
PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2012 CONFERENCE 1

Realistic Media Streaming over BitTorrent
Charilaos STAIS, George XYLOMENOS

Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business, Athens, Greece

Email: {stais, xgeorge}@aueb.gr

Abstract—While BitTorrent was originally conceived as a Peer-
to-Peer file exchange protocol, it has proved extremely successful
for asynchronous content distribution, allowing content sources
to support huge numbers of users with a modest amount
of bandwidth. This has prompted many researchers to study
the possibility of using BitTorrent to support real-time media
streaming. In this paper we present a comparison of three
proposed adaptations to BitTorrent for media streaming, using
our detailed packet-level BitTorrent simulator. Unlike previous
evaluations which assumed that the streaming media player
would drop data that did not arrive on time, in this paper we use
a more realistic model where the player stalls when data are not
available, thus placing emphasis on delays rather than losses. Our
experiments indicate that under this, more realistic, evaluation
model, user level performance can be quite reasonable.

Index Terms—Peer-to-peer, BitTorrent, Streaming, Simulation,
Buffer

I. INTRODUCTION

The original communication model of TCP/IP networks
was packet exchange between pairs of communicating end
hosts, esssentially a packet-switched version of telephony. The
commercialization of the Internet however and the success of
the World Wide Web has caused Internet use to shift towards
information-centric services and applications, giving rise to
content delivery networks, cloud computing services and peer-
to-peer (P2P) [1] file sharing applications. These services and
applications have to be implemented as overlays on top of
the information-agnostic Internet [2], as they focus on the
information exchanged rather than on the end hosts providing
it.

The success of P2P protocols and applications made it ap-
parent that they could be used for much more than simple file
exchange. For example, BitTorrent is widely used to distribute
large pieces of content, such as entire Linux distributions, as
it allows the content provider to serve huge amounts of users
without investing in corresponding amounts of transmission
capacity. The success of BitTorrent in this role led many
researchers to propose modifications to it to also handle media
streaming [3], [4], [5]. The simulation based performance
evaluations of these proposals however are lacking: simulation
setups are not fully documented, simulators do not take into
account BitTorrent and TCP/IP protocol details and each
evaluation uses different metrics.

In previous work [6], we addressed all these problems
by presenting a performance evaluation of three proposed
multimedia streaming extensions to BitTorrent, using the same
assumptions and metrics for each scheme and a detailed

packet-level BitTorrent simulator. That study assumed a player
model where data that was not available on time was dropped,
therefore the main metric of interest was the loss rate of each
approach, similar to [3], [4]. Most realistic media players
however, including the ubiquitous YouTube player, do not
work like that: when data is not available on time, they stall
until it arrives, similar to [5]. In this paper we compare the
three proposed approaches using this type of media player,
focusing on the number and duration of stall periods, which are
a much better reflection of the quality of experience perceived
by actual users.

The rest of the paper is organized as follows. In Section 2
we briefly present the three streaming extensions to BitTorrent
examined in our work. Section 3 details our experimental
setup, including the simulator used, while in Section 4 we
discuss the results of our experiments. We conclude in Section
5.

II. STREAMING EXTENSIONS TO BITTORRENT

A. General

Due to space limitations, we will summarize here the main
BitTorrent concepts relevant to the paper; see [7] for a detailed
explanation of BitTorrent protocols and algorithms. BitTorrent
splits the content to be exchanged into fixed-size pieces, which
can be individually requested; each piece is split into fixed-
size blocks which can be downloaded in a pipelined mode.
A server called the tracker facilitates the BitTorrent exchange
by responding to queries from peers with the contact details
of other peers; the tracker gathers this information from the
queries themselves.

All the peers participating in a file exchange are collectively
called a swarm. Each peer establishes contact with some of the
swarm members returned by the tracker and monitors which
pieces of the file are available at each peer. Peers generally
exchange pieces in a tit-for-tat fashion, i.e. a peer only sends
pieces to other peers that have also sent pieces to it [8].
Occassionaly, a peer will send some pieces to someone that has
not yet reciprocated; this is how new peers manage to get their
first pieces in order to participate in the tit-for-tat exchange.
Out of the pieces that each peer is missing, it tries to download
the rarest in the swarm for two reasons: first, rare pieces can
disappear if a few peers leave the swarm; second, rare pieces
are in demand by other peers, therefore they facilitate the tit-
for-tat exchange.

