of the
established tree structure (see Section II-D3) and obviating the
need for extra control overhead to discover cached objects. In
practice, this means that cached items are not evicted from
a cache, unless the corresponding multicast forwarding state
is also torn down. Cache eviction is triggered either due to a
need for cache replacement, or due to the invalidation of the
cached content. In the latter case, we consider a time-to-live
(TTL) mechanism to trigger cache eviction upon expiration.
The estimation of the appropriate TTL value is application
specific and out of the scope of this paper. In our content

distribution application described in Section III, we consider
non-versioned content (e.g., media files) with infinite TTL
values.

To synchronize caching and forwarding state, we have
slightly altered Scribe’s leave procedure. When a caching OAR
issues a Scribe LEAVE message for the tree serving a cached
object marked for eviction, this message propagates upstream
until either the first node with additional children or the RV
point is encountered. A LEAVE RESPONSE message is then
sent to the leaving OAR, thus tearing down the forwarding
state and removing the cached data. In contrast, in regular
Scribe the forwarding state is removed immediately upon the
reception of a LEAVE message. This procedure ensures that
all requests for data reach either a caching OAR (CACHE
REQUEST messages) or the RV point (Scribe JOIN messages)
if no other cache location is available. In the latter case, the
content provider is solicited to provide the desired object again
via the established multicast delivery path.

3) Cache replacement: As mentioned above, OARs always
cache the content delivered due to end-host requests. When
cache space is exhausted, a new request triggers a cache
replacement policy to select an item for eviction. Common
replacement policies, such as Least Recently Used (LRU),
attempt to adjust cache contents to request patterns, so that less
popular items will make space for more popular ones, thus in-
creasing the cache hit ratio. In MultiCache, cache replacement
takes advantage of the multiplicity of cache locations inside
an AS. Caching OARs track the frequency and/or recency of
hits for each cached item from other OARs inside the same
AS. Since all content delivered to an OAR is locally cached,
these hits imply that additional copies of the same object
are probably cached nearby. As a result, we also examine
the suitability of the Most Recently Used (MRU) and Most
Frequently Used (MFU) policies: these policies evict items
that are most likely to be available at other cache locations.

It must be stressed that common replacement policies, such
as LRU, refer to the recency/frequency of hits to an entire data
item (file) (henceforth named as LRU Item). In MultiCache,
caching, and therefore cache replacement, takes place at a
fragment level (see Section II-E), allowing partial file caching.
The MFU and MRU policies reflect the existence of additional
cache locations and are therefore enforced on fragments,
regardless of the data item that each fragment belongs to
(henceforth named as MFU/MRU Piece). In this manner there
is no need for control signaling and state management to
associate fragments with the corresponding data items. We
study the behavior of these policies in Section III-C3.

PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 5

MultiCache favors localized cache hits by building upon
Pastry’s locality properties and the multiplicity of cache loca-
tions. According to Pastry’s route convergence property, since
caching OARs are essentially leaves of a Scribe multicast tree,
a Scribe JOIN message from a proxy OAR is expected to
reach a meta-cache OAR at a distance approximately equal
to the distance between the proxy OAR and a caching OAR
in the proximity space. Furthermore, due to Pastry’s prefix
based routing, Scribe JOIN messages are initially expected to
travel short distances at each overlay routing step. Hence, as
demonstrated in [12], in cases of multiple cache locations,
Scribe JOIN messages are expected to first reach nearby meta-
cache OARs, thus leading to closely located caches. In effect,
cache searches and cached data are expected to traverse short
distances with respect to Pastry’s proximity metric, leading to
localized traffic. This is further enhanced by the simple AS
number-based cache selection mechanism (see Section II-D1).

E. Content fragmentation

MultiCache allows the fragmentation of large files into
pieces, as in BitTorrent. This leads to the creation of a
forest of Scribe trees, as in SplitStream [13] but without the
explicit goal of creating disjoint trees. Fragmentation serves
several important goals. First, it facilitates the establishment
of parallel data flows towards a recipient node, potentially
better exploiting the available downlink bandwidth. Second,
it allows the partial caching of large data items, i.e., each
piece can be cached independently of others, thus enabling
fine grained management of the caching space [14]. Third,
the establishment of partial caches at different network loca-
tions facilitates the distribution of forwarding load and the
localization of traffic. However, these benefits come at the
cost of forwarding state, which increases with the size of
the resulting forest. Pieces are further partitioned into blocks,
again as in BitTorrent. This second level of fragmentation
facilitates the provision of data from multiple sources. For
example, as explained in the previous section, an OAR may
join a multicast tree while data are in transit, in which case
the earlier (missing) blocks will be later provided by a cache.

