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Abstract—Many proposals for the next generation of the Inter-
net suggest moving from an end-point oriented to an information-
centric oriented architecture. Many of these proposals are based
on the publish/subscribe paradigm, which lends itself naturally
to native multicast support, a key factor for efficient content
distribution. However, the design of efficient reliable transport
protocols for multicast is a largely open problem, due to the
problem of feedback implosion towards the sender as group size
grows. In this paper we propose a hierarchical retransmission-
based error control scheme for a native publish/subscribe in-
ternetwork. We compare our protocol with similar approaches
proposed for IP multicast and evaluate its performance against
IP multicast with unicast-based error control.

Index Terms—Information-centric networks, error recovery,
multicast, transport layer

I. INTRODUCTION

The Internet has proliferated, primarily due to the om-
nipresent TCP/IP protocol suite. Adhering to the then pre-
vailing principles of telecommunications technology, TCP/IP-
based computer networks were designed to forward data traffic
among communicating end hosts. In the course of time, the
Internet has evolved into a substrate for information-centric,
or content-centric, applications and services such as peer-to-
peer (P2P) file sharing, content delivery networks (CDNs) and
cloud computing services. As these applications and services
focus on information, not on the end hosts producing or
consuming it, they are developed as overlays over TCP/IP. This
development reveals the disadvantages inherent in TCP/IP.
When large numbers of information consumers are served via
end-to-end connections to a few information producers, such
as popular web sites, a large amount of network resources
are needed close to the data sources, as the same packet has
to be transmitted multiple times over the same link (once
per receiver). A solution to this problem is multicast, i.e. the
distribution of data from a single source to a group of receivers
via a multicast tree, whereby each packet crosses each tree link
only once. Unfortunately, IP multicast turned out to be hard
to deploy, for both technical and business reasons [1].

Many researchers have suggested entirely redesigning the
Internet with the aim of satisfying the requirements of current
and future content distribution applications. Most approaches
recommend that information should be the focus of interest in
the internetworking architecture [2], [3]. The FP7 EU project
PURSUIT [4], and its predecessor PSIRP, are concerned with

designing and implementing a clean-slate publish/subscribe
internetworking (PSI) architecture [5], where the information
itself is at the core and multicast is natively supported. This
model is in sharp contrast to the existing Internet model, which
focuses on the location of the information.

A critical question is whether effective information-centric
transport protocols can be designed, that would improve appli-
cation performance over TCP/IP by taking advantage of these
new architectures. Although initial work shows that simple bi-
directional communication applications can be easily ported to
PSI [6], there is practically no work on exploiting the support
of PSI for native multicast. In this paper, we take advantage of
past work on IP multicast-based transport, in order to design
an error control mechanism for reliable multicast content
distribution, specifically designed for the PSI architecture,
and present a preliminary evaluation of its performance. An
obvious use case for our scheme is the reliable delivery of
software updates to large numbers of terminals. A less obvious
use case is the reliable delivery of sensor data to multiple sinks,
for example, data from sound and image sensors sent to many
human and robotic rescuers working in a building hit by an
earthquake, as envisioned in the DISFER project [7].

The remainder of this paper is organized as follows. In
Section II we briefly present the PSI architecture and past work
on reliable multicast transport, while in Section III we discuss
the error control mechanism that we have designed. Section IV
first provides a description of the experimentation environment
and then presents the performance results obtained. We finally
conclude and discuss our plans for future work in Section V.

II. BACKGROUND & RELATED WORK

A. The PSI architecture

A publish/subscribe architecture relies on three basic enti-
ties: publishers, subscribers and an event notification service,
also called a Rendez-Vous network, consisting of Rendez-
Vous Points (RVPs). When a publisher wants to make con-
tent available to the network, it advertises its availability
to the responsible RVP, by issuing a publication message.
Subscribers are information consumers, who express their
interest for content by issuing subscription messages. PSI uses
the combination of a Scope Identifier (SId) and a Rendez-
Vous Identifier (RId) to identify content. The SId identifies
a collection of items and is mapped to the RVP which is
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responsible for that specific collection, while the RId is an
identifier derived by the publishing application, indicating a
particular item within the collection. The scoping mechanism
limits the reachability of information to the parties having
access to a particular scope. Within a scope, the architecture is
neutral with respect to the semantics and structure of the data.
Scopes employ a hierarchical structure, where parent-children
relationships exist [5]. Scopes may be both physical, such as
a local network, and logical, such as a social network.

