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Abstract—Video constitutes the majority of all Internet traffic
and its share is expected to grow. Any future Internet architecture
with a chance at success should provide some tangible benefits
for video applications. Information-Centric Networking (ICN)
architectures were designed with the specific goal of improving
content distribution on the Internet; thus, this paper attempts to
answer the obvious question: is ICN appropriate and ready for
video traffic and, if not, what is missing or should be modified?
To this end, we consider two different ICN architectures, Content-
Centric Networking (CCN) and Publish-Subscribe Internetworking
(PSI), and examine their applicability to Video on Demand and
Live Video Streaming applications. Our goal is to clarify what
ICN already does well for video, what it still needs to do, and,
most importantly, what it could or should do differently.

I. INTRODUCTION

The Internet architecture and the TCP/IP protocol suite are
undoubtedly technological successes. What started out as an
academic experiment, has become a global communication
infrastructure with billions of connected devices delivering
voluminous amounts of digital content. This success was
accompanied by a shift in usage: the Internet was initially de-
signed to interconnect hosts for sharing scarce computational
resources, while nowadays it is mostly used for ubiquitous
content retrieval, with video dominating Internet traffic [1].
Several add-ons and patches have been used to address the
changing needs of Internet users, such as NATs to extend the
scarce device address space and DNS redirections to serve
large traffic volumes from the nearest servers. These solutions
however either created their own problems [2] that were
solved by yet more ad-hoc solutions [3], or were misused [4].
Overall, this has led to a situation where network operation and
management have become too complicated, while evolution in
the core of the protocol stack has slowed down.

This state of affairs motivated research in clean-slate archi-
tectural designs with Information-Centric Networking (ICN)
holding a prominent position. ICN aims to facilitate content
distribution by placing self-identified information items at
the heart of the protocol stack and building routing and
transport protocols around them. Several ICN designs have
been proposed with substantial differences in the provided
service models and core network functions, including infor-
mation lookup, routing, forwarding and transport [5]. If these
architectures are ever going to have an impact on the Internet
however, it is imperative for them to work well with video.
Internet video accounted for 57% of all Internet traffic in 2012
and is expected to reach 69% in 2017 [1], hence improvements

in video delivery could be a major factor for the successful
adoption of ICN.

However, implementing, say, video streaming over ICN is
not trivial. Internet video streaming technologies have evolved
based on the properties which no longer hold with ICN.
For example, the unreliable best effort nature of IP forced
video applications to include techniques for stream adaptation
and loss tolerance, while delivery mechanisms were designed
on top of transport protocols with well-defined interfaces
and behavior, e.g. RTP/UDP and recently HTTP/TCP [6]. In
contrast, many proposed ICN architectures are at an early
stage of development, hence their service models and transport
interfaces are far from final. Therefore the benefits of applying
the same techniques for video streaming in an ICN context
are questionable, for example, it may be impossible for video
receivers to adapt to network path characteristics when each
video chunk can be served by a different caching node.
Indeed, support for efficient video delivery in ICN may require
enhancements in the network design, e.g. developing specific
transport protocols, extending the transport interfaces and re-
considering the end-to-end paradigm. It may even be the case
that some of the basic design choices of ICN architectures are
problematic for video delivery.

In this paper we consider the design of video streaming
applications in two particular ICN proposals: (i) Content-
Centric Networking (CCN) [7] and (ii) Publish-Subscribe
Internetworking (PSI) [8]. We selected these particular ICN
architectures because they exhibit fundamentally different
architectural designs. CCN provides users with a request-
response service model in which users pull individual data
packets from the network. PSI on the other hand, offers a
publish-subscribe service model in which the network pushes
data to interested users. We also consider the implemen-
tation of two classes of streaming applications, with very
different transport requirements: (i) Video on Demand (VoD)
and (ii) Live Video Streaming (LVS). VoD is a file transfer
application with the extra feature that the video file is viewed
while being downloaded, hence reliability is a relatively high
priority for VoD. LVS on the other hand is delay intolerant
and, by necessity, more loss tolerant than VoD. The questions
we want to answer are (i) what ICN already does well for
video, (ii) what it still needs to do and, most importantly, (iii)
what it could or should do differently.