III. EVALUATION

As a realistic case study for the evaluation of our archi-
tecture, we designed a MultiCache-based content distribution
application that can be directly compared with BitTorrent. In
this application, a content provider employs content fragmen-
tation to create multiple trees for the delivery of a single file.
Fragment identifiers are retrieved by end-hosts out-of-band,
e.g., a MultiCache-torrent file. To reduce forwarding depen-
dencies [15], we assume that piece identifiers are selected so
as to ensure that the RV point for each piece will be an OAR
residing at the content provider’s AS. End-hosts connect to
their proxy OAR and submit requests for pieces of the file.
The number of simultaneous pending requests is capped as
in BitTorrent. Each node submits its requests independently
of other end-hosts, since we cannot assume any form of
collaboration between them.

Content distribution via BitTorrent is an obvious case of
information-centric communication, forced by the current,
information agnostic, Internet to be controlled by end-hosts.
Our goals are, first, to examine the degree to which informa-
tion awareness in the network, as introduced by MultiCache,
enables a more efficient utilization of network resources and,
second, to investigate how end user experience is affected. On
the side, we also investigate the performance of MultiCache
with respect to some key parameters.

A. Simulation Environment

The evaluation of MultiCache is based on a detailed full
stack simulation environment based on OMNeT++ [16] and
OverSim [17]. The MultiCache content distribution application
is compared against our own BitTorrent implementation for
OMNeT++[18]. In both cases, the same setup was employed,
including the network topology and link characteristics, the
distribution of hosts across the network and the imposed
workload. In our simulations we used Internet-like topologies
generated by the Georgia Tech Internet Topology Model (GT-
ITM). The simulated topologies comprised 1225 routers, hi-
erarchically organized in 25 stub and 5 transit domains. In
all cases, the default GT-ITM link establishment probabilities
were used.

We generated synthetic request arrival traces for several
files, using features of the ProWGen trace generation tool [19].
To better reflect the characteristics of our applications, we
replaced the Zipf distribution of file popularities with the
Mandelbrot-Zipf distribution, as proposed in [14]. A certain
number of requests is generated for each file in the workload,
depending on the file’s popularity. The requests for each
file follow the exponentially decreasing arrival rate process
described in [20], parameterized according to the popularity
of the corresponding file. We interleave in time these single file
traces by placing the first request of each file at a constant time
interval after the first request for the previous file, reflecting the
constant torrent arrival rate observed in BitTorrent in [20]. File
sizes were sampled from the traces in [21]. Content providers,
one per file, are uniformly distributed across the entire net-
work, and each generated request is then assigned to one
of the 100 end-hosts we attached at randomly chosen access
routers. We used the same workload for both MultiCache and
BitTorrent.

We considered different bandwidth allocations for the uplink
and downlink directions of access links, as current access
technologies, such as ADSL, present this asymmetry. For the
measurements presented below, we employed downlink band-
width values ranging from 4 to 24 Mbps, and uplink bandwidth
values of 1 or 2 Mbps. These values were distributed across
end hosts as in [18]. Backbone routers were connected with
10 GBps links, while 1 GBps links connected access routers.

B. Evaluation framework

The utilization of network resources is measured in terms of
the egress inter-domain traffic (EIT) and intra-domain traffic
load (ITL) incurred for the delivery of the content. The EIT
metric reflects the total number of bytes of egress traffic

6 PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947

at each stub AS, thus expressing the amount of traffic that
network operators must pay for in order to reach a transit
domain. The ITL metric measures the aggregate number of
block transmissions over all links of an AS, allowing us to
assess the load imposed within each administrative domain.
The user experience is assessed by comparing the download
time (DT) experienced by end-hosts in each case.

In order to explore the properties of our caching scheme, our
first metric is the achieved cache hit ratio (CHR). To further
study the localization of traffic within AS boundaries, we also
measured the intra-domain cache hit ratio (CHR-Intra), which
only reflects cache hits on OARs residing in the same AS as
the requesting end-host. Finally, to quantify the locality of data
transfers, we measured the distance to block source (DBS),
that is, the average number of physical hops traversed by
blocks arriving at end-hosts.

