
Fighting phishing the information-centric way
Nikos Fotiou, Giannis F. Marias and George C. Polyzos

Mobile Multimedia Laboratory
Athens University of Economics and Business

Athens, Greece
Email: {fotiou,marias,polyzos}@aueb.gr

Abstract—Recent research efforts have highlighted the role of
information as key target future network architectures. These
so-called information centric networks base their operation on
the information itself, rather than on other aspects or entities
of the architecture, such as location, host, or user identity. In
this paper we apply this approach at the application layer of the
current Internet in order to mitigate a significant threat: phishing
attacks. We designed a mechanism capable of detecting phishing
Web pages based on the information that the user perceives
while browsing, i.e, the mechanism detects attacks based on the
browser’s graphical output, rather than on the code of the Web
page. We implemented this mechanism in the form of a browser
extension and we evaluated it using real data from a publicly
available database of phishing URLs.

Our extension, which is not affected by the location, popularity,
or implementation of a Web page, detected 81% of the phishing
attempts.

I. INTRODUCTION

Many of the security threats that users are currently facing
can be rooted to the fact that (inter)networking is agnostic
of the information transferred, it only recognizes end points’
addresses and bytes traveling through the various mediums.
The Internet’s networking protocols make a best effort to
transfer users’ data, no matter if it is a bank transaction, a login
form, a denial of service attack or a virus. Nevertheless this
weakness of the current internetworking has been identified
and various research efforts investigate the possibilities of
an information-centric networking architecture; an architecture
where information items hold the principal role and location
and user identities are of insignificant importance. But can
information-centrism be applied in the current Internet in
order to solve some of its security problems? In this paper
we examine this possibility by applying the principles of
information-centric networking in the application layer in
order to mitigate phishing attacks.

Examining phishing from an information-centric perspective
and by considering a web page’s URL as its identity, the
problem can be defined as the inability of the architecture
to detect that the identity and the content of an information
item do not match, i.e., the architecture can not realize that
a phishing page contains information regarding an item X
but its name is Y. In order to mitigate this inability we
developed a mechanism that creates signatures for web pages
based on their graphical output–which is exactly what users
understand as a page’s content. The principal characteristic of
these signatures–which we named ‘information signatures’–
is that two items containing the same–or similar–information

have the same–or similar–signatures. Information signatures
are lightweight and they reside on the user’s side. We have
used perceptual hashing to implement information signatures
as a Chrome extension which detects phishing pages. Every
time a user visits a web page that contains an input field its
information signature is generated and stored locally. Phishing
pages are then detected by applying a simple rule; a web
page that has the same–or similar–information signature with
another web page but their URLs are different, is probably a
phishing page.

By abiding by the principles of information-centrism our
mechanism has a significant advantage; it can not be eas-
ily circumvented. The developed mechanism will detect any
phishing page that resembles to the original one, without being
affected by the technology used to implement it, its popularity
or its network location. We evaluated the effectiveness of our
mechanism using real data from PhishTank [1] phishing URLs
database and it detected 81% of the phishing pages, by having
only 1% of false positive probability. What is important, is that
all the detected pages were residing on a private web server,
which means that its address could not have been blacklisted–
therefore anti-phishing mechanisms relying on blacklisting
would have failed.

The rest of this paper is organized as follows. In Section 2
we overview some anti-phising solutions and we discuss
methods that can be used to circumvent them. Moreover
we explain why these methods can not be used against our
mechanism. In Section 3 we discuss the implementation details
of our mechanism as well as its performance considerations. In
Section 4 we evaluate the false positive ratio and the success
ratio of our mechanism. Finally in Section 5 we present our
conclusions and our future plans.

II. RELATED WORK

Over the last years phishing detection has been widely
studied. Zhang et al. investigated the effectiveness of 10
anthiphishing tools [2] and found out that their performance
is significantly affected by the the source and the freshness of
the phishing page URL. Moreover they show that most anti-
phishing tools can be bypassed using simple exploits. 9 out 10
of the examined tools used blacklists as their primary defense
mechanism.

