
PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011 1

Supporting Diverse Traffic Types in Information
Centric Networks

Christos Tsilopoulos, George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business, Athens, Greece
Email: {tsilochr, xgeorge}@aueb.gr

Abstract—In this paper we focus on the issue of transferring
diverse kinds of information through information-centric networks
(ICNs). We argue that the one request per packet mode of
operation suggested in the early development of ICN applications
is not a good fit for some types of traffic, such as media
streams and real-time notifications. To efficiently deliver all
kinds of information, we argue that an ICN should not only
identify information by its name, it should also be aware of
the nature of its traffic. We classify information traffic types
based on two characteristics: a) reliable vs. unreliable transfer
and b) real-time vs. on-demand delivery. The combination of
these two characteristics leads to three broad categories: a)
channels, b) on-demand documents and c) real-time documents. To
handle all traffic types, we propose two extensions to the CCN
architecture: Persistent Interests and Reliable Notifications. We
describe how these additions, together with a careful selection of
information names, can efficiently support these three categories
of information traffic types.

Index Terms—Information-centric networks, network layer
design, information traffic types.

I. INTRODUCTION

Information-centric networks (ICNs) have gained the atten-
tion of the research community as a new paradigm in network-
ing that can better address user needs in a networked world.
Proponents of ICNs argue that placing information at the heart
of an internetworking architecture allows the network to apply
a set of mechanisms and algorithms to increase the users’
perceived satisfaction in terms of application performance and
secure access to information [1], [2], [3], [4], [5], [6]

From a technical viewpoint, the core abstraction in an ICN is
named data instead of the named hosts of the Internet. Instead
of identifying the source and destination host, the header of a
network layer packet contains an identifier for the data carried.
The primitive actions at the network layer follow a receiver-
driven approach: to receive a packet of named data, a user
must first request it by its name. This is in stark contrast to
IP where a user may freely send packets to recipient hosts.
An ICN’s responsibility is to route requests for information
to the best available location holding the desired data (best
being subject to various metrics, such as hop count, latency
or security) and then deliver the data back to the requestor.

Although the core abstraction at the internetwork layer -
requesting and receiving named data - is radically different
than that of the TCP/IP based Internet, ICNs do not necessarily
violate the design choices that led to the success of the
Internet. We believe that the design of an ICN should embrace

the End-to-End argument [7] by keeping the network core as
simple as possible and pushing functionalities at the edges.
At the network layer, packets are statistically multiplexed
and are susceptible to loss either due to failures in the link
layer or due to congestion. Hence, the network layer of an
ICN should provide users with an unreliable, best effort,
information delivery service.

Early work on transport over ICNs [8], [9] showcased
how media streams, specifically voice conversations, can be
supported in an ICN. Both papers apply the same logic: a
voice conversation between two points is decomposed into
two unidirectional streams of named data. For each stream, the
communication end points (sender and receiver) use the same
algorithmic function to generate names for each data packet
in the stream. The receiving side issues a series of requests,
one per named packet.

Based on these applications, we argue that sending a request
for each packet in a media stream may lead to inefficiencies
as a) bandwidth is wasted for control messages, b) network
elements in the core are overloaded by the large number of
requests and c) if a request is lost and fails to reach the data
source, the corresponding data packet will not be forwarded
to the receiver.

Points (a) and (b) could be tackled via batch requests: a
single request carrying the names of many data packets. In
this manner the number of requests issued by the receiver
can be drastically reduced, saving bandwidth and unloading
intermediate network elements. However, batch requests do
not address point (c). If the uplink path suffers from relatively
high packet error rates (perhaps due to congestion), requests
will be lost and thus data packets will not be forwarded to
the receiver. The situation is even worse if batch requests
are lost; not only one, but many data packets will not be
forwarded. In essence, if information is to be requested at
a packet granularity, then the conditions of the uplink path
will affect the perceived quality of service, regardless of the
conditions in the downlink path.

We believe that these problems reflect a wider issue for
ICNs: a mismatch in the traffic nature of continuous media
and the one request per packet mode of operation. Although
a user should receive information only if she has requested
it, the efficient dissemination of continuous media requires
more flexible mechanisms than separately requesting each data
packet.