Following the methodology in [22], we considered relative
cache sizes (Sr), i.e., cache size is expressed as a fraction
of the “infinite cache size”, or the minimum cache size
required to avoid replacements. We also examined the effect on
these metrics of the MultiCache deployment density parameter
d ∈ [0, 1], defined as the fraction of access routers enhanced
with MultiCache functionality. In the example deployment of
Figure 1, the density for domain A is dA = 2/8 = 0.25 while
for domain B it is dB = 1. In this paper, we assume uniform
density values across all AS’s. Unless otherwise stated, results
refer to scenarios with d = 0.5, i.e., intermediate deployment
density.

C. Results

1) Traffic: Fig. 3(a) and 3(b) presents the CDF of the EIT
and ITL metrics for the intermediate scenario of d = 0.5. In
both cases, MultiCache achieves a substantial decrease in the
traffic incurred: on average, it reduces EIT by 53.19% and ITL
by 61.39%. This reduction is due to the localization of traffic
through caching, as further demonstrated by the CHR metrics
(see Section III-C4). At the same time, MultiCache avoids
the exchange of data between end-hosts as in BitTorrent. This
is evident in Figure 3(a), where we notice consistently low
EIT values for almost 70% of the MultiCache enabled AS’s,
i.e., end-hosts do not generate inter-domain traffic in order
to retrieve the desired content, instead taking advantage of
previous downloads. This is a direct benefit of the information-
centric network model and the caching mechanism employed,
which enable network operators to regain control of the
traffic carried by their networks. An emerging question then,
is whether this incurs a penalty in the quality of service
experienced by end users.

2) User Experience: Fig. 3(c) presents the CDF of the
download times achieved with MultiCache and BitTorrent,
over all downloaded items. The DT perceived with MultiCache
is on average 62.64% lower than that of BitTorrent. This huge
reduction is due to three factors. First, caching allows content
to be locally stored and provided, as verified by the achieved
CHR (see Section III-C4) and the average number of hops
traversed by data blocks: with BitTorrent it is 8.6 hops, while
with MultiCache it drops to approximately 6 hops. Second,

with MultiCache end-hosts do not engage in a search for
the required data among participating peers. This is a direct
consequence of the information-centric model, where users
simply request data from the network. Third, the download
rate of end hosts is not capped by the uplink of their peers,
but by the forwarding capacity of the OARs, which is typically
higher.

3) Cache size and replacement policies: Fig. 4(a) and 4(b)
shows the CHR and CHR-Intra achieved with the LRU
Item/Piece and MFU/MRU Piece cache replacement policies,
for relative cache sizes (Sr) between 0.5% and 20%. Interest-
ingly, all policies, except for LRU Piece, exhibit approximately
the same behavior. As noted earlier, the LRU Item policy
works at the item (file) level, capturing the popularity of the
entire delivered item, while the MFU/MRU Piece policies
work at the fragment level, reflecting the existence of addi-
tional caches throughout the domain. The LRU Piece policy
however, despite operating at the fragment level, does not
take advantage of the existence of additional cached replicas,
resulting in a considerably lower CHR-Intra than the others.
This is because it evicts items that are not widely cached in
the domain, causing subsequent CACHE REQUEST messages
to leave the domain. This is the reason for the increased DBS
of the LRU Piece policy, as shown in Fig. 4(c).

In all cases, the CHR reaches values of up to 98.5% for
higher Sr values, thus reducing the amount of data delivered
via overlay multicast by taking advantage of caches throughout
the entire network. As a result, MultiCache reduces the impact
of overlay multicast stretch, taking advantage of Pastry’s
proximity properties to locate nearby copies of the desired
data. This is clearly demonstrated in Fig. 4(c): as the cache size
increases, the average DBS decreases, as content is delivered
from nearby caches. As all cache replacement policies perform
similarly, we ended up adopting the MFU policy due to its
simple implementation.

