
PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013 1

Scaling Bloom filter-based multicast via filter
switching

Christos Tsilopoulos and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business
11362 Athens, Greece

Email: tsilochr@aueb.gr, xgeorge@aueb.gr

Abstract—Stateless multicast forwarding with in-packet Bloom
filters (iBF) has recently been proposed as a highly scalable way
for supporting a large number of multicast groups. However,
iBF multicast generates redundant traffic due to false positive
forwarding decisions and it also scales poorly with multicast
group size. In this paper we investigate scaling iBF multicast
to arbitrary multicast group sizes, by partially sacrificing the
network’s fully stateless operation. We propose a switched-iBF
multicast scheme that places multicast forwarding state at a few
network nodes, so as to minimize redundant traffic regardless
of the group size. We evaluate the scheme through simulations
and find that switched-iBF multicast can scale to any group size
while keeping redundant traffic below 1%-4% at the (minimal)
cost of placing state at no more than 0.5%-2.5% of network
nodes. We also compare the state requirements of switched-iBF
multicast against other multicast schemes. Our evaluation shows
that switched-iBF multicast achieves a tremendous reduction of
multicast state in the range of 87%-99.6%. Hence, even though
the system is no more fully stateless, it remains far more scalable
than other approaches.

Index Terms—in-packet Bloom filters, multicast packet for-
warding, switched-iBFs

I. INTRODUCTION

During the last decade, developments in the areas of
broadband access, always-on Internet connectivity and cloud
computing have given rise to a set of new Internet applications
and services. In this context, a number of cases arise in which
data must be disseminated from a source to a (potentially
large) number of receivers. Examples of this communication
pattern include the provision of Internet services to users (e.g.
on-line shared storage, on-line gaming), internal infrastructure
procedures (e.g. bulk data backups, Map-Reduce systems etc.),
or real-time multimedia applications such as Networked Music
Performance (NMP), where multicast can be used for the
direct exchange of data between NMP participants, without
a centralized server [1]. Such applications can highly benefit
from multicast delivery. Even though multicast had been an
important research topic for a long time, multicast technologies
face significant scalability problems with respect to the number
of co-existing multicast groups. This technical constraint, as
well as business constraints, have confined multicast to closed,
centrally controlled, enterprise networks, where it facilitates a
limited number of centrally-provided applications (e.g. IPTV).

Multicast scalability constraints are imposed by the hop-by-
hop packet forwarding model: multicast forwarding state is

distributed among network routers which maintain Multicast
Forwarding Tables (MFT). Unlike unicast addresses, multicast
addresses are logical and not topological identifiers; thus
routers cannot aggregate MFT entries as in unicast IP for-
warding, hence MFT sizes grow proportionally to the number
of multicast groups traversing a router.

To alleviate these constraints, Bloom filters have been
recently proposed as a method for single-source multicast
delivery [2]. The idea is quite simple: multicast tree links are
encoded into a Bloom filter which is then placed as source-
routing information in packet headers; hence the term in-
packet Bloom filter (iBF). At each hop, the router extracts the
iBF, checks which of its outgoing links are encoded in the iBF
and transmits the packet over those links. By moving multicast
forwarding state from routers to packets, the network can
support an arbitrary number of co-existing multicast groups
without worrying about MFT size explosion. These benefits,
however, do not come for free. iBF multicast is susceptible to
redundant packet forwarding decisions (redundant traffic) due
to the probabilistic nature of the Bloom filter data structure [3].
The rate of redundant forwarding decisions increases as the
group size increases and more tree links are added. Previous
studies have shown that once the false positive probability of
an iBF exceeds 0.2%, forwarding anomalies arise, causing a
sharp decline in bandwidth utilization [2], [4]. In essence, iBF
multicast scales poorly with respect to group size.

In this paper we address the issue of iBF multicast scala-
bility with respect to group size, by partially sacrificing the
fully stateless operation of iBF multicast and, therefore, its
scalability with respect to the number of groups supported.
We achieve this by splitting a multicast delivery tree in a few
sub-trees, installing multicast forwarding state at sub-tree roots
and applying an iBF-switching forwarding logic. By doing so,
we aim to minimize redundant traffic regardless of the group
size. For the remainder of the paper, we call this multicast
scheme switched-iBF multicast.