The remainder of this paper is organized as follows. In
Section II we present the current state of affairs for VoD and
LVS streaming on the Internet. In Section III we examine
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in detail how these applications can be supported in CCN,
while in Section IV we do the same for PSI, paying particular
attention to issues that still need to be addressed and aspects
of the architecture that may need to be changed for video. We
present our conclusions in Section VI.

II. INTERNET VIDEO TRANSPORT

In this section we outline how viddeo applications operate
on the current Internet, as background for the ensuing discus-
sion of video support in the ICN architectures considered.

A. Video on Demand

In Video on Demand (VoD), users download and view video
that is prerecorded and stored in an Internet host, e.g. a ded-
icated video server. VoD supports VCR-style functionalities
such as pause, rewind and fast-forward. From the perspective
of network transport, VoD is similar to other file transfers, with
the addition that the file is used (viewed) before completing
the transfer. In most VoD services, video is delivered reliably,
hence VoD services are usually implemented on top of TCP. In
recent years, VoD over HTTP is increasingly getting popular,
mostly because of the compatibility of HTTP with Internet
middleboxes (firewalls and NATs). The transport details, how-
ever, remain the same; control and data signaling are wrapped
in HTTP messages, with the actual transfer performed by TCP.

VoD applications do not have very strict delay requirements.
Although smaller delays are better, large delays or delay
fluctuations are not catastrophic. VoD players may pause
playback and resume and as soon as their buffers fill with data.
Of course, long delays and buffering times have a negative
effect on user Quality of Experience (QoE). A common
enhancement, adaptive streaming, offers the same video in
multiple qualities (and bit rates). The transmitted quality is
selected dynamically, either by the sender or the receiver,
depending on the estimated end-to-end bandwidth throughput.

VoD viewers are not synchronized, therefore video requests
are served individually and video packets are transferred
via unicast. VoD data may be delivered via multicast, but
that requires explicit synchronization of the viewers [9] and
dropping some of the VCR-style functionality. In this case,
multicast must be accompanied with a multicast transport
protocol handling error, flow and congestion control such as
pgmcc [10]. Although multicast transport protocols have been
developed for IP networks, they have not found their way into
the Internet ecosystem and have remained confined to research
environments. For this reason, in the remainder of this paper
we will only consider unicast VoD applications.

B. Live Video Streaming

In Live Video Streaming (LVS), video frames are captured,
compressed, packetized and immediately transmitted to view-
ers. From the network transport point of view, LVS differs
from VoD in two major aspects. First, LVS applications have
critical low-delay requirements. End-to-end retransmission-
based error control is not suitable in situations with large
Round Trip Times (RTTs) whereas Forward Error Correc-
tion (FEC) schemes consume precious bandwidth. Hence, LVS

applications normally use their own mechanisms for tolerating
packet loss, such as error masking and adaptive streaming,
over UDP.1 The second difference is that LVS viewers are
naturally synchronized in time, thus data can be delivered via
multicast. In addition, since end-to-end error control is not
employed in LVS, the overall transport scheme is less complex,
compared to reliable multicast transport for VoD.

On the other hand, multicasting live video must cope with
various forms of system heterogeneity, in terms of band-
width (e.g. wired vs. wireless links) and hardware capabilities
(HD screens vs. laptops vs. smart phones). Heterogeneity
is addressed by schemes such as Receiver-driven Layered
Multicast (RLM) [11]. In RLM, video is coded in multiple
quality layers and each layer is mapped to a separate multicast
group. Users subscribe to (and receive) as many multicast
groups as their connectivity status allows. As with reliable
mutlicast transport, RLM has not yet made it to the com-
mercial Internet due to lack of IP multicast support. LVS
is therefore most prevalent in controlled and homogeneous
uniform environments, such as ISP networks offering IPTV
services over cable or DSL.

III. VIDEO DELIVERY IN CONTENT-CENTRIC
NETWORKING

A. Architecture overview

The Content-Centric Networking (CCN) architecture places
named content packets at the thin waist of the protocol stack
and provides users with a request-response service model in
which users pull data packets from the network [7]. Users
request named Data packets via Interests. Data packets contain
a name that uniquely identifies the carried payload whereas
Interests carry the name of the requested Data; no host
addresses are used. For each Interest, a user receives at most
one Data packet, thus there is a strict one-to-one relation
between Interests and received Data packets. The structure of
content names is similar to URIs: names are hierarchical with
variable-length components, e.g. /a/b/c.mp4.