Blacklists are lists containing suspicious URLs, usually
populated by users. Most modern browsers include anti-
phishing mechanisms–such as Microsoft’s SmartScreen Filter



[3] included in Internet Explorer 9 and Google’s Safe Brows-
ing [4] included in Chrome–that also based their operation
primarily on blacklists. Blacklists are widely used however
they do have drawbacks. There is a critical period of time
between a phishing web page appearing in the wild and being
reported–and validated–in a blacklist rarely contain phishing
pages targeting a limited number of users, e.g., a phishing page
targeting the webmail of a small company. Our mechanism is
not affected by the popularity of a web page, it only requires
that the user has visited at least once the legitimate web page.

In addition to blacklists many anti-phishing tools–such as
Netcraft [5] and SpoofGuard [6]–are considering various host-
based features, such as Domain name, IP address and WHOIS
properties. All these features can be used as complementary
mechanisms as they can be easily hidden–using for example
CDNs, dynamic DNS or well known hosting services–and they
also generate a large number of false positives. Our mechanism
bases its operation on the actual content of the page, rather
than on its host features.

Predictive algorithms based on URLs are also used as
defense mechanisms against phishing attacks. Ma et al. [7]
developed a phishing detection solution which mainly bases
its operation on the features exposed by a page’s URL. Their
approach detects phishing pages by examining lexical features
of the URLs including the length of the host name, the length
of the entire URL, the number of dots and the number of
tokens. In order for such a mechanism to be effective, it
has to be trained using a set of URLs belonging to phishing
pages. However attackers can easily manipulate a phishing
page’s URL using URL shortening services, internal frames,
or the URL rewrite feature that most web servers provide.
Our defense mechanism, i.e., information signatures, is not
affected by any of the external features of the web page,
it solely uses the content that users perceive. Although in
our implementation URLs are used to identify web pages,
modifying the URL of a phishing page has no impact on the
performance of our mechanism, unless the phishing page and
the original page have the same URL.

Content-based solutions have also been considered as
phishing detection mechanisms. Cantina [8] is a content
based solution for detecting phishing web pages using term
frequency/inverse document frequency (TF/IDF) algorithm.
Cantina’s effectiveness depends on its ability to detect the
terms with the highest TF/IDF value. During our evaluation
process we came across phishing pages that were using a
screenshot of the original page with a simple HTML form on
top of it. In such cases it would demand complex solutions–
such as OCR reading–in order to detect the web page’s terms.
Finally, various obfuscation techniques can be used to hide
a web page’s code making hard to detect its terms. Our
mechanism is not based on the way a web page has been
assembled; it rather uses the graphical output of the web page.
Medvet et al. [9] use visual similarity to decrease the the false
positives of an existing anti-phish toolbar. Our approach is
a stand alone solution, although it can be used for similar
purpose. Fu et al. [10] use Earth Mover’s Distance to detect

phishing web site extracted from emails that contain suspicious
keywords. The solution we have developed detects phishing
pages whiles user browses them.

III. IMPLEMENTATION

As a proof of concept we implemented an extension to the
Chrome web browser that detects phishing web pages based
on their information signature. As an information signature we
used the perceptual hash of the web pages’ screenshots.

A. Perceptual Hash

A perceptual hash is a hashing function that produces
numerically close outputs for similar inputs, i.e., if H(x) = y
is the perceptual hash of x then H(x′) = y or close to
y if x is similar to x’. In our implementation we used
the pHash [11] open source perceptual hash library and we
implemented information signatures by applying the Discrete
Cosine Transform based hash (DCT) [12], the Marr-Hildreth
Operator based hash(MH) [13] and the Radial Variance based
hash(RAD) [14] over a web page’s screenshot bytes.

As a metric of the similarity of two screenshots we used the
normalized hamming distance of their hashes, with 0.0 being
the distance of two completely different screenshots and 1.0
being the distance of two absolute the same.

To demonstrate the notion of similarity we use a screenshot
of the start page of www.facebook.com. As it can be seen
in Figure 1 we have defined 4 areas in this screenshot, the
facebook logo, an image showing connected people, the footer
of the page and a sign up form. Table 1 shows the values of
the similarity metric when the screenshot of the original page
is compared with a screenshot of the same page in Chinese
and with a screenshot of the same page but with the various
areas covered with their background color. Each column of the
table corresponds to the algorithm used to generate the hash.