The contribution of this paper is twofold. First, we present
a simple algorithm for the placement of iBF multicast state at
network routers and evaluate our scheme through simulations
over large, synthetic scale-free graphs. Evaluation results show
that switched-iBFs can scale to any group size while keeping
redundant traffic below 1%-4%, at the cost of placing state
at no more than 0.5%-2.5% of network nodes. Second, we
compare the forwarding state requirements of switched-iBF



2 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013

multicast with IP multicast and other multicast schemes pro-
posed to reduce multicast forwarding state. The results show
that switched-iBF multicast achieves a tremendous reduction
of multicast state in the range of 87%-99.6%, i.e. nearly two
levels of magnitude less. Hence, even though we sacrifice the
fully stateless operation of iBF multicast, we still get far better
scalability with respect to the number of groups.

The remainder of the paper is organized as follows. In
Section II we present background work on iBF multicast:
we describe the basic method and discuss its advantages and
constraints, we briefly present available solutions for scaling
iBF capacity without adding multicast state inside the network
and finally argue that these solutions are impractical for packet
forwarding. In Section III we present a switched-iBF multicast
scheme and describe the tree-traversal algorithm for selecting
sub-trees and stateful nodes. We evaluate the switched-iBF
multicast scheme in Section IV and conclude in Section V.

A B

C

D

E F

000101 010010

010001

Fig. 1. A simple network with assigned LIDs (m = 6 and k = 2). LIDs
need not be unique.

II. BACKGROUND AND RELATED WORK

A. Multicast forwarding with in-packet Bloom filters

In iBF multicast, the links of the multicast tree are encoded
into a Bloom filter which is then placed as a source-route in
the packet header; hence the term in-packet Bloom filter (iBF).
The construction of the iBF may occur at the source node [4]
or it may be delegated to a separate routing module [2], [5].
To encode path links into Bloom filters, links are assigned
with a Link Identifier (LID). An LID is an m-bit string with
only k bits set to 1 (k << m). The positions of the k bits are
determined using k hash functions, e.g. by applying the k hash
functions on the network adapter’s MAC address. LIDs are
unidirectional (a bi-directional link is assigned two LIDs, one
for each direction) and do not need to be unique. A delivery
path is encoded into an iBF by ORing the path LIDs. In the
example of Figure 1, the iBF for transmitting data from A to
C is LIDAB |LIDBC = 000111. Forwarding elements extract
the iBF from packet headers, examine which of their outgoing
links are part of the iBF and transmit the packet over those
links. If the expression

(iBF&LIDi) == LIDi

evaluates to true, then the node assumes that LIDi is encoded
into the iBF and transmits the packet over link i. In our
example, when node B receives a packet with iBF 000111,
it will forward it to C, since iBF&LIDBC = 000110 =
LIDBC . For multicast delivery, we OR all LIDs of the
tree; the forwarding decision logic remains the same. In the
example, the iBF for multicast delivery from A to {C, D} is
LIDAB |LIDBC |LIDBD = 010111.

There are two significant advantages with iBF forwarding.
First, it is very lightweight in terms of the state required
at network elements: nodes store only their LID information
which is proportional to their node degree. This also applies to
multicast: as forwarding information is kept at packet headers
and not at routers, the network can support an arbitrary number
of multicast sessions without worrying about MFT explosion.
The second advantage of iBF forwarding regards its capability
for line-speed operation, in contrast to other source-routing
methods. The forwarding logic is based on simple bitwise
operations and can be easily implemented in hardware [2].

On the other hand, iBF multicast scales poorly with respect
to multicast group size. This is because Bloom filters are
probabilistic representations of sets: when a Bloom filter is
queried whether an item is contained in the set, it may return a
false positive. During packet forwarding, the iBF may falsely
answer that an LID is present in the path, thus the packet
will be forwarded over that link. Continuing the example, the
iBF for multicasting data from A to {C, D} was 010111.
When the multicast packet arrives at B, LIDBE also matches
the iBF, thus the packet is forwarded to E. In addition,
at node E the iBF also matches LIDEF , so the packet is
also forwarded from E to F. In this example, a multicast
delivery intended for 3 links resulted in 5 transmissions, i.e.
2 redundant transmissions. The amount of redundant traffic
generated depends on the false positive probability (fpp) of
the Bloom filter as given by [3]

fpp = (1− e−kn/m)k (1)

where m is the size of the iBF, k is the number of hash
functions used and n is the number of inserted items. The fpp
increases as (i) the size of the iBF decreases or (ii) the number
of inserted items increases. In iBF multicast, as group size
increases, more links are added, thus the fpp also increases.
Previous work on iBF multicast reported that once the fpp
exceeds 0.2% there is a sharp rise in the amount of redundant
traffic caused by false positives [2], [4].