Routers propagate Interests towards content sources and re-
turn Data packets along the reverse path with the help of three
data structures: (i) the Forwarding Information Base (FIB),
(ii) the Pending Interests Table (PIT) and (iii) the Cache
Store (CS) (Figure 1). The FIB serves as a name-based routing
table for forwarding Interests. At each arriving Interest, routers
perform a Longest Prefix Match on their FIB and push the
Interest towards a content source. FIBs are populated through
name-based routing protocols either similar to the ones used in
IP [7] or new ones [12]. Before forwarding an Interest, routers
insert the Interest in the PIT, noting its incoming interface. If a
PIT entry for the same name exists, meaning that the router has
already forwarded an Interest for the same packet, the Interest
is dropped, otherwise it is forwarded. This operation continues
until the Interest reaches the content source which responds
with the requested Data packet. Data packets are delivered by
reversing the path taken by the Interest. At each hop, routers
check their PIT for a matching entry, transmit the Data packet

1Recently, HTTP/TCP has been used for LVS, but this is mostly due to the
compatilibity of HTTP with Internet middleboxes.
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Fig. 1. A sample CCN interaction. U1 issues an Interest for /a/b/c.mp4 which
is located at S. Arrows show the propagation of the Interest. Data follows the
reverse path. The FIB and PIT (not the CS) for R3 are shown.

backwards and delete the PIT entry. If a router had received
Interests for the same Data from multiple interfaces, the router
duplicates the Data packet, thus realizing multicast delivery.
Finally, the CS, as it name suggests, is a cache containing Data
packets. Intermediate routers may directly serve an Interest
if the requested Data is present in the CS. Routers fill their
CSes with traversing Data packets, but their detailed operation
(e.g. cache replacement policy and interaction with the routing
system) is an open research issue [13].

Apart from multicast, CCN inherently supports anycast,
when the same data is available in multiple locations, and Data
multihoming, when a content source can be reached through
multiple paths. These two features are implemented by having
the FIB point to multiple next-hops for forwarding an Interest.
The Interest route (and consequently the Data route) is decided
by on-path routers through a CCN module called the strategy
layer. Anycast and/or multipath is transparent to users.

The Interest-Data mechanism essentially constitutes a
request-response communication model. Data transport is
receiver-driven, with stateless senders (content sources), i.e.
senders do not maintain any connection state, simply respond-
ing to incoming Interests. Transport related issues are handled
by the receiver. For error control, the receiver retransmits In-
terests for missing Data packets. Flow and congestion control
are also applied by the receiver by pipelining Interests. For
example the amount of transmitted Interests can be controlled
with a TCP-like sliding window mechanism [14].

B. Video on Demand

The transport interface in CCN is almost identical to
HTTP’s request-response model, therefore a VoD application
in CCN works similarly to chunk-based video delivery over
HTTP with two notable differences. First, in CCN requests
are made on a packet granularity: an Interest results in the
delivery of at most one Data packet, as opposed to HTTP in
which a request for a video chunk causes the transmission of a
number of TCP segments/IP packets. Second, in CCN the user
is unaware of the serving host, since the network selects where
and how to forward an Interest. This affects receiver-driven
adaptivity mechanisms, since users cannot reliably estimate
end-to-end throughput.

Fig. 2. Example metadata for video /a/b/c.mp4.

A VoD application in CCN would operate roughly as
follows. The receiver issues an initial Interest for the video, say
/a/b/c.mp4, and receives a Data packet containing metadata.
The metadata contains the information required to construct
the names of individual Data packets, e.g. naming scheme,
number of packets etc. Once this information is available,
the receiver constructs Interests for each video packet and
starts downloading the video. Adaptive streaming can be
supported by adding corresponding metadata, as in Dynamic
Adaptive Streaming over HTTP (DASH) [6]. Figure 2 shows
an example of a metadata packet for video /a/b/c.mp4. The
metadata indicates that the video is offered in two quality
layers (low and high), also showing the number of chunks
of each quality layer, the duration of each chunk and the
number of packets per chunk. Unlike with DASH, packet-
level information is required because the size of Data packets
is constrained by the Maximum Transfer Unit (MTU) and the
receiver needs to request each Data packet separately.2 In the
example, the receiver may decide to start with the low quality
and download the first chunk by issuing 10 Interests, namely
/a/b/c.mp4/low/chunk-1/1 to /a/b/c.mp4/low/chunk-1/10.