4) Deployment Density: Since MultiCache necessitates the
deployment of additional infrastructure by network operators,
in the form of OARs, a crucial issue for its viability is the
required level of investment. Fig. 5(a) shows that even though
the CHR increases with deployment density, for relative cache
sizes ranging from 2.5% to 20% the perceived CHR is always
greater than 80% at a deployment density of 25%; it does not
drop below 60% even for the lowest deployment densities.
Fig. 5(b) shows that CHR-Intra ranges from 35% to 88%
for higher relative cache sizes, meaning that this portion of
traffic does not leave the originating domain, thus explaining
the observed reduction of EIT and ITL (see Section III-C1).
This figure also reveals a tradeoff regarding the deployment of
additional OARs. On the one hand, increased deployment den-
sity results in an increase of the total caching space available.
On the other hand, dense deployments do not fascilitate request
aggregation at proxy OARs, as they distribute the load among
the proxy OARs, allowing CACHE REQUESTS to also leave
the domain. Hence, the CHR-Intra initially increases with
deployment density, but at a deployment density close to 18%
it starts dropping again, due to the reduction of direct cache
hits at proxy OARs. Therefore, the modest investment required
to achieve a deployment density of 20-50% is sufficient to reap

PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 5000 10000 15000 20000 25000

C
u

m
u

la
ti
v
e

 P
ro

p
o

rt
io

n
 o

f
A

S
’s

Interdomain traffic (MB)

MultiCache
BitTorrent

(a) Egress inter-domain traffic (EIT)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0e6 2.0e6 4.0e6 6.0e6 8.0e6 10.0e6 12.0e6

C
u

m
u

la
ti
v
e

 P
ro

p
o

rt
io

n
 o

f
A

S
’s

Intradomain Link Stress

MultiCache
BitTorrent

(b) Intra-domain traffic load (ITL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 5000 10000 15000 20000 25000

C
u

m
u

la
ti
v
e

 P
ro

p
o

rt
io

n

 o
f

D
o

w
n

lo
a

d
s

Download Time (sec)

MultiCache
BitTorrent

(c) Download time (DT)

Fig. 3. MultiCache content distribution application vs. BitTorrent (d = 0.5).

all the benefits of MultiCache.

IV. ANALYSIS

Introducing information-awareness into the network relies
on the scalable representation and handling of information.
In MultiCache, information is represented by flat identifiers
handled in two layers. First, the underlying Pastry DHT is
responsible for the key-based routing that enables the overlay
multicast functionality. As demonstrated in [3], Pastry presents
good scaling properties, as its routing state increases logarith-
mically with the size of the overlay. In addition, OARs are
expected to present lower churn rates compared to end-hosts,
where Pastry normally resides, thus further reducing routing
information exchange overhead. Second, the Scribe overlay
multicast scheme requires additional forwarding state, further
augmented by MultiCache specific state, i.e., the AS number
of a joining OAR and a bitfield for monitoring content delivery
(see Sections II-C and II-D1). In this section we investigate
the scalability properties of MultiCache, in order to assess the
amount of resources required to support it. To this end, we
study two important aspects of the load imposed on OARs,
namely, the structural characteristics of the Scribe overlay
multicast trees, which dictate the distribution of the forwarding
load, and the size of the imposed workload. Table I provides
a summary of the notation employed hereafter.

A. Overlay multicast tree properties

The impact of deployment density on the resulting multicast
trees is expressed through the size of the overlay, i.e., the
total number of deployed OARs, No. To simplify our analysis,
we assume that all AS’s adopt MultiCache and focus on
the intradomain deployment density (d), assumed to be the

U Number of end hosts
N Number of access routers
No Number of overlay access routers
D Number of domains
Ri Number of access routers in domain i
d Deployment density
Li Probability Mass Function of shortest overlay distance in Pastry
b Pastry configuration parameter
Cj

i Number of end host requests for item j at tree level i
Ji Average number of forwarding links at tree level i
Ki Average number of forwarding state entries per node at tree level i
M Number of files distributed
P MultiCache piece size (MB)
Q Average file size (MB)

TABLE I
ANALYSIS NOTATION

same across all AS’s. Hence, we have N =
∑D−1

i=0 Ri and
No = dN . We also assume that end-hosts are uniformly
dispersed in the network and that requests submitted to the
same OAR for the same data are aggregated and, ultimately,
served via a single subscription. Following [23], we express
the probability of the shortest overlay distance between two
Pastry nodes being i hops with a binomial distribution Li,
where p = 1

