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Abstract—The low cost and ease of installation of Wi-Fi
equipment operating in unlicensed spectrum have made dense
Wi-Fi deployments a reality in most modern urban areas. With
the lack of many non-overlapping frequencies to operate on,
interference among neighbor Wi-Fi cells can cause significant
performance degradation. Here we study the problem of topology
discovery in such dense deployments, which is necessary in order
to combat interference. To this end, we apply a client-driven
scheme, where client devices sense the spectrum and report
overlapping cells. However, reporting entities cannot always be
assumed trustworthy. We therefore study cases where reporters
attack the discovery process by submitting fake information
and propose simple countermeasures to tackle some attacker
strategies. We show analytically and via simulations that, in
realistic urban scenarios, our mechanisms are effective, even in
the presence of a large number of attackers.

I. INTRODUCTION

With the proliferation of IEEE 802.11-based WLAN equip-
ment, Wi-Fi pervades modern metropolitan areas. Residential
users, municipalities, university campuses and Wireless ISPs,
among others, set up Access Points (APs) for public or
private access. The low cost and ease of installation of Wi-Fi
equipment, as well as its operation in unlicensed spectrum are
the main reasons for its popularity. While in densely populated
urban areas wireless coverage is no more an issue, unplanned
and anarchic deployment of Wi-Fi networks comes with the
cost of interference. For IEEE 802.11b/g there are only 3
non-overlapping frequency bands (channels) on which a Wi-Fi
cell can operate. In the scenarios we study, the probability of
coexistence of more than 3 WLANs at the same spot is high.

Combating interference in chaotic WLAN deployments
necessitates sophisticated interference mitigation strategies by
means of transmission power control or frequency selection,
among others. Information on the topology of the network
is vital input to such schemes. Discovering the topology of
Wi-Fi deployments requires detecting overlapping Wi-Fi cells
sharing common spectrum, but also collecting information
about the number of clients affected by interference.

Such information can be reported by the wireless infras-
tructure (APs) or the clients themselves. There are significant
advantages in involving clients in this process. First, reports by
clients offer a user-perceived view of interference conditions,
which an AP-centric scheme might fail to capture. Second,
client density is typically higher than that of APs, thus a client-
centric topology discovery scheme offers greater coverage,
also exploiting user mobility.

In a different context, the density of wireless APs in
metropolitan areas has made it possible to build Wi-Fi-based

positioning systems based on recorded AP beacons [1]. This
requires extensive site surveying to correlate AP beacons with
locations. Delegating the task of AP mapping to roaming
clients could offer similar coverage advantages.

In any case, it should be noted that in order for such schemes
to be successful, reporting entities should be trustworthy. Oth-
erwise, effective countermeasures need to be in place to filter
fake information (or erroneous feedback due to equipment
failures). There may be disincentives to contribute truthful
feedback, such as the overhead of spectrum monitoring 1. Also,
in a competitive environment where clients subscribed with
different Wi-Fi service providers visit one another’s hotspots,
one may be tempted to submit fraudulent reports to manipulate
the spectrum sharing mechanism to his affiliated provider’s
advantage, in return for better service or other benefits. Fake
reports pollute the system’s view of interference conditions
and, consequently, affect interference mitigation mechanisms.

In this paper, we study reporting schemes for discovering
Wi-Fi topology that involve client participation. Our particular
focus is on their security and robustness. Our contribution is
the study of specific classes of attacks and the development
of simple countermeasures based on majority rules. For real-
istic client and AP densities in urban settings [2], we show
analytically and via simulations that, even when there is a
large percentage of attackers, our mechanisms perform well
in discovering network topology.

II. SYSTEM MODEL

We model our system as a weighted undirected graph.
Vertices of the Coverage Graph (CG) represent APs and edges
represent coverage overlap between neighbor Wi-Fi cells. As
shown in Fig. 1, there are two cases of overlap. In the first
case (Type-1 edges), two APs are within range of each other.
Even if no clients are there to report it, the operation of both
cells will be affected. In the second case (Type-2 edges), two
APs are not within range of each other, but clients or other
APs are located in the overlap area. The weight of an edge is
a function of the number of reports about it and captures user-
perceived interference. High-weight edges should be more
carefully considered while assigning channels or adapting the
transmission power of the respective APs, since they affect
more users. Our model is very similar to the one proposed by
Mishra et al. [3].