Since Interests are forwarded based on Longest Prefix
Matching at each router, no additional routing information is
needed in routers for VoD. On the other hand, CCN does not
guarantee that Interests are always served by the same content
source. Interests may be served by the CS of an intermediate
router or they may be routed to different sources, if the content
is available in multiple locations, therefore the content can be
downloaded from the best available location. In addition, by
storing packets at the CS of intermediate routers, lost packets
can be quickly recovered from nearby routers, thus enhancing
reliability without inflating delay.

However, while native anycast support is an advantage
of CCN (and ICN in general), it complicates the design
of VoD applications. Receiver-driven adaptive streaming is
usually based on estimations of the end-to-end bandwidth
throughput [16]. In the case of CCN, it is unclear whether
such estimations can be reliably performed. We illustrate this
with the example of Figure 3. Video /a/b/c.mp4 is available
in two quality versions. S1 stores both versions of the file,
while a copy of the low quality version is also located at S2

and appropriate routing information is installed in routers. U1

starts viewing the video in high quality, thus video chunks
are downloaded from S1. If there is a capacity drop in the
S1 → U1 path (e.g. due to congestion), U1 may switch to

2The MTU is implementation and deployment specific. CCNx [15], the
open-source CCN prototype implemented on top of UDP, uses an MTU of
8800 bytes.
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Fig. 3. Video /a/b/c.mp4/low is located at S1 and /a/b/c.mp4/high is located
at both S1 and S2.

the low quality. At that point, it is up to R1 to decide how
to forward Interests, e.g. R1 may choose to forward Interests
towards S2. However, the capacity of the S2 → U1 path may
be considerably smaller that the S1 → U1 path, hence the QoE
may drop further, despite the switch to the low quality version.
Under these conditions, U1 may improve its QoE by switching
back to high quality, which will have to be fetched from S1,
contradicting the current assumptions of adaptive streaming.
U1 would maximize QoE by indicating that the low quality
version should be fetched from S1, but this is impossible in
CCN due to the lack of endpoint addresses. Instead, a CCN
VoD application should test both quality layers in order to
determine which offers the best QoE, relying on the strategy
layer to determine the best path for each content layer.

C. Live Video Streaming

Support for LVS in CCN has attracted interest as soon as the
architecture appeared [17], [18]. Instead of having the source
transmit LVS datagrams to named-hosts at will (as in UDP/IP),
receivers in CCN need to request each named Data packet
separately. The starting phase for LVS is similar to that in
VoD, i.e. a receiver initially issues an Interest for the stream
and receives a Data packet containing descriptive metadata.
The metadata includes the naming scheme for deriving the
names of individual packets and the name of the latest packet
so that the receiver can construct the names for upcoming Data
packets. Once this information is available, the receiver starts
transmiting Interests for individual Data packets.

A difference between LVS and VoD is that streaming
packets need to be delivered in real-time, i.e. packets need
to be transmitted as soon as they are generated. In addition,
a user cannot request one Data packet at a time, otherwise
Data packets will be delivered with an inter-arrival delay
of at least one Round Trip Time (RTT) which would cause
jitter in the media playback. Real-time delivery is achieved
by having receivers request a number of streaming packets
upfront and issue subsequent Interests with a rate analogous
to the stream’s data rate. For example, consider a stream
named with the prefix /a/b/c/live, transmitting data with a fixed
rate of 100 packets per second (pps) and that 2000 packets
have already been transmitted. A viewer that wishes to tune
in to the stream, estimates the RTT, say 100ms and decides
to request Data packets for an interval of 2 RTTs, which is
2 × (100 pps × 100 ms) = 20 packets. The user requests
packets /a/b/c/live/2001 to /a/b/c/live/2020 and from there on
she transmits subsequent Interests with a rate of 100 Interests
per second.