To better illustrate the performance degradation of iBF mul-
ticast when the group size grows, Figure 2 presents simulation
results for a synthetic scale-free graph with 500 nodes. The
plot shows the forwarding efficiency of multicast delivery for
various iBF sizes, defined as

forwarding efficiency =
#multicast tree links

#total packets transmitted
(2)

If we target a forwarding efficiency of 90% (i.e. 10% of traffic
being redundant), we see that multicasting with a 256-bit iBF
and k = 4 can scale up to roughly 6-7 nodes. A 1024-bit iBF
with k = 6 scales up to 60 recipient nodes. These results are
consistent with previous research [2], [4], [5].



PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250

F
or

w
ar

di
ng

 e
ffi

ci
en

cy

Group size

iBF 256 bits, k=4
iBF 512 bits, k=5
iBF 768 bits, k=5

iBF 1024 bits, k=6

Fig. 2. iBF forwarding efficiency in a network with 500 nodes.

B. Related work

Mitigating forwarding anomalies in iBF multicast: Sev-
eral research studies focus on mitigating forwarding anomalies
such as redundant transmissions and, even, routing loops.
LIPSIN proposed to install short-lived packet caches in routers
in order to eliminate forwarding loops [2]. When a looped
packet arrives at a router, the router compares it against this
cache and discards it, thus eliminating the loop. This approach,
however, introduces extra state at routers and increases per-
packet processing overhead. Särelä et al. proposed a varying-
k method for computing the LIDs and a bit-permutation
scheme during iBF construction and forwarding [4]. These
schemes mitigate forwarding anomalies but do not provide
significant scalability benefits. Going one step further, Särelä
et al. proposed BloomCast, a protocol for inter-domain iBF
multicast [4]. In BloomCast, the iBF is computed based on
the inter-domain graph and separate iBFs are used at each
individual domain. When packets enter ASes, ingress routers
encapsulate packets with a domain-specific iBF and tunnel
them towards AS exit points. Although BloomCast shrinks the
topology graph by applying the abstraction of inter-domain
and intra-domain graphs, it does not solve the scalability
problems for a single flat graph. For instance, the Internet
is currently reported to contain more than 35000 ASes [6].
Using a single iBF for multicast delivery over the inter-AS
graph, BloomCast scales up to 20 AS nodes with a 1024-bit
iBF. ESM studied iBF multicast specifically in data center
topologies [5]. The authors proposed to use the technique
only for small (manageable) multicast groups, resorting to
hop-by-hop multicast forwarding for bigger group sizes. In
Hierarchical Tree Splitting (HST), the multicast tree is split in
several sub-trees, all rooted at the source, so that the iBF for
each sub-tree has a low fpp [7]. The source node maintains
several iBFs (one per sub-tree) and transmits packets over all
trees. HST preserves the stateless operation of routers, at the
expense of additional multicast state at the source node and
redundant traffic: the sub-trees may have overlapping links,
thus causing multiple data transmissions. Moreover, HST still
suffers from excessive redundant traffic in very large trees. Our

goal is to minimize redundant traffic for arbitrary tree sizes.
Increasing the capacity of iBFs: Other studies focus on

increasing iBF capacity without placing multicast state at
routers. In general, the approaches for increasing the capacity
of a iBFs are (i) to vary the size m of the Bloom filter or (ii) to
compute the optimal value for k so that fpp remains low [3].
Varying m can be realized in two ways. First, by using a
Bloom filter that grows dynamically as items are inserted [8],
[9]. Second, by computing a value for m that minimizes the
fpp, provided that we know n beforehand, i.e., we must first
determine the multicast tree size and then compute the size of
the iBF. In both cases, varying m means using different iBF
sizes on a per tree size basis, which is not practical in the
context of packet forwarding. First, m cannot grow without
bound: there are limits to the size of the iBF imposed by
MTU packet sizes, of which iBFs should be a relatively small
part. Second, using variable length identifiers is unfriendly to
line-speed hardware-level implementations of iBF forwarding.