When a subscription message arrives at an RVP, the RVP
first locates a publisher providing the information items that
satisfy the subscription. It then communicates with a Topology
Manager (TM), which may be a service in the same machine
or a stand-alone server, in order to get suitable data forward-
ing paths. The TM maintains information about the current
network topology so as to be able to find paths between the
hosts. The TM then calculates a multicast tree containing the
publisher and all subscribers, possibly by merging the shortest
paths from the publisher to each subscriber.

The multicast tree generated by the TM is encoded in a
Bloom filter following the approach of LIPSIN [8]. Bloom
filters are probabilistic representations of sets, where each set
element is encoded as a string of zeroes and ones calculated via
a number of hash functions. A set is represented as the logical
OR of all set elements. Each packet contains in its header an
in-packet Bloom filter (iBF), which encodes the labels of all
the links that are part of the path, whether unicast or multicast.
When a packet arrives at a router, the router examines the iBF
in order to determine to which of its outgoing links it will have
to push the packet, by performing a logical AND between the
label of each link and the iBF.

B. Reliable Multicast

Even though IP multicast was not widely deployed [1], con-
siderable work was dedicated to multicast transport layer pro-
tocols. The culmination of these efforts is Pragmatic General
Multicast (PGM) [9], a reliable multicast transport protocol
that guarantees that a receiver in the multicast group will
either receive all data packets (from their original transmission
or a retransmission), or will detect unrecoverable data packet
losses. In order to avoid a feedback implosion from the large
numbers of receivers towards the sender, PGM relies on two
mechanisms: first, only negative acknowledgments (NAKs)
are used to report missing packets and, second, a hierarchy
of PGM-enabled routers, called network elements (NEs), are
deployed throughout the multicast tree to aggregate feedback
from the receivers towards the sender. Essentially, each NE
is responsible for the subtree rooted at itself and extending
downstream up to either the receivers or the downstream NEs.

When a packet loss is detected by a receiver, it unicasts a
NAK towards its parent NE after a random waiting period.
The parent NE on reception of the NAK multicasts a NAK
confirmation (NCF) to its subtree, so as to suppress NAKs for
the same lost packet from other receivers, and notes the packet
number requested by the NAK. The NE then pushes the NAK
towards its own parent, which in turn multicasts an NCF to
its own subtree, and so on, until the NAK reaches the source,

in which case the missing packet is retransmitted downstream.
Only NEs that have noted that they received a NAK for this
packet forward it downstream, therefore retransmissions only
reach the subtrees where at least one receiver has reported that
particular packet to be lost. To further reduce the number of
NAKs, an NE can create NAKs indicating multiple losses.

PGM has several other features, such as support for retrans-
missions from local caching nodes, recovery based on forward
error correction and congestion control. These features will not
concern us further, as they can be integrated to our own error
control scheme in the same manner as with PGM.

III. MULTICAST ERROR CONTROL

As explained in [10], iBF-based forwarding suffers from
false positives: as more links are added to a Bloom filter, it is
more likely that they will match a link not added to them, thus
leading to redundant packet transmissions and, even, packet
loops. The extent of this problem depends on how many links
are encoded into the set. In [10], the authors propose that the
number of ones in the iBF should not exceed 40% of the total
bits, meaning that with reasonably sized iBFs (since they must
fit within packet headers) we cannot represent very large trees.