1An IEEE 802.11 active scan may take more than 250ms, during which
time the client station cannot transmit/receive application data. More advanced
spectrum usage measurements may be more time consuming.
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Fig. 1. The Coverage Graph. A-B is a Type-1 edge. If we assume a system
where only clients submit reports, this edge will not be reported. B-C is a
Type-2 edge.

The basic components of our system are the reporting
entities and the collector. Reporting entities can either be APs
or clients, although our system focuses on the latter. Based on
reports, the aim of our system is to expose as many edges as
possible; clients situated in areas where neighbor cells overlap
report this fact, together with details about cell operation
(channel number, received signal strength, etc.) to the APs they
are attached to, and the latter forward reports to the collector,
which is a centralized entity maintaining the reported CG. The
recently standardized IEEE 802.11k [4] protocol could be used
by clients and APs in the reporting process. Fig. 1 shows an
instance of the CG where each report contributes a unit to an
edge’s weight, but this may not always be the case, as we will
explain in Section III.

Reporting to the AP a client is attached to is not a strict
requirement, since the client could directly communicate its
measurements to the collector. This would make the system
easier to deploy, since it would not require any modifications
to the AP functionality. In the scenarios we study (see Sec-
tion III), though, knowledge about which AP a client reports
to may be necessary. In some centrally-managed deployments,
as is the case in corporate WLANs, this information can be
readily available to the controller. For simplicity and presen-
tation clarity, we will assume, as well, that this information is
available to the collector.

It should be noted that edges may not always be detected,
due to lack of reporters located there (see for example the A
- B edge in Fig. 1). Also, since reporters may misbehave, the
reported CG does not necessarily encode the actual network
topology. Fraudulent reports contribute fake CG edges. Our
mechanisms aim at eliminating these edges and accurately
representing true coverage and interference.

We do not assume that reports are trustworthy, but we
assume that they are authenticated and that appropriate mech-
anisms are in place to ensure that a single user cannot send
multiple reports in small timescales to deliberately increase
the weight of particular edges. Authentication can limit Sybil
attacks, but does not exclude collusion among reporters. The
exact implementation of such protection mechanisms will be
the topic of future work. Also, in this work, we assume that
APs are always trustworthy.

III. ATTACKS AND FILTERING MECHANISMS

We study two attack scenarios, for which there are different
underlying assumptions as to user-AP affiliations. For each
scenario, we devise simple filtering rules to effectively exclude
fake edges from the CG. The intuition behind our filtering
mechanisms is that for an edge to get accounted for, there
should be sufficiently many reports about it. This consensus-
based scheme comes with the cost of filtering edges which are
not reported by many clients. However, bearing in mind that
we model user-perceived interference, few reports about an
edge indicate few affected users and are, thus, less important.
Our analysis shows that for realistic urban Wi-Fi deployments
where client density is high, our mechanisms perform well.
A. Scenario 1: independent attackers

In the first scenario, we do not assume any user-provider
affiliations or other trust relationship. Clients act independently
and their reports are considered of equal weight. For each
interfering AP pair reported, a unit is added to the respective
edge’s weight. We assume no cooperation among attackers,
each of whom submits reports containing a number of random
fake AP identifiers. If we assume that the probability that
two or more attackers report the same fake edge is negligible,
each fake report contributes unit-weight edges to the CG, as
well as fake vertices for each fake AP. These edges connect a
real vertex (corresponding to the AP the reporter is associated
with) to fake ones. Also, fake edges among fake vertices are
added. The above lead us to the following observation.

Observation 1. In the first scenario, pruning all unit-
weight edges eliminates the probability that a fake edge
appears in the CG.

Thus, to combat this attack, we simply remove unit-weight
edges from the reported CG.

B. Scenario 2: colluding attackers
In the second scenario, APs belong to a number of compet-

ing Wireless Internet Service Providers (WISPs) and each user
is affiliated with one of them. There are two classes of users:
roamers, i.e., those attached to APs belonging to “foreign”
WISPs and non-roamers. Non-roamers always submit truthful
reports, while roamers are not always honest and may form
colluding groups as follows: Dishonest roamers affiliated with
provider A currently attached to a single AP of provider B,
agree to report the same fake set of random APs. The filtering
scheme of the first scenario is useless here; these fake reports
would contribute edges with higher weight to the CG, which
the filtering mechanism would fail to detect.