In this paper we argue that the efficient dissemination of



2 PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011

information requires different routing and forwarding mecha-
nisms depending on the underlying traffic type. Looking back
at the TCP/IP protocol stack, concerns regarding information
transfer are left to the transport and application layer. However,
in a network built around information, these concerns have to
be addressed at the network layer. Initial ICN architectures
[3], [4] propose to route and forward packets based solely
on the requested information name. We argue that an ICN
should not only recognize information by its name, but also
by its traffic nature. Specifically, we propose that information
dissemination should be classified by two characteristics: a)
reliable vs. unreliable transfer b) real-time vs. on-demand
delivery. The combination of these characteristics leads to
three broad traffic types: a) channels, b) on-demand documents
and c) real-time documents. We then focus on CCN [4],
for which we propose two extensions to its routing and
forwarding scheme. Our concepts are however also applicable
to the PSIRP/PURSUIT architecture [6] We discuss how these
extensions along with careful name selection can efficiently
support the dissemination of the three identified traffic types.

II. DISSEMINATING INFORMATION IN THE INTERNET

To identify the various forms of information dissemination,
we start by examining how information is disseminated in the
Internet today. If we take a bottom-up look through the TCP/IP
protocol stack, we see that the characteristics of information
dissemination are not a concern until we reach the application
layer. At the network layer, IP provides an unreliable, best
effort packet delivery service. Although the IP header includes
some type of service fields, in practice IP is unaware of what
sort of information is carried in a packet. Transport protocols,
namely UDP and TCP, are also oblivious to this information:
even though they are used to provide end-to-end transport,
their operation remains the same regardless of the kind of
information carried. For example, the TCP implementation in
a host applies the same flow and congestion control, whether
the data carried represent a web page, a twitter update or a
fragment of a voice conversation. Likewise, UDP operation at
the end hosts is not faster or less prone to packet loss if it
is used to carry streaming video rather than data for online
games.

Internet applications and application layer protocols how-
ever are designed based on the kind of information they
are meant to disseminate. At a first glance, most Internet
applications care about reliable transfer (FTP, HTTP, SSH,
SMTP, P2P to name a few). The majority of them transfer data
over TCP, which provides error control and in order delivery.
There are a few cases where applications avoid TCP due to the
delays of TCP’s flow and congestion control. Such applications
resort to data transfer over UDP, applying error control and
packet ordering themselves. On the other hand, delay sensitive,
real-time media are tolerant to packet loss and thus do not
require reliable transfer. For streaming media applications,
UDP is again the primary choice. If an application requires
a reliable channel for control signaling, e.g. RTCP, then an
out-of-band TCP connection is usually established. Therefore,
one classification of information dissemination is whether it
requires reliable or unreliable transfer.

Information dissemination can be further classified by
whether transfers are made in real time or on demand. By real
time we denote information that is instantly transmitted by data
sources at the moment it is generated. Users receiving real-
time information are implicitly synchronized in the sense that
they receive the same information simultaneously, regardless
of the point in time they expressed interest for it. Continuous
media applications like live TV and web radio are some exam-
ples of real-time traffic. In terms of IP, the optimal solution
for delivering real-time information is to forward data over
IP multicast. However, disseminating real-time information is
not limited to live media streaming. Real-time information
includes applications such as online gaming, twitter, chat
rooms, emergency alerts, sensor network measurements etc.
These are all applications where information has to be reliably
and simultaneously delivered to a set of synchronized users.
Ideally, these applications should be implemented on top of a
reliable multicast transport protocol (e.g. [10], [11], [12], [13]).
However, neither IP multicast nor reliable multicast transport
protocols ever achieved wide deployment. In practice, reliable
transport of real-time information is either implemented by
multiple unicast connections (each user directly connected
with the data source) or via an overlay multicast scheme.

Recently, HTTP was proposed as the thin layer in an ICN
[14]. HTTP was selected due to its content-centric nature and
its compatibility with firewalls and NAT boxes. HTTP transfers
data over TCP, therefore HTTP transfers are reliable. Authors
in [14], recognizing the inability of HTTP to support real-time
information, introduce a new HTTP method, the Subscribe-
GET (S-GET). When an HTTP client sends S-GET requests
to a web server, the underlying TCP connection between the
server and client is kept alive, unlike in the standard protocol
where requests are served and then the connection is closed.
When new information is published to the web server via
HTTP PUT messages, the server immediately forwards it to
all connected clients, thus delivering information in real time
(Figure 1).