The proactively issued Interests are forwarded to the content
source and await there until the requested Data packet is
generated and then immediately transmitted. If, in the mean
time, other users issue Interests for the same packets, these
Interests are suppressed by common on-path routers. When the
respective Data packets arrive, these routers duplicate the Data
towards the Interested receivers, thus live streaming packets
are multicasted to viewers. In addition, the receiver-driven lay-
ered multicast model [11] can be implemented in a straightfor-
ward manner. Information about the available video layers can
be included in the metadata during the initialization phase and
viewers transmit the Interests for the packets of each desired
layer. For example, in H264 Scalable Video Coding, scalable
layers are characterized by three parameters: (i) the Depen-
dency ID (DID) for spatial scalability (frame resolution), (ii)
the Quality ID (QID) for quality (SNR) scalability and (iii) the
Temporal ID (TID) for temporal scalability (frame rate) [19].
A stream source includes these parameters in the meta-
data Data packet and receivers may request upcoming Data
packets of each scalable layer by transmitting Interests for
/stream name/DIDi/QIDi/TIDi/[packet num]. Under
this scheme, adapting to network conditions requires from
the receiver to simply request the packets for the desired
layers. No out-of-bound communication is needed for sending
feedback to the media source in order to change its behavior.

A CCN feature that may benefit live streaming is the
existence of Cache Stores (CS) in routers. Although live
streaming applications are tolerant to packet losses, sometimes
there may be adequate time to request the retransmission of a
lost packet [20]. In the CCN context, lost Data packets may be
recovered from an intermediate router’s CS and not necessarily
from the stream source, thus the recovery may take less that an
end-to-end RTT. In this context, there is an additional incentive
for attempting to recover packet losses. The operation may
be enhanced by distinguishing video packets with respect to
the cache replacement policy in CSes. For example, packets
carrying data belonging to B frames may be not be cached
at all, leaving room in Cache Stores for I and P frames.
Moreover, P frames may be discarded sooner than I frames
(indicated with a TTL value in the Data packet header) so
that there is a higher cache hit probability when lost I-frames
are requested.

A potential drawback for supporting live streaming in CCN
is one Interest per Data packet mode of operation. Requesting
each individual streaming packet introduces significant load
to the network (bandwidth spent for Interests, load in routers)
and raises scalability concerns. Second, live streaming quality
is also subject to the up-path conditions, i.e. the receiver-to-
source path, apart form the down-path conditions. When the
up-path is congested, Interests may be lost thus the respective
Data packets are not transmitted at all. In this case the
QoE degrades even though there may be sufficient bandwidth
resources in the data-path. Such cases may occur when users
get access to the network through asymmetric links, e.g. ADSL
or satellite networks. These issues can be dealt by relaxing
the strict one-to-one mapping between Interests and Data, for
example introducing Interest Aggregation [21] or Persistent
Interests [18]. With Interest Aggregation, a single Interest
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requests multiple Data packets at once whereas Persistent
Interests mimic IP’s channel mode and request all packets
belonging to a stream. These modifications however, need
to be thoroughly tested and cannot serve as off the shelve
solutions. For example, in Interest Aggregation, loss of a
single Interest will result in loss of multiple Data packets
thus the user will experience bursty losses. Persistent Interests
on the other hand have longer lifetimes than plain CCN
Interests and the system may suffer from scalability issues
with respect to memory requirements in routers, similar to the
scalability constraints of IP multicast. Intermediate solutions,
e.g. interleaved Aggregated Interests or Persistent Interests
with shorter lifetimes (soft-state) may over-complicate router
operation.

IV. VIDEO DELIVERY IN PUBLISH SUBSCRIBE
INTERNETWORKING

A. Architecture overview

The Publish Subscribe Internetworking (PSI) architec-
ture [8] shares many high-level goals with CCN, however,
it follows an entirely different design approach. Compared to
CCN, PSI differs in two major aspects. First, the notion of
content objects in PSI is more abstract, i.e. a content object is
not strictly mapped to a single data packet. Second, the core
network operation (routing requests and forwarding data) is
split in three distinct functional modules, emphasizing on the
decoupling of routing control from data packet forwarding.

PSI models content objects as publications, content sources
as publishers and content consumers as subscribers. The archi-
tecture provides users with a pub/sub API for announcing and
requesting data. The architecture organizes the core network
operation into three distinct subsystems: (i) the Rendezvous
subsystem (RVS), (ii) the Topology Management and Path
Formation subsystem (TMPFS) and (iii) the Forwarding sub-
system (FS) [8]. The RVS serves as a resolution system; it
maps available publications to publishers and resolves sub-
scriptions. Nodes that implement RVS functionality are called
Rendezvous Nodes (RNs) and they are organized as a Dis-
tributed Hash Table (DHT). The TMPFS monitors the network
topology and connectivity state. The TMPFS functionality
resides in Topology Manager nodes (TMs), which may be
co-located with RNs or placed in separate physical hosts.
The FS undertakes the actual packet forwarding. PSI employs
LIPSIN [22] for packet forwarding, an efficient Bloom filter-
based source-routing scheme. The forwarding functionality is
implemented by all nodes. Nodes that participate solely in
packet forwarding are called Forwarding nodes (FNs). All
nodes report their forwarding related information (link status)
to the TMPFS so that the latter can make routing decisions.
Figure 4 shows an example of a PSI network with two RNs,
a single TM and several FNs.