To counter this attack, each AP values more reports that
originate from trusted clients, i.e., clients affiliated with the
same provider. Roamer reports are discounted so that their
cumulative weight per AP does not exceed that of a single
trusted report. Based on the number of roamers associated with
it, each AP independently calculates the weight w assigned to
the reports of each of these n roamers so that

w =
1
n
− e, 0 < e� 1. (1)
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After discounting, a roamer’s report is forwarded to the
collecting entity. Now, for each pair of APs contained in it, the
weight of the respective CG edge is incremented by w. The
filtering mechanism prunes all CG edges which have weight
less than 1. The following conditions are sufficient for an edge
to be detected: (1) At least 1 non-roamer reports the edge, or
(2) there are sufficiently many roamers reporting it, so that the
sum of the weights of their reports is at least 1.

One should bear in mind that not all roamers reporting an
edge need be assigned the same weight, since they may be
attached to different APs, which may in turn have a different
number of roaming users attached to them. The above process
strictly bounds the weight of an edge reported by a colluding
group below 1, which leads us to the following observation:

Observation 2. In the second scenario, pruning all edges with
weight less than 1 eliminates the probability that a fake edge
appears in the CG.

In both scenarios, the filtering mechanism’s efficiency is
only limited by potential false negatives, namely, real edges
which fail to reach the unit-weight threshold (to the eyes of
the collecting entity, such a case is equivalent to an attack).

IV. PERFORMANCE ANALYSIS

We analytically determine the detection accuracy of our
scheme in the presence of varying numbers of attackers, for
the two scenarios discussed in Section III. Our methodology
involves comparing the actual network topology to the dis-
covered one and our evaluation metric is the percentage of
detected CG edges. We assume idealized conditions, where
AP coverage area is a disk of radius R.

A. Probability that an edge exists

We assume that clients and APs are spatially distributed
following homogeneous Poisson Point Processes (PPP) with
intensities λc and λAP respectively. The area of the overlap
region between two APs is given by the following formula:

A(d) = 2R2cos−1(
d

2R
)− d

2

√
4R2 − d2, (2)

where d ≤ 2R is the distance between the two APs and
R the cell radius, which we assume constant. Therefore, the
probability that n clients are located in such a region is

P (n, d) = e−λcA(d) (λcA(d))n

n!
. (3)

The probability that n APs are located in such a region
is calculated in a similar fashion. A CG edge exists if the
respective APs are within range of each other (i.e., d ≤ R) or,
otherwise, there is at least one client or one AP in the overlap
area A(d). Thus, given that the distance between two APs is
d, the probability that the respective edge exists in the CG is
given by:

Pedge(d) =

{
1 if 0 ≤ d ≤ R
1− e−(λc+λAP )A(d) if R < d ≤ 2R

(4)

B. Neighbor distance distribution

We assume that APs are PPP-distributed. Let X be the
random variable representing the distance between an AP A
and a random neighbor AP B picked from a 2R-radius disk
centered at A. The CDF of X is given by

F (x) = P (X ≤ x) =
πx2

4πR2
=

x2

4R2
(5)

and its PDF is given by

f(x) =
x

2R2
. (6)

C. Number of CG edges

From (4) and (6), it follows that from the Npe cases of cell
overlap (potential edges), the number of actual CG edges is:

Ne =
∫ R

0

Npef(x)dx+
∫ 2R

R

Npef(x)Pedge(x)dx. (7)

The first integral in (7) corresponds to neighbor Wi-Fi cells
where the APs are within range of each other and, therefore,
the respective edge exists in the real CG, even if no clients
are located in the overlap area (Type-1 edges). The number of
d-distance such edges is Npef(d).

The second integral refers to Type-2 edges, where, in order
for an edge to be part of the CG, at least one client or AP
needs to be located in the overlap area; otherwise, no nodes
are affected and the respective edge is ignored. The number
of d-distance Type-2 edges is Npef(d)Pedge(d).

D. Detection probability

We derive the probability that an edge gets detected when
dealing with the attack scenarios that we have described in
Section III and applying the respective filtering mechanisms.
Edges finally accounted for in the CG are those reported by a
sufficient number of clients. The edge detection probability is
also a function of the distance d between the respective APs.