2b
and b is the Pastry configuration parameter:

Li =

(
log

2b
No

i

)
pi(1− p)log2b

No−i (1)

If C is the total number of end hosts that request a certain
item, we calculate the total number of leaves Ci that are i
hops away from the root of the respective tree as follows:

Ci = min[CLi, NoLi] (2)

8 PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947

 0

 20

 40

 60

 80

 100

0.5%2.5% 5% 10% 20%
 C

ac
he

 h
it

ra
tio

 (
%

)

Relative cache size (Sr)

LRU Item
LRU Piece
MFU Piece
MRU Piece

(a) Cache hit ratio (CHR)

 0

 20

 40

 60

 80

 100

0.5%2.5% 5% 10% 20%

 In
tr

a-
do

m
ai

n
ca

ch
e

hi
t r

at
io

 (
%

)

Relative cache size (Sr)

LRU Item
LRU Piece
MFU Piece
MRU Piece

(b) Intradomain CHR (CHR-Intra)

 0

 5

 10

 15

 20

0.5%2.5% 5% 10% 20%

 D
is

ta
nc

e
to

 B
lo

ck
 S

ou
rc

e

Relative cache size (Sr)

LRU Item
LRU Piece
MFU Piece
MRU Piece

(c) Distance to block source (DBS)

Fig. 4. Effect of cache replacement policies on MultiCache (d = 0.25).

 0

 20

 40

 60

 80

 100

0.010.10 0.25 0.50 0.75 1

 C
ac

he
 h

it
ra

tio
 (

%
)

 Deployment density (d)

Sr=0.5%
Sr=2.5%

Sr=5%
Sr=10%
Sr=20%

(a) Cache hit ratio (CHR)

 0

 20

 40

 60

 80

 100

0.010.10 0.25 0.50 0.75 1

 In
tr

ad
om

ai
n

ca
ch

e
hi

t r
at

io
 (

%
)

 Deployment density (d)

Sr=0.5%
Sr=2.5%

Sr=5%
Sr=10%
Sr=20%

(b) Intradomain CHR (CHR-Intra)

Fig. 5. Effect of deployment density on MultiCache (MFU).

This equation expresses the aforementioned aggregation of
similar requests at proxy OARs. Then, we calculate the number
of forwarding links Ji at each level i of a multicast tree, by
considering the number of leaf nodes at each level of the tree,
as well as the number of forwarding links towards leaf nodes
residing at lower levels. Two forwarding links from level i to
i + 1 of a multicast tree stem from the same node at level i
with probability:

Si = 1− (1− 1

No · Li
)Ji (3)

This equation expresses the portion of forwarding links merg-
ing at level i nodes, that is, at each level i of the tree, SiJi
links merge on some node(s) at that level. At the one extreme,
these links may all merge at a single node (hereafter called
the MaxMerge case), thus incurring a single forwarding link
at level i− 1. At the other extreme, they may merge in pairs
incurring SiJi

2 forwarding links at level i− 1 (hereafter called
the MinMerge case). Fig. 6, illustrates both cases. We calculate
Ji beginning from the lowest level of the tree, where all

forwarding links lead to leaf nodes. Then, traversing the tree
towards the root, we take the two boundary merging cases and
calculate the number of forwarding links that are required for
the data to reach the lower, already visited, levels of the tree.
At each level i, part of these forwarding links passes through
non-leaf, forwarding nodes at level i + 1, and the remainder
passes through leaf, forwarding nodes of that level, i.e., nodes
that both consume and forward the received data. Additional
forwarding links are also considered for all leaf nodes of the
next level that do not act as forwarders. Hence, Ji is calculated
as follows:

Ji = Fi(1−min[
C

No
, 1]) + Ci+1 (4)

Fi =

{
(1− Si+1)Ji+1 + 1 , MaxMerge case
(1− Si+1)Ji+1 +

Si+1Ji+1

2 , MinMerge case
(5)

Next, we calculate Ki, the average number of children entries
maintained at a level i OAR, assuming that the nodes residing

PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 9

Level i

Level i+1

Max Merge Min Merge

Level i-1

Fig. 6. Boundary merging cases.

at each level of the multicast tree share equally the forwarding
links to the next level of the tree.