S-GET

S-GET

PUT

Fig. 1. HTTP clients send S-GET requests (solid arrows). TCP connections
with the web server are kept active. New information is delivered to clients
in real time (dashed arrows.

Our thinking follows the same rationale. A user’s request for
information should specify both the information name and the
dissemination pattern. In terms of HTTP, this is denoted by the
resource name and the selected HTTP method, GET or S-GET.
However, HTTP’s reliance on TCP makes it inappropriate for
disseminating live media content. We propose instead a general
purpose, packet switched, ICN architecture that can efficiently



PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011 3

deliver all kinds of traffic, including the loss tolerant but delay
sensitive media streams.

III. INFORMATION DISSEMINATION TYPES

In this section we present a more formal categorization of
information dissemination types. The axes of classification as
described in Section II are a) the requirement for reliable
transfer and b) the requirement for real-time delivery.

A. Documents and Channels

We consider pieces of information that must be reliably
transferred as belonging to documents. To obtain a document
over an unreliable information delivery service, the user at
the edge of the network must perform some kind of error
control, e.g. a retransmission scheme as in TCP. This can be
achieved by dividing a large document to named packets and
then requesting each packet by name. If a packet is lost, the
receiver will re-request the packet, in contrast to the sender-
driven approach of TCP where retransmission occurs upon the
sender’s initiative.

We consider instead loss tolerant pieces of information as
belonging to channels. As discussed in Section I, requesting
each packet in a streaming channel is inefficient. To receive
channel information, a user should subscribe to the channel
once and then the network should forward each network packet
belonging to the channel, until the user’s interest seizes to
exist.

B. Real-time and On-demand Dissemination

The second axis of classification regards the timing con-
straints of information dissemination. We consider as real-
time any information transmitted to users at the moment it is
generated, i.e. on the sender’s initiative. Real-time information
includes both continuous media (live TV, web radio) and
real-time notifications (chat rooms, twitter updates, emergency
alerts, etc). The fundamental difference between continuous
media and real-time notifications is that continuous media are
tolerant to packet losses (channels) while real-time notifica-
tions require reliable transfer (documents). When receiving
real-time information, receivers are implicitly synchronized;
they receive the same data at the same time, regardless of
the when they expressed their interest in it. As discussed in
Section II, disseminating information in real time applies to
both channels (live TV, web radio) and documents (chat rooms,
twitter updates, emergency alerts, etc).

On-demand information dissemination on the other hand
includes transferring archived data (e.g. files) and point-to-
point conversations (e.g. transactions, personalized content).
Users receiving information on demand cannot be implicitly
synchronized by the network. For example, if two users request
the same file from a file server at different times, then at
a certain point in time they are receiving different network
layer packets, even if the two transfers are interleaved in time.
To increase performance, an application could explicitly syn-
chronize the receivers or implement an asynchronous multicast
scheme through caching [15].

TABLE I
APPLICATIONS CLASSIFIED ACCORDING TO THE TRAFFIC TYPE

Channels Documents
Real-time Live TV, Twitter updates, online gaming

Web radio chat rooms, emergency alerts
On demand VoIP, Skype File download, email, YouTube

C. The Three Traffic Types

Based on the above, we propose that information dissem-
ination should be classified as a) channels, b) on-demand
documents and c) real-time documents. Table I presents a
sample of applications classified according to their traffic
type. Note that channels constitute a single category. This
is because information represented as a channel requires the
same routing and forwarding schemes, regardless of whether
its dissemination is real-time (live media streaming) or on-
demand (unreliable transmission of archived data). Details for
the routing and forwarding channels follow in Section IV-C.
Also note that YouTube is classified as an on-demand doc-
ument application. YouTube videos are archived data stored
in the service’ servers, transmitted reliably over TCP on-
demand (a transfer starts when a user explicitly requests a
video). Therefore, YouTube videos are classified as on-demand
documents.

IV. EXTENSIONS TO CCN

In this section we turn our focus on CCN [4]. We discuss
how CCN’s basic model can efficiently transfer on-demand
documents but faces problems when it comes to channels and
real-time documents. We then propose two extensions to CCN
to overcome these issues.