The second approach for increasing the capacity of a Bloom
filter is to keep m fixed and vary k [7]. This approach requires
first determining the number of multicast tree links and then
computing k. The value for k that minimizes fpp is [3]

kopt =
9m

13n
(3)

Varying k is impractical because it does not guarantee that
the fpp will remain below a desired threshold. For example,
if m = 256 and bits and n = 200 tree links, then kopt =
0.88. In practice, however, k cannot be less than 1; at least
one bit needs to be set in LIDs, otherwise packet forwarding
will fail. In this case, if we set k = 1 and apply (1) we get
fpp ≈ 18%, which is far too big compared to the suggested
0.2% [4]. Moreover, varying k is also impractical as it would
require computing and setting LIDs in nodes on a per multicast
tree size basis. In contrast, having a unique, predefined value
for k allows LIDs to be computed and installed once, during
network bootstrap.

Reducing IP Multicast Forwarding State: REUNITE pro-
posed installing multicast forwarding state only at branching
points of the multicast tree; non-branching points forward
packets using existing unicast routing information [10]. This
significantly reduces multicast forwarding state for sparse
trees, but its benefits are minor in dense trees. Explicit Mul-
ticast (Xcast) proposed including the addresses of multicast
receivers in packet headers [11], with routers forwarding multi-
cast packets based on that information only. Xcast is a stateless
scheme and therefore scales with respect to the number of
multicast groups. However, due to the limited capacity of the
packet header, it is only suitable for small groups. Yang and
Liao proposed a semi-stateful version of Xcast [12] where
multicast forwarding state is installed in a few, carefully se-
lected routers, and packets are forwarded among these routers
via Xcast. This is quite similar to switched-iBF multicast with
two notable differences: (i) in Xcast packet headers contain
host addresses for multicast receivers while in iBF tree links
are encoded and (ii) in Xcast pre-existing unicast forwarding
state is required. Our evaluation (see section IV) shows that
due to the high compression capabilities of Bloom filters,



4 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013

switched-iBF multicast requires installing significantly less
multicast state, thus providing better scalability properties.
Finally, MAD identified that multicast group sizes follow a
Zipf distribution and proposed using native IP multicast for
the few large groups and overlay multicast for the smaller
groups [13]. In our work, we show that even large groups can
be accommodated with far less state than with IP multicast,
thus further increasing the system’s capacity for the large
groups.

source

1 2 3 4 5 6 7 8 9

GFE

C

A

D

10

B

Fig. 3. An example delivery tree with 10 receivers. Dashed-line nodes are
stateless. Solid-line nodes contains sub-tree iBFs.

III. SWITCHED-IBF MULTICAST

A. Overview

The basic idea in switched-iBF multicast is to break the
initial delivery tree into several sub-trees, compute the iBF
for each sub-tree and place the respective iBFs as multicast
forwarding state at sub-tree roots. At the data plane, multicast
packets are forwarded using the same forwarding logic with
one differentiation: upon reaching a stateful node, the node
switches the packet’s iBF with the stored iBF and further
relays the packet using the new iBF. Sub-trees are selected
so that the resulting iBFs will have a very low false positive
probability (fpp). Figure 3 shows an example of a multicast
tree with two stateful nodes. The source node uses an iBF to
multicast data to the next immediate stateful nodes, i.e. B and
C, which apply iBF-switching and further push packets down
to receivers.

B. Selection of iBF-switching points

To reduce redundant traffic we need to maintain the Bloom
filter’s fpp below a certain threshold. According to (1), fpp
depends on m, k and n. The first two parameters are fixed in
practice, hence the only tunable parameter is n, i.e. the number
of sub-tree links. We define a desired fppmax threshold and
use (1) to obtain the maximum number of sub-tree links

nmax = −ln(1− fpp
− 1

k
max)(

m

k
)

We traverse the multicast tree in a bottom-up post-order
fashion, breaking it into sub-trees containing ni links, so that

ni → nmax as shown in Algorithm 1. In the algorithm we
denote ni as the number of links of the sub-tree rooted at
node i, Ci as the set of i’s children in the delivery tree and
iBFi as the iBF for the sub-tree rooted at node i. For example,
consider the tree of Figure 3 and assume nmax = 6. When
we visit nodes D and E we have nD = 4 and nE = 1, so
we move to node B where nB = 6 = nmax. B becomes an
iBF-switching point. We compute iBFB , install it at B, prune
the sub-trees rooted at B and reset nB to 0. Similarly, node C
is selected as an intermediate iBF-switching point. Finally, at
the source node we compute the iBF for multicasting data to
nodes B and C.