Fig. 1. Defined areas in facebook.com start page: 1. facebook logo, 2. image
with connected people, 3. footer, 4. sign up form

It can be observed that the three algorithms do not have similar
behaviour, therefore–as it is shown in evaluation section–a
combination of all of them will yield the best result.



Fig. 2. Implementation overview

TABLE I
SIMILARITY METRIC VALUES WHEN THE ORIGINAL PAGE IS COMPARED

WITH SOME VARIATIONS

Difference DCT MH RAD
Original in Chinese 0.23 0.28 0.01
Original without area 1 0.13 0.03 0.01
Original without area 2 0.1 0.11 0.01
Original without area 3 0.1 0.07 0.01
Original without area 4 0.13 0.18 0.01
Original without areas 1 and 2 0.13 0.07 0.01
Original without areas 1 and 3 0.2 0.19 0.02
Original without areas 1 and 4 0.46 0.11 0.01

B. Implementation Overview

Our implementation consists of three parts; a web browser
extension, a back-end application and a database. In the current
version of the implementation all three components are located
in the same machine, but destributed alternatives can also be
considered.

The web browser extension is responsible for capturing
screenshots of the web page that is currently loaded in the
active tab. The back-end application calculates the information
signature of the screenshot and the database is the storage point
of all information signatures. The system has also one param-
eter, named the ‘similarity threshold’ that is configured sepa-
rately for each information signature generation algorithm–
DCT, MH and RAD. The similarity threshold denotes the
maximum distance that the hashes of two “almost” the same
screenshots can have. Two screenshots which hashes have
numerical distance bigger than the similarity threshold are
considered to belong to different pages.

Figure 2 gives an overview of the implementation architec-
ture. During its lifetime the following steps are executed:

• Step 0: During this step a web page loads in the web
browser. When loading finishes, and providing that the
web page contains an input field, the browser extension
captures a screenshot. The extension takes the screenshot
be invoking the chrome.tabs.captureVisibleTab method of
the chrome.tabs API [15].

• Step 1: In step 1 the extension makes an AJAX call to
the back-end application POSTing this way the captured
image.

• Steps 2-3: In these steps the back-end application uses

the pHash library to calculate three signatures, one with
each algorithm.

• Step 4: In step 4 the back-end application searches the
database for signatures which distances is less than the
specified similarity threshold and belong to web pages
with different URL. If at least one record is found steps
5-6-7 are executed. If during this step no record is found
then the three signatures and the page’s URL are stored in
the database. In the current version of the implementation
as key used in the database table that stores the signatures
is the quadruplet [URL, DCT hash, MH hash, RAD hash],
i.e., for each URL multiple hashes can be stored. The
reasoning behind this design choice is that phishing pages
may imitate an older version of the victim page.

• Steps 5-6-7: The result of the query is returned and a
warning is displayed to the user informing him, that the
web page he is currently browsing may be a phishing
page.

C. Performance considerations

Information signatures introduce two performance consid-
erations; how fast can they be calculated and what is their
size.

Zauner [16] has measured that using a system with Intel
Core 2 Duo 2.5 GHz and 4GB of RAM the pHash library
calculates the DCT hash with rate 0.33 MB/sec, the MH based
hash with rate 0.87 MB/sec and the RAD based hash with
rate 2.54 MB/sec. The average size of the screenshot files
in our evaluation was 215 KB, so it can be estimated that the
signature calculation is achieved in less than 1.5 sec. The DCT
based hash is 64 bits long, the MH based hash is 576 bits long
and the RAD based hash is 320 bits long. So for each URL
120 bytes have to be stored.

IV. EVALUATION

In this section we evaluate the effectiveness of our imple-
mentation using two metrics; its false positive rate and its
phishing detection success rate. Our goal is to achieve the
maximum possible success rate while keeping the probability
of a false positive very low.



Fig. 3. Probability of false positive for each algorithm with various values
of similarity threshold

A. False Positives

Our implementation may produce in some cases false pos-
itive warnings, i.e, it may warn a user that the web page she
is currently browsing is a phishing page while it is not. This
will happen in case a web page is very similar to another web
page which the user has already browsed.