A. CCN Overview

Content Centric Networking (CCN) is an ICN architecture
proposed by Van Jacobson et al. [4] that places data at the
thin waist of the network stack. In CCN, data names have a
hierarchical structure, similar to file system pathnames, e.g.
“/christos/pictures/summer.jpg”. CCN users request named
data packets by issuing Interest packets. Interests are for-
warded by CCN routers in a hop-by-hop manner. Upon
receiving an Interest, a router first looks in its local cache
and if a copy of the requested data packet is found, it
instantly sends it back. Otherwise the router performs a longest
prefix match on its Forwarding Information Base (FIB) and
forwards the interest to the next hop towards the data source
(Figure 2a). Routers keep track of each forwarded Interest in
a data structure called Pending Interest Table (PIT), as shown
in Table II.

When the Interest reaches a data source, the requested data
packet is forwarded along the reverse path. At each hop,
routers check their PIT for Interests whose name is an exact
match of the data name. If a match is found, the data packet
is forwarded and a copy of the packet is kept in a local cache
for future use (Figure 2b).

Incoming data packets that do not have a match at the PIT
are considered as unwanted traffic and are discarded. After a



4 PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011

data packet is forwarded, the router assumes that the Interest
is satisfied and deletes its entry from the PIT. This way CCN
ensures that a user receives at most one data packet per issued
Interest. As we will describe in Sections IV-C and IV-C, we
need to relax this constraint in order to efficiently support
channels and real-time documents.

R1

R2

R3

(a)

Data name Next Hop

/christos/ R3

R1

R2

R3

U3

U2

U1

U

U2

U1

R2
(b)

U3

Fig. 2. CCN users send interest messages for “/christos/pictures/summer.jpg”.
(a) CCN routers propagate the interest towards the data store. (b) Data packets
are forwarded following the reverse path.

TABLE II
PENDING INTEREST TABLE AT ROUTER R3

Interest name Forward to
“/christos/pictures/summer.jpg” R1, R2

B. On-demand Documents

Reliable end-to-end data transfer over an unreliable network
requires some form of error control. Usually this takes the
form of either an Automatic Repeat Request (ARQ) or a
Forward Error Correction (FEC) scheme implemented by
the application. CCN’s basic model of one interest per data
packet can easily support both schemes, provided that they
are implemented in a receiver-driven fashion. For example,
consider a pull-based variant of Stop and Wait ARQ. Let R
be a receiver that wishes to download document O. If O is
too large to fit in a single network layer packet, O is split in
n packets, each one with its own name, O1...n. R initiates
the transfer by requesting O1 and then waits until the network
delivers the corresponding data packet or a timer expires. If the
timer expires, R re-requests O1. Once the data packet for O1

arrives, R proceeds to O2 and resets the timer. The operation
continues until R receives all packets comprising O. Note that
R does not directly address the host to where the requests are
sent and the network may route each request to a different
location. To increase performance, R may implement Selective

Repeat ARQ by pipelining requests. The scheme can be further
extended to support some kind of flow and congestion control
(a la TCP) by controlling the rate of sending the requests.

C. Channels

VoCCN [8] applied CCN’s one interest per data packet
scheme to the transfer of real-time voice streams. To mini-
mize the end-to-end delays caused by this step-wise request-
response process, at the beginning each receiver issues a num-
ber of pipelined Interests. Each Interest is routed to the channel
source and remains there in a pending state. When a new
data packet is generated, it is immediately forwarded to the
receiver, consuming the correspondent Interest in intermediate
CCN routers. Whenever a data packet is received, the end
point issues a new Interest to replenish the consumed one.

As argued in Section I, explicitly requesting each packet
in a media steam is inefficient. Sending an Interest for each
data packet in a stream wastes uplink bandwidth and burdens
routers with a large number of PIT entries. Furthermore, if
an Interest is lost, the corresponding data packet will not be
forwarded, therefore reducing the perceived quality of service.

To overcome these issues, we propose an extension to CCN
routing and forwarding: Persistent Interests (PIs). In contrast to
plain Interests, CCN routers store PIs in their PIT for a period
of time. PIs are not deleted after a matching data packet is
forwarded; instead, they remain in the PIT until users explicitly
unsubscribe from a channel or their lifetime expires. Users
issue PIs periodically so that state in routers is refreshed. PIs
that have not been refreshed for a while are discarded as stale.