Content delivery in PSI is step-wise process in which the
three subsystems interact as shown in Figure 4. Initially,
a publisher announces the availability of a publication to
the RVS (step 1). To receive a publication, a user issues a
subscription which is handled by the RVS as well (step 2).
The RVS locates and selects the best publisher and requests

Fig. 4. A sample PSI interaction. P announces a content object to the
network (step 1). S subscribes to it. The RVS handles the subscription (step
2), the TMPFS selects the delivery path (step 3) and notifies P (step 4). P
transmits the requested object over the specified path (step 5).

the TMPFS to compute the publisher-to-subscriber path (step
3). The TMPFS selects a suitable path and encodes it into
a LIPSIN source-route. The TMPFS hands the source-route
identifier to the publisher and instructs the publisher to forward
the requested item (step 4). Finally, the publisher transmits the
requested content object over the specified path (step 5).

PSI does not enforce a particular naming scheme. The archi-
tecture is compatible with both flat and hierarchical identifiers.
The granularity of publications is not mandated by the archi-
tecture either. Publications may represent files (of arbitrary
size), chunks of files or individual network packets. Publica-
tions may also represent live streaming flows of undefined size.
It is left to the application to decide how to represent a content
object taking into consideration the transport context and that
each available publication must be announced separately to
the RVS. For example, it is not advisable to represent a live
stream as a series publications, one for each data packet, as in
CCN. Doing so in PSI would require that each stream packet
is announced to the RVS and users issue subscriptions that
are handled by the RVS-TMPFS subsystems. This triangular
resolution→path formation→notification process may lead to
excessive network load and large delays. In addition, since
streaming packets have relatively short lifetimes, they would
need to be unpublished (withdrawn) shortly after they are
published, thus further burdening the network operation. Live
streams are better represented with a single publication: stream
sources announce the stream once and receivers tune in with
a single subscription. Once the subscription is resolved, the
source transmits the streaming packets to the subscriber until
the latter withdraws the subscription. Note that an explicit
unsubscription message is also required.

For multicast delivery, the RVS tracks users subscribed to
a content object. Whenever a user subscribes (unsubscribes)
to (from) an object, the RVS updates the list of subscribed
users for the particular publication and requests the TMPFS
to compute a multicast delivery tree. Due to the properties of
LIPSIN forwarding, multicast requires installing little to none
forwarding state at FNs [23]. Once multicast forwarding state
is setup and the respective LIPSIN identifier is constructed, it
is communicated to the content source. PSI decouples routing
control from routers (FNs) and delegates path computation
to the TMPFS. This design choice has the advantage of
making optimal routing decisions feasible, for example mul-
ticasting data over minimum-cost Steiner trees [24]. These
optimizations are too complex to implement in IP and CCN
in which routing and forwarding are strongly coupled and
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routing decisions rely on distributed mechanisms. On the other
hand, centralized designs often face scalability issues, e.g.
computation delays in the TM nodes.

B. Video on Demand

In a VoD service over PSI, users subscribe to the desired
video. Subscriptions are handled by the network which locates
the video source, computes the source-to-receiver path and
instructs the source to transfer the video. Data packets are
transferred on an end-to-end basis through a TCP-like mech-
anism that handles error, flow and congestion control. The
transport operation may be driven either by the source [25] or
by the receiver [26]. As described, it is up to the application to
decide on the granularity of publications, i.e. whether a single
publication is announced for the entire file or the file is split
in chunks and separate publications are announced.