In order to calculate the possibility of a false positive
warning we evaluated our implementation using the 100 sites
included in Google’s top 100 most visited sites in Unites
States, belonging to the double click ad planner program [17].
The reasoning for choosing this particular list was that we
wanted a sample that reflects the browsing habits of a group
of people speaking the same language and having the same
cultural background. Our goal was to find the probability
for a user to receive a phishing warning while browsing all
these 100 sites, using our mechanism with varying similarity
thresholds. The result of this evaluation process are presented
in Figure 3.

The probability of false positive was calculated by dividing
the number of false positives when a particular similarity
threshold was used by 4950, which is the total number of
possible pairs. For example with similarity threshold equal to
0.23 the total number of false positives of the DCT algorithm
was 100, which gives us 2.02% false positive probability. As it
can be seen the MH algorithm is less prone to false positives
whereas DCT and RAD have similar behavior when low or
medium similarity threshold is used, but RAD outperforms
DCT for higher similarity thresholds.

B. Detection

The principal functionality of our implementation is the
detection of phishing pages.

In order to evaluate the detection capabilities of our mech-
anism we used real world phishing pages obtained from
PhishTank [1] database of phishing URLs, which we manually
stored in a separate web server. Our collection methodology
was to save the complete phishing web page in a separate web
server, providing that the exact same phishing web page was
not already saved1. In some cases the saved web page was

1Usually the same phishing web page was appearing almost simultaneously
under many URLs; in these cases we stored only one of the multiple instances

Fig. 4. Performance of each information signature algortihm with varying
similarity threshold

not the exact copy of the original phishing page, as the web
browser was failing to save some images, which made harder
for our implementation to detect the scam, i.e., in real-time the
effectiveness of the extension will be even better. We stored
in total 100 phishing pages, that were imitating 56 different
web sites2

In the second step of this evaluation process we visited the
corresponding legitimate pages with our extension enabled.
After visiting all the legitimate pages and having recorded
their information signatures, we visited the phishing pages.
Figure 4 shows the performance of each information signature
algorithm with varying similarity threshold. As it is observed
the MH algortihm performs better as it was able to detect 71
phishing web pages using similarity threshold = 0.29.

However as it was observed in the previous sections the
algorithms in use do not behave similarly; there were cases
detected by one algorithm but they were not detected by
the rest. In order to evaluate the cumulative performance
of all three algorithms we configured our implementation
with different similarity thresholds; one for each algorithm.
The similarity threshold chosen for each algorithm was the
threshold for which the algorithm does not surpass a fixed false
positive probability. As an example in order to have maximum
false positive probability equal to 1% we set the similarity
threshold for DCT equal to 0.24, for MH equal to 0.34 and
for RAD equal to 0.21. Figure 5 depicts the cumulative success
ratio of our implementation. As it can be seen, by having set
the similarity threshold for each algorithm so at to have 1%
probability of false positive, our implementation detected 81
out of 100 phishing web pages.

It should be noted here that the Chrome web browser ver.
12, the Firefox web browser ver 4.6 and the Netcraft anti-
phishing toolbar ver. 1.4.5 did not detect any of the phishing
pages.

V. CONCLUSION AND FUTURE WORK

In this paper we designed, implemented and evaluated an
anti-phishing mechanism, inspired by the principles of infor-
mation centric networking. Our mechanism bases its operation
on the so-called information signatures; signatures that are

2We considered that the phishing pages imitating the same page but in
different language, or different pages of the same web site, were imitating the
same site



Fig. 5. Cumulative performance of the implementation with varying false
positive probabilit

created using the information that end-users actually perceive.
The advantage of such a mechanism is that it can not be easily
circumvent; any phishing page that is similar enough to the
original one, will be detected. Our mechanism works in real
time with low false positive ratio. It is not affected by the
location of the phishing page, its encoding or the popularity
of the victim page. In our evaluation process–which was based
on real word data–the implemented mechanism detected 81%
of the phishing pages while maintaining the probability of false
positive as low as 1%.

The proposed mechanism can be used in many other ways.
During the evaluation process it was observed that multiple
identical phishing web sites were appearing almost simultane-
ously under different URLs. So it can be investigated if the
creation of a distributed and large scale database of blacklisted
information signatures–instead of blacklisted URLs–can be
effective. Similarly a whitelist based solution can also be
considered, as an example legitimate web sites can include
in their digital certificates their information signatures.