Algorithm 1 Sub-tree selection
Method: TreeTraverse
Input: t: multicast tree;

s: tree source
fpp thres: maximum fpp;

nmax := computeNmax(fpp thres,m, k);
nsource := sub tree traverse (t, s, nmax);
iBFs := compute iBF(t, s);
return iBFs;
end method

Method: sub tree traverse
Input: t: multicast tree;

i: current root node;
n: maximum number of nodes;

ni := 0;
for (j in Ci) {

ni := ni + 1 + sub tree traverse (t, j, n); //recursion
}
if (ni ≥ nmax) {

iBFi := compute iBF(t, i);
installState(iBFi, i);
removeSubtree(t, Ci);
ni = 0;

}
return ni;
end method

C. Multicast tree construction

Our focus in this paper is on the scalability properties and
not on the signaling details of the iBF multicast scheme. We
will therefore only outline how our scheme can be combined
with different multicast tree construction algorithms. Bloom
filter-based multicast systems are generally classified in two
categories, depending on how the multicast tree is constructed.
In the first category, the tree is constructed in a distributed
manner and the iBF is computed at the source node [4], [7].
In these systems, users issue multicast JOIN messages which
are forwarded by routers towards the specified source. As
the JOIN messages are propagated, they collect reverse path
information. When a JOIN reaches its destination, the source
node extracts the reverse path, appends it to the preexisting



PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013 5

delivery tree (if any) and computes the respective iBF. A basic
assumption in these systems is that nodes have sufficient topo-
logical information to forward JOIN messages and compute
the iBFs. In the second category, the multicast tree and the
iBF are centrally computed by a separate routing module that
resides in a dedicated server [2], [5]. In these systems, JOIN
messages are delivered directly to the routing module which
computes the multicast tree based on topological information
(e.g. link delays), constructs the iBF and then sends it to the
group source. In these systems, the JOIN delay is increased,
due to the need to also communicate with the routing module.

Our switched-iBF scheme is compatible with both options.
The only extension required is that the node computing the iBF
must also (i) decide where multicast state should be placed and
(ii) instruct the selected nodes to install the appropriate state.
Note that iBF multicast is, in general, suitable for applications
with low group dynamics (e.g. orchestrated data delivery, data
backup) and not for highly dynamic multicast groups (e.g.
IPTV). This limitation holds for our scheme as well.

IV. EVALUATION

We evaluated the scalability properties of switched-iBF
multicast via extensive simulation tests on a custom-made
simulator. We used synthetic scale-free graphs generated with
the Barabási-Albert algorithm [14] ranging from 1000 to
5000 nodes. LIDs for links were constructed using Double
Hashing [3] with SHA-1 and MD5. For each tested graph of
size s we generated s different multicast groups, e.g. for a
network of 5000 nodes we generated 5000 multicast groups.
The size of each multicast group is uniformly distributed
in [10, s − 10], i.e, groups have at least 10 and at most
s − 10 nodes. For each multicast group, group members are
randomly selected among all nodes. For multicasting we used
the shortest-path trees, i.e. the union of the shortest paths
between the source and each receiver. We saw similar behavior
in all graph sizes, hence, due to lack of space, we only present
results for 5000 node graphs.

 86

 88

 90

 92

 94

 96

 98

 100

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

F
or

w
ar

di
ng

 e
ffi

ci
en

cy
 (

%
)

Group size

fpp=0.1%
fpp=0.2%
fpp=0.5%

fpp=0.75%
fpp=1%

Fig. 4. Forwarding efficiency of switched-iBF multicast. Network size 5000,
iBF size 256 bits, k = 4, variable fpp.