Since the data transport can be controlled by either of
the communicating end-points, PSI supports both sender and
receiver driven adaptive streaming. A chunk-based VoD appli-
cation operates as in HTTP/DASH. Each chunk is represented
with a publication and receivers request the video chunk
by chunk. As in CCN , the effectiveness of receiver-driven
adaptivity is questionable since the network (more specifically
the RVS) may resolve subscriptions to different publishers,
thus receivers cannot make safe assumptions for the end-to-end
bandwidth throughput. In addition, in PSI each subscription
must be handled by the RVS-TMPFS, thus there may be
additional delays for flow establishment.

The centralized route control applied in PSI offers new
capabilities in video delivery. Instead of having the endpoints
re-actively adapt to bandwidth fluctuations, video delivery may
be proactively assisted by the network. For example, the user
subscribes to the video and the network selects an appropriate
source based on the end-to-end path capacity and the offered
video quality. Figure 5 shows a example where video.mp4 is
available in three quality versions (high, medium and low) and
stored in three different locations (S1, S2 and S3 respectively).
The user subscribes to video.mp4 and lets the network examine
which version of the file can be better delivered to the user.
For example, the S1 → U1 path may have the largest capacity
among the three paths but it may not suffice to transfer the
high quality video. The path S2 → U1 may have less capacity
than S1 → U1 but it may be fast enough for the delivery of the
medium quality, thus the network chooses to deliver the video
from S2. To implement such functionalities, the publish and
subscribe semantics of PSI need to be extended and be more
expressive so that announcing and requesting data contains
additional information (e.g. transfer parameters) and not just
the content’s name. This is a situation where investigation
for efficient video delivery calls for changes in the network
architecture, instead of simply adapting video delivery on top
of the currently offered service model.

C. Live Video Streaming

A live streaming application in PSI resembles live streaming
in IP. The streaming flow is assigned with a name and users
receive streaming packets by subscribing to the flow once;

Fig. 5. U1 subscribes to video.mp4. The network selects the best available
version of the video considering location of the sources and the respective
end-to-end paths.

the network establishes the respective forwarding paths (or
trees) so that the streaming flow in delivered to subscribed
user(s). The internal network operation of PSI however differs
from IP. In IP, subscriptions (i.e. multicast JOIN messages) are
handled by IP routers through distributed multicast routing
protocols whereas in PSI subscriptions are handled by the
dedicated network elements that are part of the RVS and
TMPFS subsystems. To stop receiving streaming packets, a
user must unsubscribe from the stream.

PSI facilitates live streaming in two ways. First, as dis-
cussed, PSI natively supports multicast, though in a different
fashion compared to IP and CCN. Multicast tree construc-
tion is controlled by the RVS and TMPFS. The choice for
decoupled centralized routing control enables PSI to make
optimal routing decisions, such as multicast delivery over
minimum-cost Steiner trees [24], [27]. Live streaming in PSI
is compatible with the layered multicast model as well; all
a user has to do is to subscribe to the layers that match her
connectivity status.

On the other hand, subscriptions (and unsubscriptions) must
be handled by the RVS and TMPFS and are not directly
forwarded to content sources as in CCN and IP Source Specific
Multicast [28]. Hence, there may be large delays when joining
and/or leaving a stream. This may have a negative effect in
live streaming applications with high group dynamicity, e.g.
channel surfing in IPTV, or frequent changes of receiving
layers in receiver-driven adaptive streaming.

V. DISCUSSION SUMMARY

We summarize our discussion points in Table I which
presents the architectural features of the examined ICNs with
respect to video delivery. More specifically, Table I shows
which features may improve video delivery compared to IP,
what seems unclear and needs to be clarified and, last, what
looks problematic and we believe must be sorted out in
immediate research.

CCN inherently supports anycast which facilitates VoD
since the network may locate the nearest cached copies of
video chunks, thus reduce transfer time. In addition, packet-
level caching in routers may assist retransmission-based error
control and further speed up chunk transfers. On the other
hand, it is unclear whether receiver-driven stream adaptation
can be applied in CCN. Receivers do not know where the Data
come from, therefore they may not safely estimate end-to-
end throughput. It is questionable whether adaptation schemes,



PUBLISHED IN: PROCEEDINGS OF THE PACKET VIDEO WORKSHOP 2013 7  CCN PSI  Improved Unclear Problematic Improved Unclear Problematic 
VoD 

Native anycast 
support.  

Enhanced 
retransmission-
based error control 
with in-network 
packet-level 
caching. 

Unreliable end-
to-end 
throughput 
estimation for 
receiver-driven 
adaptivity. 