Ki =

{
Ji

Ji−1
, i > 0

Ji , i = 0
(6)

B. Workload impact

Based on the properties of the created overlay multicast
trees, we first determine the workload imposed by the end
users and then calculate the amount of forwarding state
required per OAR to support it. To this end, we focus our
analysis on a simple content distribution scenario where a
MultiCache enabled network distributes M files to the end
hosts of the network. We simplify our analysis with the
following assumptions:

1) All delivered files have equal size Q.
2) Each file is fragmented into pieces of size P and

Q%P = 0, i.e., for each distributed file exactly Q
P

multicast trees are formed.
3) We study the properties of the resulting trees once all

recipient OARs for each file have joined the respective
multicast trees.

The size of the resulting workload depends on file popularity,
which ultimately determines the size of the resulting delivery
trees. We model the popularity of files j ∈ [1,M], with a
Mandelbrot-Zipf distribution P (j) [14]. We normalize this
distribution so that the most popular item is requested by all
end hosts (U), and calculate the total number of requests per
file j:

Cj =
P (j)

P (0)
· U (7)

Note that the actual number of leaf nodes is determined by
deployment density (see Equation 2). Moreover, due to content
fragmentation, Cj translates to an equal number of requests
for each of the Q

P resulting pieces.
Based on the above, we can calculate the forwarding state

load for each tree by first deriving the total number of requests
and then employing Equations 1 to 6. Note that, on the
average, all OARs may act as forwarders for each tree with
equal probability. Additionally, a forwarding OAR is equally
likely to reside at any level of the respective tree. Hence, we
evenly distribute the resulting load to all No OARs in the
network. Fig. 7(a) presents the forwarding state required per
OAR, for a sample scenario with N = 2400, U = 1500,
M = 500, Q = 16 MB, P = 16 MB, derived via both

analysis and simulation. The agreement between the two
methods is notable, especially in denser deployments. For
sparser deployments, the analysis overestimates the forwarding
state required.

Due to simulator limitations, we turn to the analytical model
to investigate the scaling properties in the case of much larger
topologies and workloads. Figure 7(b) presents the aggregate
forwarding state at each OAR, for various workload sizes
and deployment densities. In the scenario depicted, we have
considered a network of 15,000 access routers with 10,000
uniformly dispersed end-hosts. The various workload sizes
refer to files of size Q = 656 MB, i.e., close to the median
file size (651 MB) observed in [21], and P = 16MB. We
consider a 256-bit memory footprint for each forwarding entry,
consisting of the 128-bit Pastry ID of the target OAR along
with its 32-bit IP address, the 32-bit AS number and a 64-
bit bitfield for monitoring the forwarded content (considering
256 KB blocks). Note that keeping track of cache availability
indicated by CACHE UPDATE messages does not require
additional state, as this information can be marked on the
bitfield. The results shown are the average of the MaxMerge
and MinMerge cases. We can see that even in the highest
workload case, the memory footprint for forwarding state does
not exceed 5 MB, demonstrating the scalability of MultiCache.

V. RELATED WORK

Information centric networking has caught the attention of
the research community during the past few years (e.g., [9],
[24], [25]). The PSIRP Project [9] follows a clean-slate
approach, proposing a network architecture based on the Pub-
lish/Subscribe paradigm. The end-to-end principle is replaced
by a flexible and expressive rendezvous system that acts as
a mediator for locating information, combined with source
routing based on zFilters i.e., a variant of Bloom filters used to
compress delivery paths inside packet headers [26]. As PSIRP
considers a network architecture unconstrained by existing
Internet functionality, it raises important deployment concerns.
MultiCache attempts to overcome these concerns by following
an evolutionary approach, building on top of the existing
architecture in an overlay fashion.

The Content Centric Networking (CCN) architecture [24]
also aims at replacing the end-to-end, conversational model of
the current Internet architecture, focusing instead on informa-
tion. In CCN, content is requested with Interest packets
that flood the network, leaving reverse path information at
crossed routers. Data packets follow these trails in order to
reach the origin of the request. A hierarchical structure is
employed to represent the content name space in a scalable
manner. CCN can be incrementally deployed on top of IP,
as is the case of MultiCache. However, there are scalability
concerns when considering inter-domain level routing and
forwarding, stemming from the enormous size of the content
namespace, which have not been tackled yet. In MultiCache,
these concerns are addressed with the logarithmic properties
of the underlying Pastry DHT and the demonstrated scalability
of Scribe which efficiently distributes multicast forwarding in-
formation [2]; we further investigated this issue in Section IV.