1) Attack scenario 1: An edge exists in the filtered CG if it
is reported by at least 2 clients. Detection probability depends
on the ratio of truthful reporters, since attacker reports are
by definition filtered out (see Observation 1). Each reporter is
truthful with a fixed probability Pt, thus the intensity of the
distribution of truthful reporters is λcPt and the probability
that more than 1 truthful reporters are located in the overlap
region A(d) between two APs is

Pd(d) = Pr{more than 1 truthful reporters in area A(d)}
= 1− e−λcPtA(d)λcPtA(d)− e−λcPtA(d).

(8)

2) Attack scenario 2: We consider two Poisson Point
Processes to distribute different types of clients (the main
PPP with intensity λc is split); non-roamers are distributed
with intensity λnr = (1 − Proam)λc and truthful roamers
are distributed with intensity λr = ProamPtλc, where Proam
is the (constant) probability that a client is a roamer and Pt
the probability that a roamer is truthful. All non-roamers are
assumed truthful.
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The mean number of roamers per AP determines the average
roamer report weight. We assume dense AP deployments
where there is full wireless coverage. Thus, every client is
in range of at least one AP. On average, there are Nr =
Nc

NAP
Proam roamers associated with an AP, where Nc is the

total number of clients and NAP the total number of APs.
To calculate the probability that an edge is detected, let X

and Y denote the random variables representing the number
of non-roamers and the number of roamers reporting an edge
respectively. Then, this probability is given by:

Pd(d) = Pr{X > 0}+ Pr{Y >
⌊
Nr
⌋
}Pr{X = 0}

= 1− e−λnrA(d) + (1−
bNrc∑
i=0

e−λrA(d) (λrA(d))i

i!
)e−λnrA(d)

= 1−
bNrc∑
i=0

e−(λr+λnr)A(d) (λrA(d))i

i!
.

(9)

E. Percentage of detected edges

In the absence of false positives, i.e., fake edges in the re-
ported/filtered CG (see Observations 1 and 2), our performance
metric is the percentage of true edges that are discovered. In
Section IV-C, we calculated Ne, i.e., the total number of CG
edges. Using a similar analysis, we can calculate the total
number of detected ones. Of the Npef(d) d-distance Type-1
CG edges, the number of discovered ones is Npef(d)Pd(d).
Also, of the Npef(d)Pedge(d) d-distance Type-2 edges, the
number of discovered ones is Npef(d)Pedge(d)Pd(d). In total,
the number of discovered edges (Nd) is given by

Nd =
∫ R

0

Npef(x)Pd(x)dx+
∫ 2R

R

Npef(x)Pedge(x)Pd(x)dx.

(10)
The performance of our mechanism is thus given by

R =
Nd
Ne

=

∫ R
0
f(x)Pd(x)dx+

∫ 2R

R
f(x)Pedge(x)Pd(x)dx∫ R

0
f(x)dx+

∫ 2R

R
f(x)Pedge(x)dx

.
(11)

V. NUMERICAL RESULTS

In this section we present the results of the performance
analysis of our system. Using AP density information from
a 2007 study [2] and population density data from the 2000
US census, we simulated Wi-Fi deployments corresponding to
the Manhattan and Boston metropolitan areas and measured
the efficiency of our filtering schemes for varying numbers of
attackers for each attack scenario.

For reasons of scalability, we opted to develop our own
custom simulator. APs and clients are PPP-distributed on a
1km × 1km terrain, and AP transmission range is fixed to
100m. Each client submits a report (which may be fake) about
the APs within range and the reported CG is built, filtered
and compared to the actual CG. It should be noted that we

TABLE I
SIMULATOR SETTINGS

Manhattan Boston

AP density 1854/km2 729/km2

Client density 27490/km2 4947/km2

Cell radius 100m
Terrain size 1km2

do not address user mobility; clients are assumed stationary.
Simulator settings are summarized in Table I.

For each of the following experiments, we plot simulation
results (points) and the results from our analysis (curves). Each
data point is the mean of 5 iterations (i.e., simulations of
different random topologies with the same characteristics as to
client/AP densities and percentages of roamers and attackers).
We have calculated 99% confidence intervals, which are,
however, too narrow to be easily discernible.