A. Forwarding efficiency and state requirements

Figure 4 shows the forwarding efficiency defined in (2) as a
function of group size in a graph of 5000 nodes with m = 256
and k = 4. When fpp = 0.1%, forwarding efficiency is kept
above 99%, i.e. false positives account for less than 1% of
overall traffic, regardless of group size. Forwarding efficiency
is not constant: it starts from a low value and increases quickly.
In small groups several false positives occur, but as group size
grows and more links are added, fewer links can count as false
positives. Overall, the forwarding efficiency of switched-iBF
multicast increases as the group size increases, i.e. switched-
iBF multicast behaves better in larger multicast groups.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

S
ta

te
fu

l n
od

es
 (

%
)

Group size

fpp=0.1%
fpp=0.2%
fpp=0.5%

fpp=0.75%
fpp=1%

Fig. 5. State requirements of switched-iBF multicast. Network size 5000,
iBF size 256 bits, k = 4, variable fpp.

Figure 5 shows the state requirements of switched-IBF
multicast as a function of group size, with the same param-
eters as above. The Y-axis shows the percentage of nodes
where state must be installed. The fraction of stateful nodes
grows linearly with multicast group size. As fpp increases,
the size of sub-trees also increases; hence the number of
stateful nodes decreases. In spite of the linear growth of state
requirements, notice that state requirements are overall quite
low. For instance, multicasting to a group of 2500 nodes with
fpp = 0.5% (forwarding efficiency at 98%) requires multicast
state at only 1%, i.e. 5000×1% = 50 nodes. For the remainder
of the paper, we present results for fpp = 0.5% as it provides
a good trade-off between forwarding efficiency (quickly passes
96% and converges to 98%) and state requirements (requires
half the nodes compared to fpp = 0.1%).

In Figure 6, we show the state requirements for various
values of m and k with fpp = 0.5% in a 5000 node graph.
As m increases, the fraction of stateful nodes decreases as
expected: as iBF size grows, more tree links can be added to
the iBF without the fpp passing the selected threshold. Notice
that with m = 1024 bits, switched-iBF multicast requires state
at around 0.4% of the nodes, i.e. we can almost broadcast
(e.g. transmit a firmware update to all routers) with multicast
forwarding state at only 5000× 0.4% = 20 nodes.



6 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

S
ta

te
fu

l n
od

es
 (

%
)

Group size

m=256, k=4
m=512, k=5
m=768, k=5

m=1024, k=6

Fig. 6. State requirements of switched-iBF multicast. Network size 5000,
fpp = 0.5%, variable m and k.

B. Comparison against IP multicast forwarding schemes

We then compare multicast forwarding state requirements
between switched-iBF multicast and various schemes proposed
for reducing IP multicast forwarding state. Specifically, we
compare switched-iBF multicast against REUNITE [10], the
semi-stateful Xcast [12] and plain IP Multicast. REUNITE
reduces state by installing multicast forwarding information
only at branching points of the multicast tree. The semi-
stateful Xcast scheme installs multicast state at a few network
nodes and multicasts packets among them using Xcast [11].
Plain IP multicast places multicast forwarding state at each
node of the multicast tree.

Figure 7(a) presents the fraction of stateful nodes as a
function of multicast group size in a 5000-sized graph. We
chose m = 1024 bits and fpp = 0.5% for switched-iBF
multicast. For semi-stateful Xcast we considered a header of
the same size, i.e. 1024 bits, and then considered two variants:
(i) in XCAST-8 the header may contain up to 8x128-bit host
addresses and (ii) in XCAST-32 the header may contain up
to 32x32-bit host addresses. XCAST-8 targets a possible de-
ployment of Xcast in IPv6 networks while XCAST-32 targets
a hypothetical deployment in IPv4 networks. XCAST-32 is
impossible to realize of course, as IPv4 headers cannot exceed
40 bytes, but we present the results for completeness. The
simulation setup is the same as in the previous section. Due
to wide difference between the various schemes, the Y-axis in
Figure 7(b) is in log scale. In all schemes, multicast forwarding
state grows linearly with respect to group size. However,
switched-iBF achieves a large state reduction compared to
the other schemes. For instance, for a 2000 node group,
switched-iBFs reduce the number of stateful nodes by 99.6%
compared to IP multicast, 98% compared to REUNITE, 87%
compared to XCAST-8 and 42% compared to XCAST-32.
Figure 7(b) presents the same data but only for semi-stateful
Xcast and switched-iBF multicast, with the Y axis in linear
scale. Although switched-iBF and semi-stateful Xcast both use
a combination of source-routing and stateful nodes, switched-
iBF requires far less state due to the efficient encoding of
the Bloom filter, even though we restrict the number of tree

 0.001

 0.01

 0.1

 1

 10

 100

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

# 
of

 s
ta

te
fu

l n
od

es
 (

lo
gs

ca
le

)

Group size

IP
REUNITE
XCAST-8

XCAST-32
iBF switching

(a) IP Multicast, REUNITE, semi-stateful Xcast and switched-iBF multicast (log
scale).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

# 
of

 s
ta

te
fu

l n
od

es

Group size

XCAST-8
XCAST-32

iBF switching

(b) Semi-stateful Xcast and switched-iBF multicast (linear scale).