10 PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947

 2

 3

 4

 5

 6

 7

 8

 9

 10

0.25 0.50 0.75 1

 F
or

w
ar

di
ng

 S
ta

te
 (

K
B

)

 Deployment density (d)

Simulation
Analysis - MaxMerge
Analysis - MinMerge

(a) Analysis vs. Simulation

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

0.25 0.50 0.75 1

 F
or

w
ar

di
ng

 S
ta

te
 (

K
B

)

 Deployment density (d)

M=10000
M=20000
M=40000
M=80000

(b) Analysis: high workload

Fig. 7. Forwarding state per OAR

MultiCache shares some important design features with the
DONA architecture [25]. The latter builds an overlay content
centric layer based on Resolution Handlers (RH) which are re-
sponsible for content centric routing, allowing nearby locations
of the desired content to be located via anycast. Unlike DONA,
MultiCache focuses on resource sharing and further delves
into the details of the data delivery plane, enabling the joint
provision of multicast and caching. In MultiCache, deploying
multiple OARs inside an administrative domain becomes the
norm, allowing the existence of multiple caching locations,
this enabling traffic localization and improving end-user ex-
perience. Unlike MultiCache, DONA only allows clients to
benefit from caching locations on the path towards the root
level of the RH hierarchy.

The Cache-and-Forward (CNF) architecture follows a sim-
ilar approach, by employing content-based routing on top of
IP and providing caching services by in-network devices [27].
However, it is hard to engage in a detailed comparison with
MultiCache, as the architecture is still shaping, with some
major design decisions and features not yet finalized (e.g.,
name resolution, multicast) and only a preliminary set of
simulation results available.

At the application level, SplitStream [13] stripes content to
produce a forest of disjoint Scribe trees in order to spread the
forwarding load. While MultiCache is orthogonal to this effort,
we note that the employed tree-reconfiguration mechanisms
may result in parent-child relationships violating the locality-
related properties MultiCache is based on [28].

The excessive amount of traffic generated by P2P appli-
cations has motivated considerable research (e.g., [1], [29]).
Often, co-operation between ISPs and P2P applications is
proposed to allow the former to provide rich underlay in-
formation to the latter, so as to improve the decisions made
during peer selection. Though reducing the consumption of
network resources and localizing traffic, these approaches
maintain the current end-point centric paradigm, providing
a P2P specific solution. In contrast, MultiCache attempts to
establish a radically different networking paradigm, where
the network focuses on information rather than on end-hosts,
multicast and caching are the norm and the usage model is
substantially simplified.

VI. CONCLUSIONS AND FUTURE WORK

The information-centric networking paradigm has drawn
the attention of the research community, due to its ability to
express current network usage patterns, which have shifted
from the traditional conversational model. In this paper, we
have presented MultiCache, an overlay network architecture
realizing the information centric model. The overlay character
of this approach targets an incremental, evolutionary transition
process, enabling the gradual deployment of the proposed
functionality. In our architecture we build on information-
awareness for the joint deployment of resource sharing mech-
anisms such as caching and multicast. Simulation results have
demonstrated the considerable benefits of the proposed archi-
tecture compared to the BitTorrent application. By investing
in even sparse deployments of MultiCache, network operators
can regain control of network traffic, significantly reducing the
load imposed on their infrastructure, while at the same time
providing their end-users with substantially reduced download
times.

Our next steps focus on improving the adaptation of the
MultiCache architecture to the structure of the current Internet.
Our target is to depart from our flat overlay design, so as to
better reflect the relationships between AS’s in MultiCache.
To this end, we have designed a hierarchical version of Pastry,
based on the Canon paradigm [30], that can provide network
operators with finer control of interdomain service provision.

VII. ACKNOWLEDGEMENTS

The work reported in this paper was supported by the EU
FP7 ICT PSIRP project under contract ICT-2007-216173.

REFERENCES

[1] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?” in Proc. of
the 2005 ACM/USENIX IMC, 2005, pp. 1–6.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE:
A large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE JSAC, vol. 20, no. 8, pp. 100–110, 2002.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale Peer-to-Peer systems,” in Proc. of
the 2001 Middleware Conference, 2001, pp. 329–350.