To allow iBF-based forwarding to support larger multicast
groups, we exploit iBF switching [11] at designated relay
points. Relay points are routers that replace the iBF inside
a packet with a new one before forwarding the packet. When
a packet arrives, the relay point checks in its database if an
entry for the combination of the SId and the RId of the packet
exists and, if so, replaces the iBF with a stored one. When the
TM constructs the initial iBF, it pays attention to the ratio of
ones in it. If the ratio exceeds 40%, it will have to resort to
relay points, which are selected during a breadth-first traversal
of the entire multicast tree. The TM constructs iBFs from the
publisher to the relay points and from these relay points to
the subscribers or to new relay points, if needed. The relay
points and the iBFs are returned to the RVP, which is now
responsible to inform the relay points how to switch filters
when they receive a packet with a specified SId and RId.1

Having addressed the iBF scaling issue, we now turn to
preventing feedback implosion. Our mechanism is similar to
PGM, in that it uses selected routers to aggregate feedback
and control the propagation of retransmissions, but adapted
for PSI. We reuse the iBF relay points, which are mandated
by the forwarding architecture, as feedback concentrators that
prevent subscribers from overwhelming the publisher. The
target application for our protocol is fully reliable multicast
delivery, for example, the distribution of software updates over
the network, or the distribution of critical sensor readings
to multiple sinks. In these applications each recipient must
receive all data correctly. In contrast, PGM targets applications
with continuous data transmission, where it is acceptable for
some receivers to miss some packets due to persistent losses.

Our scheme operates in three phases: setup, where the
multicast tree is created, initial content distribution, where the

1We are using the SId and RId instead of the iBF itself to identify the next
iBF so as to allow the iBFs between two relay points to evolve (due to link
additions and deletions) without updating the lookup tables at all relay points.
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publisher sends the content, and recovery, which may include
one or more cycles of feedback and retransmissions until all
subscribers have successfully received all data. In the setup
phase, the iBFs are calculated and distributed to the relay
points. After the setup phase, the publisher distributes the con-
tent without stopping for retransmissions. Finally, the recovery
phase is a loop, where the publisher receives information on
lost packets and retransmits them in the next cycle. In contrast,
in PGM retransmissions are interspersed with regular packet
transmissions; if a packet is not received after some time, the
sender abandons the effort.

Since iBFs are unidirectional, we need separate iBFs in
order to return feedback from the subscribers to the publisher.
We therefore modified the TM to calculate not only down-
stream iBFs from the root to the leaves of each multicast tree,
but also upstream iBFs, by simply ORing the link labels for the
reverse direction of the tree; these upstream filters represent a
tree from all leaves towards the root, hence they can be used
to send upstream messages from any leaf to the root.

The set of forward and reverse iBFs for the sender and
each relay point are sent to the RVP, which in turn sends to
the publisher and each relay point a downstream iBF, used
for data forwarding, and an upstream iBF, used for feedback,
both within the relay’s subtree. The publisher then sends
a FIRST MSG message to initiate content distribution; this
message includes the upstream iBF that should be used for
feedback and a generation counter set to zero. Upon reception
of this message, each relay point stores the upstream iBF used
to reach its parent, switches the downstream iBF in the packet
and forwards the message, encapsulating inside it the upstream
iBF that should be used by its own children for feedback. At
the end of this process, each relay point knows the iBF needed
to reach its children (from the original RVP message) and each
relay point and subscriber knows the iBF needed to reach its
parent (from the setup message) for a specific SId/RId pair.
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Fig. 1. An example of multicast tree setup.

Figure 1 represents a typical instance of our approach.
There is one Publisher, three Subscribers and two Relay
Points. Initially, the RVP sends a pair of iBFs (FPub, RPub)
to the publisher, a pair (FRP1, RRP1) to RP1 and another pair

(FRP2, RRP2) to RP2. The FIRST MSG message from the
publisher is forwarded using FPub and encapsulating RPub.
When it reaches RP1 through the path {0,1} and RP2 through
the path {0,2}, each RP stores RPub as its feedback iBF
towards the publisher. Then the message is forwarded from
RP1 using FRP1 and encapsulating RRP1 and from RP2 using
FRP2 and encapsulating RRP2. Each receiver, upon reception
of this message, stores the encapsulated iBF for feedback. In
this way the multicast tree from publisher to subscribers is
divided into three smaller ones (MT1-MT3).