Network 
overhead for 
explicitly 
requesting 
individual 
Data. 

Native 
anycast 
support.  

Optimal path 
selection 
through 
centralized 
route control. 

Unreliable end-
to-end 
throughput 
estimation for 
receiver-driven 
adaptivity. 

Optimal path 
selection 
requires 
extensions to 
pub/sub 
primitives. 

Delays for 
centralized 
resolution of 
subscriptions and 
unsubscriptions. LVD 

Enhanced 
retransmission-
based error control 
with in-network 
packet-level 
caching.  

Packet distinction 
(e.g. I, P, B frames) 
in caching policies. 

Service 
degradation in 
asymmetric 
links.  

Lost Interests 
upstream result 
in missing Data 
on the 
downstream. 

Optimal 
multicast 
delivery 
through 
centralized 
route control. 

 

Scalability of 
centralized 
multicast tree 
construction 
with dynamic 
user behavior. 

 
TABLE I

COMPARISON.

such as those examined in DASH, can be ported in CCN. The
enhanced error-control, assisted by CSes in routers, facilitates
LVS as well as it may allow receivers to recover some of
the lost streaming packets within time. In addition, routers
may treat video packets differently in their CSes according
to the packets’ importance in the live stream (I vs. P vs. B
frames), in an attempt to further enhance error-control. What
seems problematic in CCN, and applies to both VoD and
LVS, is the need to indispensably request each individual Data
packet and consequently transmit all the required Interests.
Particularly for LVS, it is unclear how the system performs
in topologies with asymetric links in which lost Interests in
congested paths result in non-transmitted Data packets (and
eventually in service degradation) regardless of the down-path
condition. We believe that more flexible kinds of requesting
Data, such as Aggregated or Persistent Interests, should be
investigated.

PSI supports anycast, thus VoD transfers may be facilitated
by letting the network locate the nearest VoD chunk replica. As
in CCN, it is unclear whether anycasting is compatible with
receiver-driven stream adaptation due to the unreliable end-
to-end throughput estimation. In PSI, such worries may be
bypassed by letting the network chose a suitable video quality
and data path that fits the user’s capabilities through PSI’s
decoupled routing modules (RVS and TMPFS). Embedding
such capabilities to the network requires modifying the basic

pub/sub primitives. However, it is unclear whether these ex-
tensions can be supported without sacrificing the architecture’s
generality or introducing unnecessary complexity. When it
comes to LVS, PSI’s centralized route control allows construct-
ing optimal multicast trees, albeit the scalability of this feature,
particularly when dynamic groups are concerned, needs to
be investigated. What looks problematic in PSI, and this
applies to both VoD and LVS, is the delay penalties one may
have to pay for resolving requests through PSI’s decoupled
control plane modules. Subscriptions (and unsubscriptions)
must be first resolved by the DHT-based RVS and then the
TMPFS must compute the forwarding paths (and establish
forwarding state in FNs if required). These two separate steps
may impose large delays for flow establishment and ultimately
affect the system’s responsiveness. We believe that PSI should
emphasize on resolving this issue.

VI. CONCLUSIONS AND FUTURE WORK

Information-Centric Networking has been proposed on the
ground that the Internet architecture needs a brave renovation
in order to meet the high demands of modern applications.
Given that video accounts for the majority of Internet traffic,
ICN investigation should consider facilitating video delivery
as a top priority.

ICN research is still at a seminal level and many of the
architectural aspects that are critical to video streaming are
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still open. In this paper, we showcased that it may be too soon
to start implementing streaming applications over the proposed
ICN architectures, especially by trying to port existing design
rationale in ICN-based video streaming applications. The APIs
currently offered by ICN systems resemble the interfaces of
existing Internet protocols, however the underlying network
operation is still undefined making the behavior of a video
streaming application unpredictable. In addition, instead of
building video streaming applications on top of ICN, we
believe that the research community may very well need to
investigate changing the architecture itself and incorporate
mechanisms that facilitate video delivery. We highlighted the
example of embedding semantic information into the content
objects (video quality, required throughput, etc.) so that the
network may actively assist video streaming by means of
letting the network locate the suitable version of the requested
video that can be better delivered to users and/or select
appropriate paths. We have not witnessed such explorations
in ICN research, yet we believe that this research direction
may prove remarkably fruitful.
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