[4] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp.
114–131, 2003.

[5] K. Katsaros, N. Bartsotas, and G. Xylomenos, “Router assisted overlay
multicast,” in Proc. of the 2009 Euro-NGI Conference on Next Genera-
tion Internet Networks, 2009, pp. 329–350.

PUBLISHED IN: COMPUTER NETWORKS, VOLUME 55, NUMBER 4, 2011, 936–947 11

[6] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a DHT,” in Proc. of the 2004 USENIX ATEC. Berkeley, CA, USA:
USENIX Association, 2004, pp. 10–10.

[7] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma, “Incentive-
compatible caching and peering in data-oriented networks,” in Proc.
of the 2008 ACM CoNEXT. New York, NY, USA: ACM, 2008, pp.
1–6.

[8] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz, “Bayeux:
an architecture for scalable and fault-tolerant wide-area data dissemina-
tion,” in Proc. of the 2001 ACM NOSSDAV, 2001, pp. 11–20.

[9] PSIRP Project, PSIRP Home Page, http://www.psirp.org, 2010.
[10] IANA, “Autonomous System (AS) Numbers,”

http://www.iana.org/assignments/as-numbers/as-numbers.xml, 2010.
[11] I. Smith, “Historical notes about the cost of hard drive storage space,”

http://ns1758.ca/winch/winchest.html, 2010.
[12] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scalable

application-level anycast for highly dynamic groups,” in Proc. of the
2003 Networked Group Communication Workshop, 2003, pp. 47–57.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” in Proc. of the 2003 ACM SOSP, 2003, pp. 298–313.

[14] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for Peer-to-Peer systems,” IEEE/ACM ToN, vol. 16, no. 6, pp.
1447–1460, 2008.

[15] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment issues for the IP multicast service and architecture,” IEEE
Network, vol. 14, no. 1, pp. 78–88, 2000.

[16] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proc. of the 2008 ICST SIMUTools, 2008, pp. 1–10.

[17] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay net-
work simulation framework,” in Proc. of the 2007 IEEE GI Symposium,
2007, pp. 79–84.

[18] K. Katsaros, V. Kemerlis, C. Stais, and G. Xylomenos, “A BitTorrent
module for the OMNeT++ simulator,” in Proc. of the 2009 IEEE
MASCOTS, 2009, pp. 361–370.

[19] M. Busari and C. Williamson, “ProWGen: a synthetic workload gen-
eration tool for simulation evaluation of web proxy caches,” Computer
Networks, vol. 38, no. 6, pp. 779–794, 2002.

[20] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A
performance study of BitTorrent-like peer-to-peer systems,” IEEE JSAC,
vol. 25, no. 1, pp. 155–169, 2007.

[21] A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the use of
BitTorrent as the basis for a large trace repository,” University of
Massachusetts Amherst, Tech. Rep., June 2004.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[23] V. Pappas, D. Massey, A. Terzis, and L. Zhang, “A comparative study
of the DNS design with DHT-based alternatives,” in Proc. of the 2006
IEEE INFOCOM. IEEE, 2006, pp. 1–13.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of the 2009
ACM CoNEXT. New York, NY, USA: ACM, 2009, pp. 1–12.

[25] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proc. of the 2007 ACM SIGCOMM. New York, NY,
USA: ACM, 2007, pp. 181–192.

[26] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “LIPSIN: Line speed publish/subscribe inter-networking,”
in Proc. of the 2009 ACM SIGCOMM. New York, NY, USA: ACM,
2009, pp. 195–206.

[27] L. Dong, H. Liu, Y. Zhang, S. Paul, and D. Raychaudhuri, “On the cache-
and-forward network architecture,” in Proc. of the 2009 IEEE ICC, jun.
2009, pp. 1 –5.

[28] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and
H. Zhang, “The impact of heterogeneous bandwidth constraints on DHT-
based multicast protocols,” in Proc. of the 2005 IPTPS, 2005, pp. 115–
126.

[29] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz, “P4P:
Provider Portal for Applications,” in Proc. of the 2008 ACM SIGCOMM.
New York, NY, USA: ACM, 2008, pp. 351–362.

[30] P. Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon in G Major:
Designing DHTs with Hierarchical Structure,” in Proc. of the 2004
ICDCS, 2004, pp. 263–272.