Moreover it was observed that the algorithms which were
used to generate the perceptual hash of the web sites’ screen-
shot, in some cases, did not have common behavior, i.e., there
were cases in which one algorithm was detecting the phishing
web page, where others were failing. Therefore it should be
investigated what affects each algorithm’s performance when
it comes to phishing page detection.

The performance of our mechanism was dependent on the
similarity threshold we set. This threshold was calculated–as
already described in the evaluation section–based on the prob-
ability of having a false positive when comparing Google’s
top 100 most visited sites in Unites States, belonging to the
double click ad planner program. Nevertheless user’s daily
web surfing habits may significantly vary, therefore there can
be cases a were a higher threshold can be used–e.g., in a case
of a user that visits very few web sites in daily basis, whereas
there can be cases where a lower threshold is required. All in
all, the performance of our mechanism where the similarity
threshold is dynamically set by observation users’ behavior is
a future area of work.

VI. ACKNOWLEDGMENTS

The work reported in this paper was supported by the FP7
ICT project PURSUIT, under contract ICT-2010-257217

REFERENCES

[1] PhishTank, “PhishTank home page,” http://www.phishtank.com, Visited
1 May 2011.

[2] Y. Zhang, S. Egelman, L. Cranor, and J. Hong, “Phinding phish:
Evaluating anti-phishing tools,” in Proceedings of the 14th Annual
Network and Distributed System Security Symposium (NDSS 2007),
2009.

[3] Microsoft, “SmartScreen Filter: frequently asked questions,”
http://windows.microsoft.com/en-US/windows7/SmartScreen-Filter-
frequently-asked-questions-IE9, Visited 10 Jun 2011.

[4] Google, “Safe Browsing API,” http://code.google.com/apis/safebrowsing/,
Visited 10 Jun 2011.

[5] Netcraft, “Netcraft, netcraft anti-phishing toolbar,”
http://toolbar.netcraft.com/,Visited 10 Jun 2011.

[6] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. Mitchell, “Client-
side defense against web-based identity theft,” in In Proceedings of The
11th Annual Network andDistributed System Security Symposium (NDSS
’04, 2004.

[7] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious URLs,” in
Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, ser. KDD ’09. New
York, NY, USA: ACM, 2009, pp. 1245–1254. [Online]. Available:
http://doi.acm.org/10.1145/1557019.1557153

[8] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the
16th international conference on World Wide Web, ser. WWW ’07.
New York, NY, USA: ACM, 2007, pp. 639–648. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242659

[9] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing
detection,” in Proceedings of the 4th international conference on
Security and privacy in communication netowrks, ser. SecureComm
’08. New York, NY, USA: ACM, 2008, pp. 22:1–22:6. [Online].
Available: http://doi.acm.org/10.1145/1460877.1460905

[10] A. Fu, L. Wenyin, and X. Deng, “Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (emd),”
Dependable and Secure Computing, IEEE Transactions on, vol. 3, no. 4,
pp. 301–311, 2006.

[11] C. Zauner, “pHash, open source perceptual hash library,”
http://www.phash.org, Visited 10 Jun 2011.

[12] C. Lin and S. Chang, “A robust image authentication method distin-
guishing JPEG compression from malicious manipulation,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 11, no. 2, pp.
153–168, 2001.

[13] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of
the Royal Society of London. Series B. Biological Sciences, vol. 207,
no. 1167, p. 187, 1980.

[14] M. Schneider and S. Chang, “A robust content based digital signature
for image authentication,” in Image Processing, 1996. Proceedings.,
International Conference on, vol. 3. IEEE, 1996, pp. 227–230.

[15] Google, “Tabs-google chrome extensions,”
http://code.google.com/chrome/extensions/ tabs.html, Visited 10
Jun 2011.

[16] C. Zauner, “Implementation and benchmarking of perceptual image
hash functions,” Master’s thesis, Upper Austria University of Applied
Sciences, Hagenberg Campus, 2010.

[17] Google, “The 100 most-visited sites: United
States,” http://www.google.com/adplanner/static/
top100countries/us.html,Visited 1 Mar 2011.