We plot 3 curves for 3 different experiments for each
setting; the “no roamers” curve represents the first attack
scenario, where adversaries are independent. The other 2
curves represent the second scenario, with different roamer
percentages each. All attacking roamers attached to an AP
form a single colluding group. Note that in the experiments
involving 80% roamers, the remaining non-roamers (20% of
the clients) are truthful and trusted and account for the very
high performance.

Fig. 2a shows the percentage of detected CG edges in a
setting corresponding to the Manhattan area, characterized by
very high AP and client density. Fig. 2b depicts a sparser
setting (City of Boston). Even with very large attacker ratios,
our simple mechanisms manage well in discovering network
topology, at the same time filtering all fake reports. One should
notice that the drop in client density is followed by a drop
in performance. This could become more obvious in sparser
(as far as clients are concerned) deployments and especially
in the presence of many non-trusted users (even if they are
truthful). Although our system performs well in the scenarios
we target, this observation leads us to believe that in order for
it to be effective when client density is low, less strict and more
adaptive report evaluation mechanisms would be necessary.

VI. RELATED WORK

Our model is very similar to the one introduced by Mishra et
al. [3] for solving the channel assignment problem. To address
interference asymmetry between APs and to capture client and
AP load, necessary for performing power control, Ahmed and
Keshav [5] use an annotated conflict graph with additional
client vertices, undirected client-AP association edges and
directed interference edges. Another approach [6] is to apply
a conflict set coloring formulation to the problem of jointly
performing channel assignment and load balancing, where,
for each client, there is a range set (APs in range) and an
interference set (APs not in range, but with interfering clients
associated to them) and the objective is to minimize interfer-
ence suffered by each client. A alternative representation of
interference is by modeling a link between two nodes as a
graph vertex and placing an edge between two vertices if the
respective links are conflicting [7].
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Fig. 2. Filtering efficiency in a very high-density random topology simulating
the Manhattan area (a) and in a lower-density area simulating the City of
Boston (b).

Numerous approaches aim at adding reconfiguration fea-
tures to Wi-Fi networks. Their common denominator is the
need to collect information from the wireless environment. The
next step is to apply sophisticated reconfiguration mechanisms
by means of frequency selection [3], [6], [8], power control [5],
[9], rate adaptation [10], adaptation of the carrier sensing
threshold [9], [11], or their combinations. Murty et al. [12]
focus on enterprise WLANs where most wireless manage-
ment decisions are pushed to the infrastructure. Again, they
need measurements from clients and APs to perform them.
Our work serves in improving the robustness of information
collection and providing valid input to the above mechanisms.

Most of the above schemes [3], [6], [10], [11], [12] require
client participation for the collection of input for the respective
spectrum sharing mechanisms. In a different context, Pang et
al. [13] present a collaborative service, offering information
about AP capabilities, which can be used for improved AP
selection. This information is built by user-provided reports.
Importantly, they propose reporting protocols which preserve
user privacy while limiting fake reporting. Some of their mech-
anisms are applicable to our system and can limit practical
attacks like multiple reports from the same attacker.

Our work is related to the process of distributed spectrum
sensing in Cognitive Radio Networks (CRN). In a typical
CRN scenario, secondary (i.e., unlicensed) users collectively

monitor spectrum usage to detect the presence of primary
(i.e., licensed) ones. Recent standardization efforts within the
IEEE 802.22 working group [14] also focus on spectrum
sensing. In this context, Chen et al. [15] study two potential
attacks, namely Incumbent Emulation, where an adversary’s
CR transmits signals that emulate the characteristics of a
primary user’s transmissions, and Spectrum Sensing Data
Falsification. In the latter, which is similar in spirit with the
attacks we address, adversaries submit fake sensing data to the
collecting entity to tamper with the sensing decision.

VII. CONCLUSION

Wi-Fi topology discovery is an important first step for
sophisticated interference mitigation schemes, since it provides
the input to processes such as frequency selection or power
control. Our goal is to exploit the inherent benefits of delegat-
ing the task of carrying out measurements and reporting on
network topology to end-users, at the same time dealing with
potential fraudulent reporting. In this paper, we have shown
that in today’s high density urban wireless deployments and
given that client density is relatively high, it is possible to
combat such attacks with simple countermeasures.
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