Streaming applications generally download data in se-
quence, so as to be able to start reproducing the initial data



2 PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2012 CONFERENCE

before the entire content has been downloaded, something
against the rarest-first piece selection scheme of BitTorrent.
As a result, all the proposed streaming extensions to BitTorrent
start by modifying the piece selection mechanism, aiming to
balance the needs of streaming, where orderly data arrival is
required to maintain playback quality, and the needs of the
rarest-first selection policy, which makes tit-for-tat work in
BitTorrent. We describe below three such approaches.

B. Fixed-Size Window

The Fixed-Size Window (FSW) approach [3] modifies the
BitTorrent piece selection strategy by placing a fixed-size slid-
ing window over the pieces and only allowing pieces within
that window to be selected for downloading. This window
starts from the first piece that has not been downloaded yet
and includes k consecutive pieces, where k is a configuration
parameter. Essentially, rarest-first is limited to operate within
the window, thus allowing the pieces which will be played
back soon to be downloaded, without “wasting” bandwidth to
download other pieces. The window slides to the right when
its first piece has been downloaded, to allow more pieces to
be selected for download.

C. High-Priority Set

The FSW approach does not exploit the available piece
download opportunities that well. On the one hand, if most
pieces in the window have completed downloading but the
first one has not, the window cannot slide, hence the choice
of pieces becomes very limited. On the other hand, by limiting
the peer within the window it misses the opportunity to
download rare pieces outside the window that may become
useful later on in the tit-for-tat exchange. For this reason, in
the High-Priority Set (HPS) or BiToS approach [4], a fixed-
size set (the HPS) holds the next pieces in sequence that have
not been already downloaded. While in the FSW approach
the window of size k covers exactly k consecutive pieces in
the sequence space, some of which may have already been
downloaded, in the HPS approach the set of size k covers at
least k pieces in the piece sequence space, none of which has
been downloaded.

The other departure from FSW is that in this approach
pieces outside the HPS can also be requested. With probability
p a peer will select a piece from the HPS and with probability
1−p the peer will select a piece beyond the HPS, in both cases
using the rarest-first policy within each set; p is a configuration
parameter. Whenever a piece completes downloading, it is
removed from the HPS and the next in sequence piece that
has not been downloaded yet is added to the HPS.

D. Stretching Window

The HPS approach has the drawback that as pieces are
downloaded, the size of the HPS remains constant, therefore
the first pieces in the HPS, which are probably closer to
their playback time, do not increase their priority. In the
Stretching Window (SW) approach this problem is mitigated by
combining elements of the FSW and HPS approaches [5]. The

SW behaves like the HPS in that it contains (up to) k pieces
that have not been downloaded, but the distance between the
first and last piece in the SW in terms of the piece sequence
space is bounded by a limit l > k; hence, the SW may contain
up to k pieces, provided these pieces do not cover more than
l consecutive slots in the piece sequence. In addition, pieces
are only requested from within the SW.

D OK OK

Begin End

OK

Player

FSW

1 2 3 4 5 6 7 8

OK

D OK OK

3 4 7Begin End

OK

Player HPS

HPS

8

1 2 3 4 5 6 7 8

OK

D OK OK

Begin End

OK

Player HPS

SW

1 2 3 4 5 6 7 8

3 4 7

OK

Fig. 1. Protocol extension functionality.

Figure 1 explains the differences between the three ap-
proaches. In all cases, pieces marked OK have already been
downloaded, pieces marked D are currently being downloaded
and unmarked pieces have not started downloading yet. Ar-
rows indicate the current playback position, as well as the
window limits (for FSW) or HPS limits (for HPS and SW).
In the FSW approach the window starts from the first in
piece being downloaded and covers k = 4 consecutive pieces,
regardless of how many of these have been downloaded. In the
HPS approach the HPS starts from the same point, but covers k
not downloaded pieces, whether they have started downloading
or not; the pieces in the HPS are also shown above the window.
In addition, pieces may be requested outside the HPS. In the
SW approach, the SW can also grow like the HPS to up to k
not downloaded pieces, but it may not cover more than l = 5
slots in the piece sequence space, hence it may be smaller than
with HPS, as shown in the figure. In addition, pieces are only
requested from within the SW, unlike in the HPS approach.