After setup completes, the publisher starts sending the data
packets of the content. At each relay point, the relay looks up
the SId/RId in the packet and replaces the forwarding iBF with
the one needed to reach the next relay point or subscribers.
For example, RP1 would replace FPub with FRP1. When
a subscriber detects that a packet has been lost (based on
sequence numbers) or corrupted (based on checksums), it uses
its upstream iBF to return a negative acknowledgment (NAK)
message to its upstream relay point. The relay point holds
the packet for a specified interval, waiting for more NAKs
to come. If additional NAKs, either for the same or different
packets, arrive at the relay point during the waiting period, they
are combined into a single NAK which is forwarded upstream,
by using the corresponding upstream iBF. Each relay point
notes the NAKs arriving from its own subtree, in order to
later forward recovery data only where needed.

When the publisher finishes the initial content distribution,
it waits for a specified period of time to allow nodes that
have received the entire transmission to leave the multicast
group and the TM to issue new iBF pairs wherever needed.
It then sends a new FIRST MSG with the generation counter
increased by one, so as to distinguish packets from different
recovery cycles. This message lets subscribers know that the
current transmission round has finished, allowing them to
detect lost packets at the end of the current round. It also
updates the upstream iBFs throughout the multicast tree and
allows relay points to reset any NAK state from previous
rounds. Then a retransmission round begins, with the publisher
transmitting all packets for which NAKs have been received;
each relay point only forwards in its subtree the packets
for which it has noted that NAKs had been received. This
procedure is repeated at the end of every retransmission round,
until all packets are received. Since subscribers leave the
multicast group after correctly receiving all data, the tree will
eventually be torn down, thus concluding the transfer.

Our approach slightly departs from PGM in the way
feedback is aggregated. In PGM, the relay point attempts
to suppress further NAKs for a packet by multicasting an
NCF, while in our approach each receiver sends NAKs for
all missing packets to its upstream relay point. If the loss
probability is similar for all links in a subtree, it is unlikely
that many receivers will lose the same packet, therefore it is
wasteful to multicast an NCF to the entire subtree. The main
difference however is that PGM sends new data interspersed
with retransmissions, eventually giving up on lost packets,
while our mechanism retransmits packets in rounds until all
have been received, expecting that in each round some group
members will depart, hence reducing the number of links that
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each retransmitted packet will cross at every round.

IV. EXPERIMENTATION AND EVALUATION

A. Simulator Setup

For our simulation experiments, we used NS-3 [12], where
the entire PSI architecture was implemented, including iBF-
based forwarding and relay points. We modeled a single
publisher reliably distributing content, for example, an op-
erating system patch. The content size is 20MB, composed
of 20.000 data packets with a payload of 1KB each. We
used randomly generated scale-free network topologies of
200 and 500 routers with 50 and 100 subscribers attached
to randomly chosen routers, leading to an average of 15.6
and 28.6 relay points, respectively; smaller topologies can be
handled without relay points. Each scenario was executed 5
times with different random positions of attachment to the
network for the publisher, resulting in a different tree being
generated and different relay points being chosen each time.
Finally, we assumed that all losses were random, i.e. packets
were lost with probability of x% or y% in each link, for the
200 and 500 router topology, respectively. The values of x and
y where chosen experimentally so that during the initial file
distribution phase 3% of the packets transmitted were reported
lost (to the sender) in both topologies, despite the different
number of links and receivers involved. This translates to
roughly 600 packets that need to be retransmitted during the
first recovery round. We did not model the correlated losses
that are usually associated with congestion.