Fig. 7. Fraction (%) of stateful nodes against group size.

links so that fpp = 0.5%. Even XCAST-32 requires double
the state of switched-iBF. Taking into account that REUNITE
and Xcast also require unicast forwarding state, it is clear
that an iBF-based forwarding node requires far less overall
state. Hence, although we sacrificed the fully stateless nature
of iBF multicast, it both scales with respect to multicast group
size and remains a far more scalable solution in terms of the
number of multicast groups supported.

V. CONCLUSION

In this paper we addressed the scalability issues of iBF
multicast with respect to multicast group size. We examined
the option of sacrificing the fully stateless operation of iBF
multicast in order to minimize the redundant traffic caused
by false positives in large multicast groups. We presented
a switched-iBF multicast scheme and an algorithm for the
selection of iBF switching points. Our evaluation through sim-
ulation showed that our solution scales to groups of arbitrary
size with a (minimal) cost of placing multicast forwarding
state at no more than 0.5%-2.5% of network nodes. Moreover,
compared with other multicast schemes that reduce forwarding
state, switched-iBF multicast achieves state reductions varying



PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2013 7

from 87% to 99.6%. Hence, even though switched-iBF mul-
ticast places state inside the network, it provides far better
scalability properties with respect to the number of groups
supported, compared to related solutions.

ACKNOWLEDGEMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS - University
of Crete - MUSINET.

REFERENCES

[1] C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked
Music Performance over Information-Centric Networks,” in Proc. IEE
IIMC Workshop, June 2013.

[2] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,
“LIPSIN: Line speed publish/subscribe inter-networking,” in Proc. ACM
SIGCOMM, Aug. 2009.

[3] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and Prac-
tice of Bloom Filters for Distributed Systems,” IEEE Communications
Surveys & Tutorials, vol.14, no.1, pp.131-155, First Quarter 2012.

[4] M. Särelä, C. Rothenberg, T. Aura, A. Zahemszky, P. Nikander, and J.
Ott, “Forwarding anomalies in bloom filter-based multicast,” in Proc.
IEEE INFOCOM, Apr. 2011.

[5] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: efficient and scalable data
center multicast routing,” IEEE/ACM Transactions on Networking, vol.
20, n. 3, pp. 944-955, June 2012.

[6] CAIDA, September 2012. [Online]. Available: http://www.caida.org
[7] S.Rizvi, A Zahemszky, and T. Aura, “Scaling Bloom filter based

multicast with hierarchical tree splitting,” in Proc. IEEE ICC, June 2012.
[8] P. S. Almeida, C. Baquero, N. Preguia, and D. Hutchison, “Scalable

Bloom filters,” Inf. Process. Lett., vol. 101, no. 6, pp. 255-261, 2007.
[9] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic Bloom

filters,” IEEE Transactions on Knowledge and Data Engineering, vol.
22, no. 1, pp. 120-133, 2010.

[10] I. Stoica, T.S.E. Ng and H.Zhang, “REUNITE: a recursive unicast
approach to multicast,” in Proc. IEEE INFOCOM, March 2000.

[11] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens,
“Explicit multicast (Xcast) basic specification”, IETF Internet Draft,
2000.

[12] De-Nian Yang and W. Liao, “Protocol design for scalable and adaptive
multicast for group communications,” in Proc. IEEE ICNP, Oct. 2008.

[13] T. Cho, M. Rabinovich, K. Ramakrishnan, D. Srivastava, and Y. Zhang,
“Enabling Content Dissemination Using Efficient and Scalable Multi-
cast,” in Proc. IEEE INFOCOM, April 2009.

[14] A. Barabási and R. Albert, “Emergence of Scaling in Random Net-
works,” Science, vol. 286, pp. 509-512, 1999.