III. EXPERIMENTAL SETUP

A. BitTorrent Simulator

Our simulation-based comparison uses our own detailed
OMNeT++ Simulator for BitTorrent, which is publicly avail-
able [7], extended with the necessary functionality for the
three streaming extensions discussed above. Our simulator
models not only the detailed protocol messages exchanged by



PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2012 CONFERENCE 3

BitTorrent peers and the tracker, it also models all the TCP/IP
messages exchanged, using the INET framework; for larger
scale simulations, a simplified communication model can also
be used [7], without any modifications to the BitTorrent code.
We used transit-stub topologies generated by the GT-ITM
module [9], including both core and access routers. Each
scenario was executed 10 times with different random seeds,
using the tools from the OverSim framework [10] to randomly
place peers in the network. The overall setup is identical to
that of [6] unless explicitly indicated otherwise.

B. Experiments

Our experimental scenario involves one initial seeder and
120 peers which join the swarm at random times, starting from
scratch, thus modeling an incremental join process rather than
a flash crowd. The topology we used consists of 4 Autonomous
Systems (AS) and 192 access routers in total. Peer access links
have asymmetric uplink and downlink bandwidths: 20% have
1/4 Mbps capacity (uplink/downlink), 40% have 1/8 Mbps,
25% have 2/12 Mbps and 15% have 2/24 Mbps.

The streaming application modeled is a video player at-
tempting to playback a 256 Kbps video stream. We assumed
that the video was encoded in an MPEG like manner, where
each Group of Pictures (GOP) was mapped to exactly one
BitTorrent piece. We set the GOP/piece size to 112 KB (192
KB in [6]), which translates to 3.5 seconds of video per piece,
with 8 KB blocks (16 KB in [6]). The entire video size was 200
MB, which corresponds to around 106 minutes of playtime or
1828 pieces (1067 pieces in [6]). A piece that has not been
downloaded on time, will cause the player to stall, as it cannot
decode the next frames; the player will have to wait until the
piece has been downloaded in its entirety, so as to be able to
resume decoding. This follows a YouTube like model, unlike
in our previous work where the player continued playback
using blank frames, essentially dropping pieces that had not
arrived on time [6].

We kept all the default BitTorrent settings unchanged e.g.
optimistic unchoke interval and number of connections per
peer, as given in [7]. To make our model relevant to live
streaming, we assumed that a peer will remain in the swarm
and seed other peers until the video playback reaches its end
with probability 50% (100% in [6]), i.e. that roughly half of the
peers only leave the swarm at playback completion. The initial
seeder on the other hand remains permanently in the swarm,
thus there is always at least one source for every piece. The
seed then represents a video source that exploits BitTorrent to
offload some of the traffic to the downloading peers.

Each peer starts by prefetching a few initial pieces (either
1 or 5), as in most media players, in order to provide a sat-
isfactory buffer to the player before starting playback. During
the prefetch phase, we use the rarest-first policy only for the
pieces in the prefetch buffer, until they have all completed
downloading, therefore all approaches operate identically in
this phase. We set the base window size k to 2% or 8% of the
total number of pieces for each algorithm, which in our case
translates to 36 or 147 pieces, respectively (21 or 85 in [6]).
The probability p of selecting pieces outside of the HPS was

TABLE I
SIMULATION PARAMETERS

Parameter Value
Video size (in MB) 200
Video bit rate (in Kbps) 256
Piece size (in KB) 112
Block size (in KB) 8
Number of pieces for prefetch buffering 1 or 5
Window size k (% of total num of pieces) 2% or 8%
Probability p (only for HPS) 80%
Bound in pieces (only for SW) 50 or 200
Probability to keep seeding 50%

set to 80%. The bound l for SW was set to 50 pieces for
k = 36 and to 200 pieces for k = 147, respectively (30 and
100 in [6]), i.e. the window can grow more than in SW, but not
without limit as in HPS. Table I summarizes these parameters.