B. Experimental Results
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Fig. 2. NAK aggregation rate.

Our first metric is the aggregation rate of NAKs achieved
by our scheme, as it shows to what extent we have avoided
the feedback implosion problem. Formally, if the subscribers
transmit s NAKs and the publisher receives r NAKs, the
aggregation rate is defined as s−r

s = 1 − r
s , i.e. it shows the

fraction of transmitted NAKs that never reach the publisher. As
shown in Figure 2, the aggregation rate is higher in the larger
topology. This is expected, as a larger network with more
subscribers leads to larger trees and the insertion of more relay
points, thus increasing the points where NAKs are aggregated.
We observe that when counting bytes the aggregation rate is
about 5% smaller, since aggregated NAKs are slightly larger.
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Fig. 3. Number of NAKs handled by architecture entities (200 routers).
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In Figures 3 and 4 we provide more details about NAK
handling, showing the number of NAKs generated by the
subscribers, received and sent by the relays, and received
by the publisher for the entire content transfer, in the 200
and 500 router topologies, respectively. From these figures we
can make multiple observations. First, the number of NAKs
generated by the receivers is similar in both topologies, since
we ensured that the overall packet loss probability is roughly
the same in the initial file distribution phase. Second, not all
NAKs generated by the receivers reach the relay points, as
some subscribers reach the publisher directly. Third, while in
the larger topology more NAKs are received and transmitted
by the relays, the multiple levels of relaying lead to more
aggregation towards the publisher, as observed in Figure 2.
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Fig. 5. Amount of feedback traffic handled by network nodes.

Finally, we compare our scheme with unicast error recovery,
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Fig. 6. Amount of recovery traffic handled by network nodes.

i.e. using multicast to deliver the original packets and then
switching to unicasting NAKs to the publisher and unicasting
recovery packets to each subscriber. Concerning feedback, as
shown in Figure 5 the number of NAKs transmitted by all
network elements involved (subscriber and all intermediate
routers) with our scheme is only 25% and 20% of those
needed with unicasting for the 200 and 500 node topologies,
respectively. Concerning recovery, as shown in Figure 6 the
number of recovery packets transmitted by all network ele-
ments involved (publisher and all intermediate routers) with
our scheme is 32% and 33% of those needed with unicasting
for the 200 and 500 node topologies, respectively. Note that
with unicast recovery the same number of packets are needed
in both directions, as one NAK triggers exactly one recovery
packet. With our scheme, NAKs are fewer than recovery
packets since (a) NAKs for different packets can be aggregated
and (b) recovery packets are multicasted in every subtree
where at least one receiver requested them; higher packet loss
rates would lead to more NAKs per subtree, hence reducing
the gap between NAKs and recovery packets. These results
show that our mechanism leads to very high gains in both
directions compared to unicast recovery.

V. CONCLUSION AND RELATED WORK

In this paper we presented a multicast error control pro-
tocol for the reliable delivery of information over a network
supporting native multicast, using relay points to extend the
reach of the source-routing mechanism used. Our scheme is
based on feedback aggregation towards the sender via the
relay points and multicast retransmissions of lost data. We ex-
plored the performance of the mechanism through simulations
using detailed message exchanges, focusing on its feedback
aggregation features. Our results indicate that the aggregation
mechanism prevents feedback implosion and that multicast
retransmissions are far more efficient than unicast ones.

Our mechanism is loosely based on PGM, originally pro-
posed for IP multicast, adapted for the native multicast facility
of the PSI architectire. Rather than selecting arbitrary routers
for feedback aggregation as in PGM, our scheme exploits the
forwarding relays required to scale iBF-based forwarding. Our
mechanism targets fully reliable distribution, thus operating
in a series of transmission and retransmission phases, unlike
PGM which targets mostly reliable distribution, thus mixing

new data and retransmissions. Finally, our scheme does not
rely on feedback suppression via multicasting NAK confir-
mations, as PGM does. Most of the extensions proposed for
PGM [9] are compatible with our own scheme however.

Future work includes investigating the delay interval for
NAK aggregation, which represents a tradeoff between feed-
back aggregation and completion time. Another direction is
extending our scheme with an efficient solution for congestion
control over the PSI architecture and studying its performance
under correlated losses. Finally, we are planning to examine
the effectiveness of caching at relay points to enable local
retransmissions of lost data, another idea borrowed from PGM.
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