In the data plane, each data packet in a channel still has
its own name, in order to distinguish data packets, but they
all share a common prefix, the channel name. For example, if
a channel is named “SportsTV”, its data packets could be
called “SportsTV/Packet1”, “SportsTV/Packet2” and so on.
Channel data packets are specially marked so that forwarding
is performed based only on the channel name and not on the
packet’s full name. When CCN routers receive data packets
belonging to channels, they extract the channel name from
the packet name and search their PIT for a matching PI. Once
the match is found, the data packet is forwarded and the PI is
kept in place.

The dissemination of real-time channel information is fairly
easy. An application registers a name for the channel and
advertises it to users. In practice, the name must be carefully
selected so that CCN routers will propagate the PI to the right
content provider. If multiple users send PIs for the same chan-
nel, CCN can implicitly group all users into a single multicast
tree and forward the same data packets simultaneously to the
subscribed users.

Apart from real-time channels, PIs can be used for dissem-
inating on-demand channels as well. An example of an on-
demand channel would be a content provider that unreliably
streams prerecorded media on user demand. In this case,
the application must be careful in naming these channels;
otherwise users will receive invalid data. For example, user U1

in Figure 2 may ask for last night’s soccer game by sending
a PI for “Soccer match, April 2nd”. A few moments later,



PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011 5

user U3 may also ask for last night’s soccer game, sending
a PI for the same channel name. When the PI sent from U3

reaches R3, R3 will match it with the previous PI sent by U1
and will not push it to the data source. In addition to that, R3

will aggregate the PI into its existing PIT entry and forward
upcoming data packets towards both users. As a result, U3 will
have just missed the first minutes of the soccer game.

To avoid such confusions, disseminating on-demand chan-
nels can be achieved by creating new channel names on
demand, e.g., “Soccer match, April 2nd,ordered by Bob” and
“Soccer match, April 2nd,ordered by Alice”. Users willing to
receive information represented as on-demand channels must
first negotiate with the content provider a customized channel
name, exchange the name through an out of band mechanism
and then subscribe to their custom named channel. In this
manner, different channels will be created and data packets
will not be correlated by CCN routers. Of course, the provider
can group multiple such requests together so as to offer a near
video on-demand service via multicast.

D. Real-time Documents
The last traffic type is real-time documents. In this category,

users want to reliably receive information generated in real
time. Real-time documents can be viewed as a synthesis of
(real-time) channels and error control applied at the end hosts.
The ACK implosion problem [10], [11], [12], [13] faced by
many reliable multicast protocols is not an issue in CCN,
since lost packets can be retrieved from caches in intermediate
routers. In this sense, ICNs provide an ideal communication
substrate for reliable multicast transport.

The problem with real-time documents is how to notify the
receivers that new information is available, so that they may
request it. We can illustrate this with an example. Consider
a fire alert application where a fire detector signals alarms
over the network. Fire alerts must be reliably delivered to
interested users, e.g. the fire service, the police, the local
hospital etc. Assume that the fire alert is represented by only
a few bytes and fits into a single network packet. In case of
fire, the sensor creates a single data packet and pushes it to
the network. If the fire alert is lost in a congested link, there
is no way for the receivers behind that link to identify the loss
and re-request the data packet in time (Figure 3). Receivers
could bypass this by issuing periodic requests, but this solution
suffers from two weaknesses: a) repeated requests will cause
extra network overhead and b) if information is generated right
after a periodic request and the packet is lost, it will only be
recovered after the next periodic request.

Looking at how the Internet delivers real-time information,
brings the sender back to the center of attention. Real-
time information is actually sender-driven: the data source
sends packets and awaits receivers to acknowledge the proper
reception of data; otherwise the sender takes the initiative
to retransmit unacknowledged packets. How could this be
emulated in a receiver-driven way? In CCN, data sources
are unaware of receivers and cannot take the initiative of
retransmitting packets.

To solve this problem, we propose the use of Reliable
Notifications (RNs). RNs are special data packets sent by

R1

R2

R3

U3

U2

U1

Fig. 3. Real-time information fits in a single data packet. If the packet is
lost in the link R1-R3, receivers U1 and U2 cannot identify the loss.

data producers to notify receivers that real-time information
is available. RNs are hop-by-hop reliably propagated to re-
ceivers. When a router receives an RN, it immediately sends
an acknowledgement to the previous hop. RNs that are not
acknowledged in time are retransmitted. Once a receiver gets
an RN, it waits for new data to arrive. If no packets arrive, or
individual packets are lost, the receiver issues interests for the
missing data.