IV. EXPERIMENTAL RESULTS

In this section we present and evaluate the simulation
results. The main metrics for our evaluation are the number
of stall periods and their average duration in each download,
which directly reflect the experience of the user when viewing
a streamed video. We tested two different buffering strategies
after a stall occurs with each protocol. In mode B1 the player
stalls only until the next piece has completed downloading,
while in mode B2 the player stalls until the next three pieces
have been downloaded; the former strategy tries to minimize
the average stall duration while the latter tries to minimize the
number of stall periods by prefetching more pieces.

A. Number of Stall Periods

Figure 2 shows the average number of stall periods during
playback, that is, how many times the user will experience a
stall during playback. As expected, the number of stall periods
in Mode B1 is significantly higher (around 30% on average)
than that in Mode B2 for all protocol extensions, since in Mode
B1 the player only buffers the next piece before continuing.
However, the absolute number of stalls is quite small in all
cases (from 1.5 to 4) despite the large playback duration (more
than 100 minutes), which is good news for user experience.
For each individual protocol and for both buffering modes, the
best performance is achieved by having a smaller window (2%
rather than 8%) and prefetching more pieces (5 rather than 2).
Among the different protocols, HPS has the worst behavior,
as it has the largest effective window and it also downloads
pieces outside the window, thus paying less attention to the
pieces that are nearing their playback time. FSW and SW have
very similar performance; FSW is slightly better with a larger
window, while SW is slightly better with a smaller window.

B. Average Stall Duration

Figure 3 shows the average stall duration during playback,
that is, how long the user will have to wait in each stall period
during playback. As expected, the average stall duration in
Mode B2 is significantly higher (again around 30% on average,
exactly counterbalancing the stall period metric) than that in
Mode B1, since in Mode B2 the player waits until the next



4 PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2012 CONFERENCE

2,50

3,00

3,50

4,00

4,50

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

0,50

1,00

1,50

2,00 FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(a) Buffering Mode B1

2,00

2,50

3,00

3,50

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

0,50

1,00

1,50
FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(b) Buffering Mode B2

Fig. 2. Number of Stall Periods per download

three pieces are buffered. The absolute average stall duration
ranges from noticeable (from 40 to 90 sec for FSW and SW)
to quite long (from 80 to 350 sec for HPS). Again, a smaller
window (2% rather than 8%) works best for all approaches,
but the effect of the prefetch buffer is insignificant. The FSW
and SW protocols exchibit very similar performance as in the
previous metric, with FSW slightly better with a larger window
and SW slightly better with a smaller window, but this time the
HPS scheme is clearly unacceptable with the larger window
size.

C. Download Time

Figure 4 shows the average download time and the average
seeding time per download for buffering Mode B1; the results
are nearly identical in Mode B2, as the buffering mode only
changes the behavior of the player and not the protocol. As
also found in [6], HPS offers the lowest download times
due to the fact that its larger effective window and occa-
sional downloads outside the window provide it with more
opportunities for downloading rare pieces. In addition, the
faster a peer completes the download, the more time it will
remain as a seeder if it chooses to do so, since the playback
duration is fixed, therefore HPS also exhibits higher seeding
ties. FSW and SW exhibit very similar performance, as in
the previous metrics. However, since all protocols complete
the download well before the end of the playback duration
(which is 6400 sec), emphasis should be placed on the user
visible performance metrics discussed above, where HPS has
clear problems, rather than on the download time.

150,00

200,00

250,00

300,00

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

50,00

100,00

150,00
FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(a) Buffering Mode B1

200,00

250,00

300,00

350,00

400,00

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

50,00

100,00

150,00

200,00
FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(b) Buffering Mode B2

Fig. 3. Average Stall Duration per download (sec)

2000,00

2500,00

3000,00

3500,00

4000,00

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

500,00

1000,00

1500,00

2000,00
FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(a) Average download time (sec)

1500,00

2000,00

2500,00

3000,00

HPS: 1p & 2%

HPS: 5p & 2%

HPS: 1p & 8%

HPS: 5p & 8%

FSW: 1p & 2%

FSW: 5p & 2%

0,00

500,00

1000,00

1500,00
FSW: 1p & 8%

FSW: 5p & 8%

SW: 1p & 2%

SW: 5p & 2%

SW: 1p & 8%

SW: 5p & 8%

(b) Average seeding time (sec)

Fig. 4. Average download and seeding time per download (sec)



PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2012 CONFERENCE 5

D. Overall Evaluation
Unlike our previous work that led to mixed results [6], in

the sense that each protocol variant provided lower loss rates
for some scenarios, the more realistic stall-based evaluation
model adopted in this paper clearly shows that HPS does
not work well: compared to FSW and SW, it suffers from
both more stalls and higher delays per stall, thus leading to
visibly worse user experience, which is especially noticeable
in the average stall delay metric. On the other hand, FSW and
SW perform similarly, with SW better with smaller windows
and FSW better with larger windows, indicating (as in [6])
that the extra complexity of SW is not worthwhile, provided
the window is large enough. With FSW, the simplest but best
performing approach, the worst case behavior is less than 2.5
stalls per download each lasting no more than 60 sec, which is
reasonable for such large downloads. The two buffering modes
tested led to the expected results, i.e. with less buffering per
stall (mode B1) we have shorter stall periods, while with more
buffering per stall (mode B2) we have fewer stall periods.

V. CONCLUSION AND FUTURE WORK

In this paper we extended our previous work [6] by intro-
ducing a more realistic model for the media player, which
stalls when data are not available, as in YouTube and other
streaming services. We explored, through simulations using
detailed TCP/IP message exchanges, the factors that impact
protocol performance and behavior, using the same setup for
each protocol extension, focusing on the number of stall
periods and their average duration when playing back a large
video file. Our results indicate that the simplest approach
works best and that the overall user experience that it offers
is quite reasonable, i.e. 1 to 2.5 stalls of 40 to 60 seconds
each, for a video lasting 106 minutes. On the other hand,
a more complex approach, even though it offers markedly
shorter download times, leads to much worse user visible
performance.

Future work includes the study of modifications to the
protocols so that they can focus on the next pieces when the
player is in stall mode, so as to avoid lengthy stall periods,
and an investigation of how the performance of the first few
peers, which rely only on the original seeder to receive pieces,
affects the results of the entire experiment.

REFERENCES

[1] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?,” in Proc. of
the Internet Measurement Conference, pp. 63–76, 2005.

[2] D. Clark, B. Lehr, S. Bauer, P. Faratin, R. Sami, and J. Wroclawski,
“Overlay networks and the future of the Internet,” Communication &
Strategies, vol. 63, no. 3, pp. 1–21, 2006.

[3] P. Shah and J. Paris, “Peer-to-peer multimedia streaming using BitTor-
rent,” in Proc. of the IEEE International Performance, Computing, and
Communications Conference, pp. 340–347, 2007.

[4] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for supporting streaming applications,” in Proc. of the IEEE
INFOCOM, 2006.

[5] P. Savolainen, N. Raatikainen, and S. Tarkoma, “Windowing BitTorrent
for video-on-demand: Not all is lost with tit-for-tat,” in Proc. of the
IEEE GLOBECOM, 2008.

[6] C. Stais, G. Xylomenos, and A. Archontovasilis, “A comparison of
streaming extensions to BitTorrent,” in Proc. of the IEEE ISCC,
pp. 1068–1073, 2011.

[7] K. Katsaros, V. Kemerlis, C. Stais, and G. Xylomenos, “A BitTorrent
module for the OMNeT++ simulator,” in Proc. of the IEEE MASCOTS,
2009.

[8] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. of the
Workshop on Economics of Peer-to-Peer Systems, 2003.

[9] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. of the IEEE INFOCOM, vol. 2, pp. 594–602, 1996.

[10] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” in Proc. of the IEEE Global Internet
Symposium, 2007.