To receive documents in real time, users send Persistent
Interests, just as in channels. When new information is gen-
erated, the data source first creates a reliable notification. The
notification is named after the channel, carrying in its payload
the pair < N,Name1 > where N is the number of packets
comprising the document and Name1 is the name of the
first data packet. The notification is forwarded as a streaming
packet, with the addition of hop-by-hop acknowledgments.
Once a user receives a notification, she is aware that N packets
are to follow, with the first packet named Name1.

After transmitting the notification, the source transmits the
data packets. As in channels, data packets are marked so that
they are forwarded based on their channel name prefix. If the
first or any subsequent data packet is lost, receivers request
it explicitly via a plain Interest, using the packet’s full name.
The Interest is routed towards the data source and is served
either by a router’s local cache or the data source itself.

V. CONCLUSIONS

Early development on information-centric networks sug-
gests that end-to-end information transfer is performed on a
request per packet basis. However, this mode of operation does
not fit all kinds of traffic. In the case of streaming, requesting
information on the granularity of packets is inefficient as it
wastes network resources and may reduce perceived quality
of service. The efficient dissemination of information requires
different routing and forwarding mechanisms. ICNs should
address these issues in the design of their network layer
rather than leaving them to upper layers. Efficient end-to-end
transport requires that users request information not only by
its name, but also by specifying the nature of the underlying
traffic. We explored this concept in CCN and proposed two
extensions to CCN’s routing and forwarding for disseminating
information represented as channels and real-time documents.
We believe that similar extensions would be valid and useful
of other ICN architectures, including the publish/subscribe
architecture advocated by PSIRP/PURSUIT.



6 PUBLISHED IN: PROCEEDINGS OF THE ACM SIGCOMM INFORMATION CENTRIC NETWORKING (ICN) WORKSHOP 2011

ACKNOWLEDGMENTS

The work reported in this paper was supported by the FP7
ICT project “Publish Subscribe Internet Technology” (PUR-
SUIT), under contract ICT-2010-257217. The authors would
like to thank Pantelis Frangoudis for his useful comments and
remarks.

REFERENCES

[1] M. Gritter and D. R. Cheriton. An architecture for content routing
support in the Internet. In USENIX USITS, 2001.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I.
Stoica and M. Walfish. A layered naming architecture for the Internet.
In ACM SIGCOMM, 2004.

[3] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker and I. Stoica. A data-oriented (and beyond) network architec-
ture. In ACM SIGCOMM, 2007.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking Named Content. In ACM CoNEXT,
2009.

[5] D. Trossen, M. Sarela and K. Sollins. Arguments for an information-
centric internetworking architecture. In ACM Comput. Commun. Rev.,
2010.

[6] N. Fotiou, D. Trossen and G.C. Polyzos. Illustrating a publish-subscribe
Internet architecture, In Springer Telecommun. Syst., 2011.

[7] J. H. Saltzer, D. P. Reed and D. D. Clark. End-to-end arguments in
system design. In ACM Trans. Comput. Syst., 1984.

[8] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D.
Thornton and Rebecca L. Braynard. VoCCN: voice-over content-centric
networks. In ACM ReArch, 2009.

[9] C. Stais, D. Diamantis, C. Aretha and G. Xylomenos. VoPSI: Voice
over a Publish-Subscribe Internetwork. In Future Networks and Mobile
Summit, 2011.

[10] J.C. Lin, S. Paul. RMTP: a reliable multicast transport protocol. In IEEE
INFOCOM, 1996.

[11] H. W. Holbrook and D. R. Cheriton. IP multicast channels: EXPRESS
support for large-scale single-source applications. In ACM Comput.
Commun. Rev., 1999.

[12] L. Rizzo. PGMCC: a TCP-friendly single-rate multicast congestion
control scheme. In ACM SIGCOMM, 2000.

[13] J. Gemmell, T. Montgomery, T. Speakman and J. Crowcroft. The PGM
reliable multicast protocol. In IEEE Network, 2003.

[14] L. Popa, A. Ghodsi and I. Stoica. HTTP as the narrow waist of the
future Internet. In ACM Hotnets, 2010.

[15] K. Katsaros, G. Xylomenos and G. C. Polyzos. MultiCache: An overlay
architecture for information-centric networking, In Elsevier Comput.
Netw., 2010.


